01-一致收敛函数项级数的性质
§13..2一致收敛性质.

注 由于连续性是函数的一种局部性质,因此连续函数列 {fn(x)})在区间 I 上内闭一致收敛于 f(x),就足以保证 f(x) 在 I 上连续。
推论 若连续函数列{fn(x)})在区间 I 上内闭一致收敛于 f(x),
则 f(x)在 I 上连续。
2019年5月12日星期日
8
3.可积性
定理13.10 若 fn( x)
(x)
lim
n
a
n
.
即 fn ( x)
f (x)
则 lim lim x x0 n
fn ( x)
lim lim
n x x0
fn ( x)
证 (1)
证明lim n
an存在。
因为 fn( x)
f ( x) 0,N 0,
p N ,x D,都有| fn (x) fn p (x) | .
nx fn(x) 1 n2 x2
f ( x) 0, x [0,1]
但f ( x) 0在[0,1]连续、可积,且 1 f ( x)dx 0, 0
而
1
0 fn( x)dx
1 nx 0 1 n2 x2 dx
1 ln(1 n2 ) 0
1
f ( x)dx.
f ( x) lim n
fn( x0 )
f ( x0 ),
即f(x)在x0也连续。即有:
2.连续性
定理13.9 若 fn( x)
f (x) x I,
且n, f n ( x)在I连续,则f ( x)也在I上连续.
2019年5月12日星期日
6
定理13.9的逆否命题:
若fn(x)的极限函数f(x)在I上不连续,则
一致收敛函数列与函数项级数的性质

1 n 1
12n
2
(2n 2n2x)dx
而
1
lim
0 n
1
1 0dx
n
fn (x)dx
1 2
0
不相等
(2) 定理的条件是充分的, 但不必要
例3 fn (x) nxenx n 1, 2,... 在区间[0,1]上讨论.
f
(x)
lim
n
fn (x)
lim nxenx
n
0
x [0,1]
但在[0,1]上, fn(x) nxenx n 1, 2,...不一致收敛. 事实上,
{ fn(x)}的每一项在[a,b]上有连续的导数, 且{ fn(x)}在[a,b]上一致收敛,
则
d dx
f
(x)
d (lim dx n
fn (x))
lim n
d dx
fn (x)
3. 可微性
定理13.10 设{ fn (x)}为定义在[a,b]上的函数列, x0 [a,b]为{ fn(x)}的收敛点,
f (x)
f (x0 )
lim lim
xx0 n
fn (x)
f (x0 )
又 lim n
fn (x0 )
f (x0 )
lim
x x0
fn (x)
fn (x0 )
lim lim
n xx0
fn (x)
f (x0 )
所以
lim lim
xx0 n
fn
(x)
lim
n
lim
x x0
fn (x)
★ 在一致收敛条件下, 关于x与n极限可以交换极限顺序
fn (x) nxenx 在[0,1]的最大值为:
数学分析课件一致收敛函数列与函数项级数的性质

对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。
一致收敛函数列与函数项级数级数的性质.ppt

又
lim
x x0
fN1( x) aN1
,
所以存在δ > 0 , 当0 < | x – x0 | <δ时,
| fN+1(x) – aN+1 | <ε/3
这样当0 < | x – x0 | <δ时,
| f (x) A|
| f ( x) f N 1( x) | | f N 1( x) aN 1 | | aN 1 A |
? lim
x x0
n1
un ( x)
n1
lim
x x0
un
(
x)
注:对函数序列{Sn ( x)}而言,应为
? lim
x x0
lim
n
Sn
(
x
)
lim
n
lim
x x0
Sn
(
x)
2.求导运算与无限求和运算交换次序问题
? d
dx n1 un ( x)
d n1 dx un ( x)
lim lim
x x0 n
fn
(
x)
lim
n
lim
x x0
fn(x) .
这表明在一致收敛的条件下,极限可以交换顺序.
证 先证数列 { an } 收敛.因为{ fn } 一致收敛,
故对任给的ε > 0 , 存在 N > 0 , 当 n > N 时,对任何 正整数 p ,对一切 x ∈(a , x0 )∪(x0 , b) 有
| fn(x) – f n+p(x) | <ε
从而
lim
x x0
|
数项级数一致收敛

数项级数一致收敛(原创实用版)目录1.数项级数一致收敛的定义2.数项级数一致收敛的性质3.数项级数一致收敛的判定方法4.数项级数一致收敛的实际应用正文一、数项级数一致收敛的定义数项级数一致收敛是指,当级数的各项绝对值趋于 0 时,级数的和趋于一个确定的常数。
换句话说,如果一个级数的各项绝对值都小于某个正数ε,且级数的项数趋向于无穷,那么这个级数就是一致收敛的。
二、数项级数一致收敛的性质一致收敛的级数具有以下性质:1.有界性:级数的每一项都趋于 0,因此级数的和也有界。
2.有序性:当项数增加时,级数的和单调增加或单调减少。
3.极限存在:当级数的项数趋于无穷时,级数的和存在极限。
三、数项级数一致收敛的判定方法判断一个级数是否一致收敛,可以使用以下几种方法:1.ε-δ法:如果对于任意正数ε,总存在正数δ,使得当项数 n>δ时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。
2.柯西准则:如果对于任意正数ε,总存在正数 N,使得当项数 n>N 时,级数的各项绝对值都小于ε,那么这个级数就是一致收敛的。
3.列恩哈德准则:如果对于任意正数ε,总存在正数 N,使得当项数n>N 时,级数的各项绝对值的倒数之和趋于 0,那么这个级数就是一致收敛的。
四、数项级数一致收敛的实际应用一致收敛的级数在数学分析中有广泛的应用,例如求和、求积分、求极限等。
在实数域、复数域以及更高级的数学领域,一致收敛的级数都是研究的重要对象。
同时,一致收敛的级数也是许多实际问题的数学模型,如求解数列的和、计算定积分等。
综上所述,数项级数一致收敛是数学分析中的一个基本概念,具有重要的理论和实际意义。
函数项级数的一致收敛性及基本性质ppt课件

.
故 幂 级 数 anxn在 [a,b]上 适 合 定 理3条 件 , 从 n1
而 可 以 逐 项 求 导 . 由 [a ,b ]在 ( R ,R )内 的 任 意 性 ,
即 得 幂 级 数 a n x n 在 ( R ,R )内 可 逐 项 求 导 . n 1
区间上的一致收敛性.
cos nx
1.
n1
2n
,
x ;
2. x2enx , 0 x .
n1
.
练习题答案 一1、 .取自然 N数 x.
二、一致收敛.
.
由 比 值 审 敛 法 可 知 级 数 nn 1 q 收 敛 , n 1
于是 nn 1 q 0 (n ),
.
故 数 列nn q1有 界 , 必 有 M0, 使 得
nn q 11M (n1,2,) x1
又 0x 1R , 级 数a nx 1 n收 敛 , n 1
由 比 较 审 敛 法 即 得 级 数 nn x a n 1收 敛 . n 1 由 定 理4, 级 数 nnaxn1在 (R,R)内 的 任 意 n1
致收敛.
进一步还可以证明,如果幂级数anxn在收敛 n1
区间的端点收敛,则一致收敛的区间可扩大到包 含端点.
.
定理5 如 果 幂 级 数 a n x n 的 收 敛 半 径 为 n1
R 0 ,则其和函数s(x) 在( R, R) 内可导,且
有逐项求导公式
s( x )
an xn
n1
na n x n1 ,
n1
逐项求导后所得到的幂级数与原级数有相同的收
敛半径.
.
证 先证级数 nanxn1在(R,R)内收敛. n1
数学分析课件一致收敛

例2
所以函数列
注 对于函数列, 仅停留在讨论在哪些点上收敛是远
远不够的,重要的是要研究极限函数与函数列所具
有的解析性质的关系. 例如, 能否由函数列每项的
连续性、可导性来判断出极限函数的连续性和可导
性; 或极限函数的导数或积分, 是否分别是函数列
每项导数或积分的极限. 对这些更深刻问题的讨论,
根据余项准则知该函数列在
上不一致收敛.
注
不一致收敛是因为函数列余
的增大一致趋于零
项的数值在
附近不能随
(见图13-4), 因此对任何不含原点的区间
在该区间上一致收敛于零.
图13 – 4
设计总结汇报
二、函数项级数及其一致收敛性
称为定义在E上的函数项级数,
为函数项级数(9)的部分和函数列.
任给的正数
的正整数
证 必要性
则对 由上确界的定Fra bibliotek, 对所有, 也有
这就得到了(6)式.
充分性 由假设, 对任给
>0, 存在正整数N, 使得
有
故由 (7) 式得
只是根据函数列本身的特性来判断函数列是否一致
注 柯西准则的特点是不需要知道极限函数是什么,
较为方便. 如例2, 由于
的阿贝尔判别法和狄利克雷判别法.
设有定义在区间I上形如
的函数项级数. 对级数(14)有:
定理13.6(阿贝耳判别法)设
BUSINESS PLAN
则级数(14)在 I 上一致收敛.
数 , 存在正数M, 使得
又由(ii),(iii)及阿贝耳引理(第十二章§3的引理的推
论)得到
由函数项级数一致收敛性的柯西准则, 得级数(14)
第七节函数项级数的一致收敛性幂级数的一致收敛性

第七节 函数项级数的一致收敛性内容分布图示★ 引例(讲义例1) ★ 一致收敛的概念★ 例2 ★ 例3 ★ 魏尔斯特拉斯判别法 ★ 例4 ★ 例5 一致收敛级数的基本性质 ★ 定理2★ 定理3★ 定理4幂级数的一致收敛性★ 定理5★ 定理6 ★ 内容小结★ 课堂练习★ 习题11—7 ★ 返回讲解注意:一、 一致收敛的概念:函数项级数在收敛域I 上收敛于和)(x s ,指的是它在I 上的每一点都收敛,即对任意给定的0>ε及收敛域上的每一点x ,总相应地存在自然数),(x N ε,使 得当N n >时,恒有ε<-|)()(|x s x s n .一般来说,这里的N 不仅与ε有关,而且与x 也有关. 如果对某个函数项级数能够找到这样的一个只与ε有关而不依赖于x 的自然数N ,则当N n >时,不等式ε<-|)()(|x s x s n 对于区间I 上每一点都成立,这类函数项级数就是所谓的一致收敛的级数.定义1 设函数项级数∑∞=1)(n n x u 在区间I 上收敛于和函数)(x s , 如果对任意给定的0>ε,都存在着一个与x 无关的自然数N , 使得当N n >时, 对区间I 上的一切x 恒有ε<-=|)()(||)(|x s x s x r n n ,则称该函数项级数在区间I 上一致收敛于和)(x s ,此时也称函数序列)}({x s n 在区间I 上一致收敛于)(x s .二、定理1(魏尔斯特拉斯判别法)如果函数项级数∑∞=1)(n n x u 在区间I 上满足条件:(1));,3,2,1(|)(| =≤n a x u n n (2)正项级数∑∞=1n n a 收敛.则该函数项级数在区间I 上一致收敛. 三、 一致收敛级数的基本性质定理2 如果级数∑∞=1)(n n x u 的各项)(x u n 在区间],[b a 上都连续,且级数在区间],[b a 上一致收敛于),(x s 则)(x s 在],[b a 上也连续.定理3 设)(x u n ),3,2,1( =n 在],[b a 上连续,且级数∑∞=1)(n n x u 在区间],[b a 上一致收敛于)(x s ,则⎰xx dx x s 0)(存在,且级数∑∞=1)(n n x u 在],[b a 上可以逐项积分,即])([])([)(11∑⎰⎰∑⎰∞=∞===n xx n x x n n xxdx x u dx x u dx x s (7.2)其中,0b x x a ≤<≤ 且上式右端的级数在],[b a 上也一致收敛.定理4 如果级数∑∞=1)(n n x u 在区间],[b a 上收敛于和)(x s , 它的各项)(x u n 都有连续导数)(x u n',并且级数∑∞='1)(n nx u 在],[b a 上一致收敛,则级数∑∞=1)(n n x u 在],[b a 上也一致收敛,且可 逐项求导,即有∑∑∞=∞='='⎪⎪⎭⎫⎝⎛='11)()()(n nn n x u x u x s (7.3) 四、 幂级数的一致收敛性定理5 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则此级数在),(R R -内的任一闭区间],[b a 上一致收敛.定理6 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则其和函数)(x s 在),(R R -内可导,且有逐项求导公式,)(111∑∑∞=-∞=='⎪⎪⎭⎫ ⎝⎛='n n n n n n x na x a x s逐项求导后所得到的幂级数与原级数有相同的收敛半径.例题选讲:一致收敛的概念例1(讲义例1)考察函数项级数+-++-+-+-)()()(1232n n x x x x x x x的和函数的连续性.本例表明,即使函数项级数的每一项都在[a , b ]上连续,并且级数在[a , b ]上收敛,但其和函数却不一定在[a , b ]上连续;同样也可举例说明,函数项级数的每一项的导数及积分所成的级数的和也不一定等于它们的和函数的导数及积分. 那么在什么条件下,我们才能够从级数每一项的连续性得出它的和函数的连续性,从级数的每一项的导数及积分所成的级数之和得出原级数的和函数的导数及积分呢? 要回答这个问题,就需要引入函数项级数的一致收敛性概念.例2(讲义例2)研究级数∑∞=+⎪⎪⎭⎫⎝⎛+-111n n n n x n x 在区间]1,1[-上的一致收敛性.例3(讲义例3)研究级数∑∞=-0)1(n n x x 在区间[0,1]上的一致收敛性.例4(讲义例4)证明级数++++22222sin 22sin 1sin nx n x x 在),(+∞-∞上一致收敛.例5(讲义例5)判别级数∑∞=+1241n x n x在),(+∞-∞上一致收敛. 课堂练习1. 研究级数+⎪⎭⎫ ⎝⎛-+-+++⎪⎭⎫ ⎝⎛+-+++111112111n x n x x x x 在区间),0[+∞上的一致收敛性.魏尔斯特拉斯(Weierstrass, Karl Wilhelm ,1815~1897)魏尔斯特拉斯德国数学家,1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析 第十三章 函数列与函数项级数
高等教育出版社
§2一致收敛函数列与函数项级数的性质
由于每一个 un( x) 在 [0, 1] 上连续, 根据定理13.12与
定理13.13知 un( x) 的和函数 S( x) 在 [0, 1]上连
续且可积. 又由
un ( x)
n(1
2x n2 x2 )
2x n2nx
数学分析 第十三章 函数列与函数项级数
高等教育出版社
§2一致收敛函数列与函数项级数的性质
定理13.13(逐项积分定理)
若函数项级数 un( x)在[a, b]上一致收敛, 且每一
项 un( x)都连续, 则
b
u ( x) dx
a
n
b
a un ( x) dx.
(7)
定理13.14(逐项求导定理)
若函数项级数 un ( x) 在[a, b]上每一项都有连续
的 导函数,x0 [a, b]为 un( x)的收敛点, 且 un
( x) 在[a,b]上一致收敛,
则
d
dx
un( x)
d dx
un
(
x).
(8)
数学分析 第十三章 函数列与函数项级数
高等教育出版社
§2一致收敛函数列与函数项级数的性质
数学分析 第十三章 函数列与函数项级数
高等教育出版社
§2一致收敛函数列与函数项级数的性质
例3
设
un ( x)
1 n3
ln(1
n2 x2 ).
n 1,2,
证明函数项级数 un( x) 在 [0, 1]上一致收敛, 并讨
论和函数在[0, 1]上的连续性、可积性与可微性.
证 对每一个 n, 易见 un( x)为[0, 1]上的增函数, 故有
1. 若函数项级数 un( x)在 U ( x )一致收敛, 且对 0
每个n
,
l
lim un( x) limun( x) an.
(6)
x x0
x x0
2. 若 un( x) 区间[a, b]上一致收敛, 且每一项都连
续, 则其和函数在[a, b]上也连续.
1 n2
,
n 1,2,,
即
1 也是 n2
un ( x) 的优级数,故
un( x) 在 [0, 1]
上一致收敛. 由定理13.14, 得知 S( x)在[0, 1]上可微.
数学分析 第十三章 函数列与函数项级数
高等教育出版社
复习思考题
1.如何利用一致收敛的性质来判别函数列或函数项 级数不一致收敛? (例4已经给出了一个方法, 其他请 自行总结) 2.请举出函数项级数的例子, 说明一致收敛只是可以 进行逐项积分和逐项微分运算的充分条件而不是必 要条件。
定理 13.13 和 13.14 指出, 在一致收敛条件下, 逐项 求积或求导后求和等于求和后再求积或求导. 注 本节六个定理的意义不只是检验函数列或函数 项级数是否满足关系式(2)~(4), (6)~(8), 更重要的是 根据定理的条件, 即使没有求出极限函数或和函数, 也能由函数列或函数项级数本身获得极限函数或和 函数的解析性质.
u ( x) u (1) 1 ln(1 n2 ), n 1,2,.
n
n
n3
又当 t 1 时, 有不等式ln(1 t 2 ) t, 所以
u ( x) 1 ln(1 n2 ) 1 n 1 , n 1,2,.
n
n3
n3
n2
收敛级数
1 n2
是
un( x) 的优级数,
因此级数
un( x) 在 [0, 1]上一致收敛.
§2一致收敛函数列与函数项级数的性质
第十讲 一致收敛函数项 级数的性质
数学分析 第十三章 函数列与函数项级数
高等教育出版社
§2一致收敛函数列与函数项级数的性质
下面讨论定义在区间[a, b]上函数项级数
u1( x) u2( x) un( x)
(5)
的连续性、逐项求积与逐项求导的性质.
定理13.12(极限交换定理、连续性定理)
数学分析 第十三章 函数列与函数项级数
高等教育出版社