函数项级数的一致收敛性共8页word资料
函数项级数一致收敛判别(Word)

1.函数项级数定义定义 设(){}nu x 是定义在数集E 上的一个函数列表达式:()()()12......n u x u x u x ++++ x E ∈ (1)称为定义在E 上的函数项级数,简称为函数级数.记作为1()nn ux ∞=∑或()n u x ∑.1()()nn k k S x u x ==∑称为函数项级数(1)的部分和函数列.若0x E ∈函数项级数: ()()()10200......n u x u x u x ++++ (2) 收敛,即部分和001()()nn k k S x u x ==∑,当n →∞时,极限存在,则称级数(1)在点0x 收敛,0x 称为收敛点.级数(1)在D 上的每一点x 与其所对应的数项级数(2)的和()S x 构成一个定义在D 上的函数称为级数(1)的和函数,即lim ()()n n S x S x →∞=.2.函数项级数一致收敛的几种判别法判别法1 (函数项级数一致收敛的定义)设函数级数()1n n u x ∞=∑在区间D 收敛于和函数()S x ,若0,,,N N n N x D ε+∀>∃∈∀>∀∈有:()()()n n S x S x R x ε-=< 则称函数级数()1n n u x ∞=∑在区间D 上一致收敛或一致收于和函数()Sx .例1 证明函数项级数nn x∞=∑在区间 []1,1δδ-+-(其中01δ<<)一致收敛.证明 ∀()0,1x ∈有01()1knnn k x S x x x =-==-∑.1()lim ()1n n S x S x x→∞==-. 11()()()1111nn nn n x x x S x S x R x x x x x-∴-==-==----. 对∀[]1,1x δδ∈-+-,对∀ε>要使不等式(1)()()()1nnn n xS x S x R x xδεδ--==≤<-成立.从而要不等式(1)nδεδ-<解得ln ln(1)n εδδ>-.取ln ln(1)N εδδ⎡⎤=⎢⎥-⎣⎦.于是∀0ε>,存在ln ln(1)N N εδδ+⎡⎤=∈⎢⎥-⎣⎦,∀n N >∀[]1,1x δδ∈-+-有:()()()n n S x S x R x ε-=<成立.所以函数项级数nn x∞=∑在区间[]1,1δδ-+-(其中01δ<<)一致收敛.非一致收敛的定义设函数项级数()1n n u x ∞=∑在区间I 非一致收敛于和函数()S x ,若∀0oε>,∀N N +∈,0,o n N x I ∃>∃∈有:000()()n S x S x ε-≥成立.则称函数项级数()1n n u x ∞=∑在区间I 上非一致收敛或非一致收敛于()S x .例2 证明函数项级数nn x∞=∑在区间 ()1,1-非一致收敛.证明 01ε∃=,∀N N +∈,()00111,1x n ∃=-∈-有: 000000001(1)1()()()(1)11n n n n n S x S x R x n n n --===-≥ 00000111lim(1)(1)1n n n n N n n e n +→∞⎛⎫-=∃∈-≥ ⎪⎝⎭所以,使.即函数项级数0nn x∞=∑在()1,1-非一致收敛.函数项级数一致收敛的几何意义函数项级数()1n n u x ∞=∑在区间I 一致收敛于()S x 的几何意义是,不论给定的以曲线()()S x S x εε+-与为边界的带形区域怎样窄,总存在正整数N (通用的N ),n N ∀>,任意一个部分和()n S x 的图像都位于这个带形区间内(如图1).若函数项级数在某个区间不存在通用的N ,就是非一致收敛.判别法2 (确界判别法)函数项级数()1n n u x ∞=∑在数集D 上一致收敛于()S x 的充要条件:limsup ()limsup ()()0n n n n x Dx DR x S x S x →∞→∞∈∈=-=.证明 (⇒) 已知函数项级数()1n n u x ∞=∑在区间D 一致收敛于()S x .即0,,,N N n N x D ε+∀>∃∈∀>∀∈有: ()()n S x S x ε-<.从而()()sup n x DS x S x ε∈-≤,即limsup ()()0n n x DS x S x →∞∈-=. (⇐)已知limsup ()()0n n x DS x S x →∞∈-=,即0,,,N N n N x Dε+∀>∃∈∀>∀∈有()()sup n x DS x S x ε∈-<.从而x D ∀∈有()()n S x S x ε-<.即函数项级数()1n n u x ∞=∑在区间D 上一致收敛于()S x .例3 证明 函数项级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛.证明 ()()()111nn k S x x k x k ==+++∑1111n k x kx k =⎛⎫=- ⎪+++⎝⎭∑11111111...122311x x x x x n x n x n x n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪+++++-++++⎝⎭⎝⎭⎝⎭⎝⎭1111x x n =-+++; ()0,x ∈+∞. ()()111lim lim111n n n S x S x x x n x →∞→∞==-=++++. 1lim sup ()()lim sup01n n n x Dx DS x S x x n →∞→∞∈∈∴-==++.所以函数级数()()111n x n x n ∞=+++∑在()0,+∞内一致收敛. 判别法3 (柯西一致收敛准则)函数级数()1n n u x ∞=∑在区间I 一致收敛0,,,,N N n N p N x I ε++⇔∀>∃∈∀>∀∈∀∈有:()()()12...n n n p u x u x u x ε++++++<.证明 必要性()⇒已知函数级数()1n n u x ∞=∑在区间I 一致收敛.设其和函数是()S x ,即0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈有()()n S x S x ε-<也有()()n p S x S x ε+-<.于是()()()()12()n n n p n p n u x u x u x S x S x +++++++=-()()()()n p n S x S x S x S x +=-+-()()()()2n p n S x S x S x S x εεε+≤-+-<+=.充分性()⇐:已知0,,,,N N n N p N x I ε++∀>∃∈∀>∀∈∀∈,有:()()()()12()n n n p n p n u x u x u x S x S x ε+++++++=-<所以当P →+∞时上述不等式有:()()()n n S x S x R x ε-=≤即函数项级数()1n n u x ∞=∑在区间I 一致收敛.例4 讨论函数项级数111n n n x x n n +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-的一致收敛性. 解 应用柯西一致收敛准则[]1,1x ∀∈-即1,0x ε≤∀>,要使不等式()()12231223n n n n n p n x x x x S x S x n n n n +++++⎛⎫⎛⎫-=-+- ⎪ ⎪++++⎝⎭⎝⎭11n p n p x x n p n p ++-⎛⎫++- ⎪++-⎝⎭11111212n n p n n p x x x x n n n n ++++++=-≤+++++ 112111n n p n ε≤+<<++++ 成立,从不等式21n ε<+解得21n ε>-取21N ε⎡⎤=-⎢⎥⎣⎦于是0,ε∀>21,N ε⎡⎤∃=-⎢⎥⎣⎦[],,1,1n N p N x +∀>∀∈∀∈-,有()()n p n S x S x ε+-<,即函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛.在这个例子中我们用确界判别法来也可以判断它的收敛性方法2 122311()()()()...()12231k k n n nn k x x x x x x x S x x kk n n ++=⎛⎫=-=-+-++- ⎪++⎝⎭∑ 11n x x n +=-+.lim ()()n n S x S x x →∞==故[][]11,11,11lim sup ()()lim suplim 011n n n n n x x x S x S x n n +→∞→∞→∞∈-∈--===++. 所以函数级数111n n n x x nn +∞=⎛⎫- ⎪+⎝⎭∑在区间[]1,1-一致收敛. 判别法4 (M 判别法)有函数项级数()1n n u x ∞=∑,I 是区间,若存在收敛的正项级数1,,nn an N ∞+=∀∈∑x I ∀∈,有()n n u x a ≤,则函数级数()1n n u x ∞=∑在区间I 一致收敛.证明 正项级数1nn a∞=∑收敛根据柯西一致收敛准则,即0,,,N N n N ε+∀>∃∈∀>p N +∀∈,有 12n n n p a a a ε+++++<由已知条件,x I ∀∈,有()()()12n n n p u x u x u x ++++++ ()()()12n n n p u x u x u x +++≤+++12n n n p a a a ε+++≤+++<即函数级数()1n n u x ∞=∑在区间I 一致收敛.例5 判断函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上是否一致收敛.解∀[],x r r ∈-,有(1)!(1)!n nx r n n ≤--. 令(1)!n n r a n =-,则11(1)!lim lim lim 0!n n n n n n na r n ra n r n ++→∞→∞→∞-===. 所以(1)!n r n -∑是收敛.由M 判别法函数项级数1(1)!nn x n ∞=-∑在[],x r r ∈-上一致收敛.例6 证明4211n xn x ∞++∑在R 一致收敛. 证:x R ∀∈,有()224221210n x n x n x-+=-≥所以24221n x n x ≤+,即242211n x n x ≤+.故242422212111122n x n x n x n n =⋅≤++已知优级级数2112n n ∞=⎛⎫⎪⎝⎭∑收敛,根据M 判别法.函数级数4211n xn x ∞++∑在R 中一致收敛. 注 M 判别法是判别函数项级数一致收敛的很简使得判别法.但是这个方法有很大的局限性,凡能用M 判别法函数项级数必是一致收敛,此函数项级数必然是绝对收敛;如果函数项级数是一致收敛,而非绝对收敛,即条件收敛,那么就不能使用M 判别法.判别法5 (狄利克雷判别法)若级数()()1nnn a x b x ∞=∑满足如下条件:(1)函数列(){}n a x 对每个x I ∈是单调的且在区间I 一致收敛于0. (2)函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界,则函数级数()()1nnn a x b x ∞=∑在I 一致收敛.证明 已知函数列(){}n a x 一致收敛于0即0,N N ε+∀>∃∈,n N ∀>,x I ∀∈有1n a ε+<.又已知函数级数()1n n b x ∞=∑的部分和函数列(){}n B x 在区间I 一致有界。
第六节函数项级数的一致收敛学习教案

第7页/共30页
第八页,编辑于星期二:十七点 二十六分。
y
(1,1)
0, 0 x 1 S(x)
1, x 1
说明: 对任意正数 r < 1, 级数在 [ 0, r ] 上一致收敛 .
事实上, 因为在 [ 0, r ] 上
只要
因此取
o
1x
任给 > 0, 欲使
只要
即级数在 [ 0, r ] 上一致收敛 .
当n > N 时, 对区间 I 上的一切 x 都有
则称该级数在区间 I 上一致收敛于和函数S(x) .
显然, 在区间 I 上
un (x) 一致收敛于和函数S(x)
n1 部分和序列
一致收敛于S(x)
余项
一致收敛于 0
第3页/共30页
第四页,编辑于星期二:十七点 二十六分。
几何解释 : (如图) 当n > N 时,
第6页/共30页
第七页,编辑于星期二:十七点 二十六分。
例2. 证明级数
x (x2 x) (x3 x2 ) (xn xn1)
在 [0,1] 上不一致收敛 .
证:
0, 0 x 1
1, x 1
0 x 1
0, x 1
取正数
对无论多么大的正数 N ,
一致收敛 .
因此级数在 [0, 1] 上不
第二十页,编辑于星期二:十七点 二十六分。
定理2 条件. 级数的余项
可见级数①在 [ 0, 1 ] 上不一致收敛 , 对级数①不成立的原因.
此即定理2 结论
第20页/共30页
第二十一页,编辑于星期二:十七点 二十六分 。
定理3. 若级数
且可逐项求导, 即
数学分析课件一致收敛函数列与函数项级数的性质

对于一致收敛的函数列或函数项级数 ,在每个点的某个邻域内,函数列或 级数的每一项都是有界的。这意味着 在每个点的附近,函数列或级数的变 化范围是有限的。
性质三:局部连续性
总结词
局部连续性是指一致收敛的函数列或函 数项级数在每个点的邻域内都是连续的 。
VS
详细描述
对于一致收敛的函数列或函数项级数,在 每个点的某个邻域内,函数列或级数的每 一项都是连续的。这意味着在每个点的附 近,函数列或级数的值是平滑变化的,没 有突然的跳跃或断点。
03
一致收敛函数列与函数项 级数的应用
应用一:微积分学中的一致收敛概念
要点一
总结词
要点二
详细描述
理解一致收敛在微积分学中的重要性
一致收敛是数学分析中的一个重要概念,它描述了函数列 或函数项级数在某个区间上的收敛性质。在微积分学中, 一致收敛的概念对于研究函数的极限行为、连续性、可微 性和积分等性质至关重要。通过理解一致收敛,可以更好 地理解函数列和级数的收敛性质,从而更好地应用微积分 学中的相关定理和性质。
应用二:实数完备性的证明
总结词
利用一致收敛证明实数完备性
详细描述
实数完备性是实数理论中的重要性质,它表 明实数具有某些理想的完备性。利用一致收 敛的性质,可以证明实数完备性的一些重要 定理,如确界定理、区间套定理和闭区间套 定理等。这些定理在实数理论中起着至关重 要的作用,为实数性质的研究提供了重要的 理论支持。
05
一致收敛函数列与函数项 级数的扩展知识
扩展知识一:一致收敛的判定定理
01
柯西准则
对于任意给定的正数$varepsilon$,存在正整数$N$,使得当
$n,m>N$时,对所有的$x$,有$|f_n(x)-f_m(x)|<varepsilon$。
函数项级数一致收敛性判别法归纳

函数项级数的一致收敛性与非一致收敛性判别法归纳一定义引言设函数列{}n f 与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正数N ,使得当N n >时,对一切D x ∈,都有()()ε<-x f x f n 则称函数列{}n f 在上一致收敛于()x f ,记作()()x f x f n→→()∞→n ,Dx ∈设()x u n 是定义在数集E 上的一个函数列,表达式()()(),21 ++++x u x u x u n Ex ∈)1(称为定义在E 上的函数项级数,简记为()x u n n ∑∞=1或()x u n ∑;称()()x u x S nk k n ∑==1,E x ∈, ,2,1=n )2(为函数项级数)1(的部分和函数列.设数集D 为函数项级数∑∞=1)(n n x u 的收敛域,则对每个D x ∈,记∑∞==1)()(n n x u x S ,即D x x S x S n n ∈=∞→),()(lim ,称)(x S 为函数项级数∑∞=1)(n n x u 的和函数,称)()()(x S x S x R n n -=为函数项级数∑)(x u n 的余项.定义1]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,若{})(x S n 在数集D 上一致收敛于函数)(x S ,或称函数项级数∑)(x u n 在D 上一致收敛于)(x S ,或称∑)(x u n 在D 上一致收敛.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以可以根据函数列一致收敛性定义得到等价定义.定义2]1[设{})(x S n 是函数项级数∑)(x u n 的部分和函数列,函数列{})(x S n ,和函数)(x S 都是定义在同一数集D 上,若对于任给的正数ε,总存在某一正整数N ,使得当Nn >时,对一切D x ∈,都有ε<-)()(x S x S n ,则称函数项级数∑)(x u n 在D 上一致收敛于函数)(x S ,或称∑)(x u n 在D 上一致收敛.同时由ε<-=)()()(x S x S x R n n ,故)(x R n 在D x ∈上一致收敛于0.定义3设函数项级数∑)(x u n 在区间D 上收敛,其和函数为∑∞==1)()(n n x u x S ,部分和函数列∑==nk n n x u x S 1)()(,若0>∃o ε,+∈∀N N ,N n o >∃及D x ∈'∃,使得o n x s x s o ε≥'-)()(,则函数项级数∑)(x u n 在区间D 上非一致收敛.例1试证∑∞=1n n x 在[]r r ,-)10(<<r 上一致收敛,但在)1,1(-内不一致收敛.证明显然∑∞=1n n x 在)1,1(-内收敛于xx-1.对任意的0>ε,欲使当N n >和r x r ≤≤-时,恒有ε<-=--+=∑xxx xx n nk k 1111成立,只要当N n >时,恒有ε<-+rr n 11成立,只要当N n >时,恒有()rr n lg 1lg 1ε->+成立,只要当N n >时,恒有()rr n lg 1lg ε->成立,只要取()⎥⎦⎤⎢⎣⎡-=r r N lg 1lg ε即可.依定义,∑∞=1n nx 在[]r r ,-上一致收敛于x x -1.存在e o 2=ε,对任意自然数N ,都存在N N n o >+=1和()1,121-∈++=N N x o ,使ε2111111111>⎪⎭⎫⎝⎛+++=-=--++=∑N o n o o o n k k oN N x x x x xo o成立,依定义,∑∞=1n n x 在)1,1(-内不一致收敛.二函数项级数一致收敛性的判定方法定理1Cauchy 一致收敛准则]1[函数项级数()∑x u n 在数集D 上一致敛的充要条件为:对0>∀ε,总+∈∃N N ,使得当N n >时,对一切D x ∈和一切正整数p ,都有()()ε<-+x S x S n p n 或()()()ε<++++++x u x u x u p n n n 21或()ε<∑++=pn n k kx u 1特别地,当1=p 时,得到函数项级数一致收敛的一个必要条件:推论1函数项级数在()∑x u n 在数集D 上一致收敛的必要条件是函数列(){}x u n 在D上一致收敛于0.定理2]2[函数项级数()x u n n ∑∞=1在点集D 上一致收敛于)(x S 的充分必要条件是:()()0:sup lim 1=⎭⎬⎫⎩⎨⎧∈-∑=∞→D x x S x u n k n n .定理3放大法]3[(){}x S n 是函数项级数()∑x u n 的部分和函数列,和函数)(x S ,都是定义在同一数集D 上,对于任意的n ,存在数列{}n a ()0>n a ,使得对于D x ∈∀,有()()()n n n a x S x S x R <-=,且0lim =∞→n n a ,则称函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于函数)(x S .证明因0lim =∞→n n a ,故对任给的0>ε,+∈∃N N (与x 无关),使得当N n >时,对一切D x ∈,都有()()()ε<≤-=n n n a x S x S x R .由定义2得函数列(){}x S n 一致收敛于)(x S ,即函数项级数()∑x u n 在D 上一致收敛于)(x S .注:用放大法判定函数项级数()∑x u n 一致收敛性时,需要知道)(x S .定理4确界法函数项级数在数集D 上一致收敛于)(x S 的充要条件是()()()0sup lim sup lim =-=∈∞→∈∞→x S x S x R n Dx n n Dx n 证明充分性设(){}x S n 是函数项级数()∑x u n 的部分和函数列,)(x S 为和函数,则有()()()x S x s x R n n -=,并令()x R a n Dx n ∈=sup ,而()0sup lim =∈∞→x R n Dx n ,即0lim 0=→n n a ,由定理3(放大法)得知函数项级数()∑x u n 一致收敛于函数)(x S .必要性注:实质上是用极值的方法把一致收敛问题转化为求数列极限的问题.定理5若()∑x u n 在区间D 上收敛,则()∑x u n 在D 上一致收敛的充要条件是{}D x n ⊂∀,有()0lim =∞→x R n n .证明充分性假设()∑x u n 在D 上不一致收敛,则0>∃o ε,{}D x n ⊂∃,使得()()o n x S x S ε≥-,如此得到{}D x n ⊂,但()0lim ≠∞→n n n x R ,这与已知条件矛盾.必要性因已知()∑x u n 在D 上一致收敛,所以N ∃>∀,0ε,使得当N n >时,对一切D x ∈,都有()()ε<-x S x S n ,对于{}D x n ⊂∀,则有()()ε<-n n n x S x S ,即()ε<n n x R ,得()0lim =∞→n n n x R .例2设()0≥x u n , 2,1=n ,在[]b a ,上连续,又()x u n ∑在[]b a ,收敛于连续函数()x f ,则()x u n ∑在[]b a ,一致收敛于()x f .证明已知()()()x S x f x R n n -=(其中()()∑==nk k n x u x S 1)是单调递减且趋于0,所以[]b a x N n ,,∈∀∈∀有()0≥x R n ,且[]ε∀∈∀,,0b a x >0,()εε,),(00,0x x N n N ≥>∃时,有()ε<≤00x R n .将n 固定,令()ε,00x N N n ==,因为()()()x S x f x R n n -=在[]b a ,上连续,既然()ε<x R n ,所以00>∃δ,当()0000,δδ+-∈x x x 时,()ε<0x R n .从而0N n >时更有()ε<x R n 即()ε<x R n ,仅当()0000,δδ+-∈x x x .如上所述,对每个点[]b a x ,∈λ,可找到相应的领域()λλλλδδ+-x x ,及相应的λN ,使得λN n >时,对∈x ()λλλλδδ+-x x ,恒有()ε<x R n .如此{()λλλλδδ+-x x ,:[]b a x ,∈λ}构成[]b a ,的一个开覆盖,从而必存在有限子覆盖,不妨记为{()()r r r r x x x x δδδδ+-+-,,,1111 },于是[]b a x ,∈∀,总{}r i ,2,1∈使得i i i i x x x δδ+-∈,(),取{}r N N N N ,,max 21=,那么N n >时,恒有()ε<x R n ,由定理5得()x u n∑在[]b a ,一致收敛于()x f .定理6M 判别法或优先级判别法或Weierstrass 判别法]1[设函数项级数()x u n ∑定义在数集D 上,∑n M 为收敛的正项级数,若对一切D x ∈,有2,1,)(=≤n M x u n x )3(则函数项级数()x u n ∑在D 上一致收敛.证明由假设正项级数()x u n ∑收敛,根据函数项级数的Cauchy 准则,∀0>ε,∃某正整数N ,使得当N n >及任何正整数p ,有ε<+=++++++p n n p n n M M M M 11又由(3)对一切D x ∈,有()≤+≤++++++x u x u x u x u p n n p n n )()()(11ε<+++p n n M M 1根据函数项级数一致收敛的Cauchy 准则,级数()x u n ∑在D 上一致收敛.注:若能用从判定()∑∞=1n n x u 一致收敛,则()∑∞=1n n x u 必是绝对收敛,故M 判别法对条件收敛的函数项级数失效.例3函数项级数∑∑22cos ,sin nnxn nx 在()+∞∞-,上一致收敛,因为对一切∈x ()+∞∞-,有22221cos ,1sin n n nx n n nx ≤≤,而正项级数∑21n是收敛的.推论2设有函数项级数()x u n ∑,存在一收敛的正项级数∑∞=1n n a ,使得对于,I x ∈∀有()()+∞<≤=∞→k k a x u nn n 0lim,则函数项级数()∑∞=1n n x u 在区间I 一致收敛证明已知()()+∞<≤=∞→k k a x u nn n 0lim,即,,,,00I x N n N N ∈∀>∀∈∃>∃+ε有()0ε<-k a x u n n 即()k a x u n n +<0ε,从而()()n n a k x u +<0ε,又因为∑∞=1n n a 收敛,则()n n a k ∑∞=+10ε也收敛,由M 判别法得函数项级数()∑∞=1n n x u 在区间I 一致收敛.由广义调和级数∑∞=11n p n ,当1>p 时收敛,故当n a =pn 1时,有推论2'设有函数项级数()∑∞=1n n x u ,若存在极限k x u n n p n =∞→)(lim 且1,0>+∞<≤p k ,则函数项级数()x u n ∑在区间I 一致收敛.例4证明函数项级数∑∞=+++1)1)((1n n x n x 在[)∞,0是一致收敛的.证明对于∑∞=+++1)1)((1n n x n x ,存在收敛的正项级数∑∞=121n n,且=+++⋅∞→)1)((1lim 2n x n x n n 1)1)((lim2=+++∞→n x n x n n 由的推论2与推论2'得,∑∞=+++1)1)((1n n x n x 在[)∞,0一致收敛.定理7比较判别法[]4两个函数项级数()∑x u n 与()x v n ∑,若N N ∈∃0,当I x N n ∈∀>∀,0有()x v c x u n n <)((其中c 为正常数),且函数项级数()x v n ∑在区间I 绝对一致收敛,则函数()x u n∑区间I 绝对一致收敛.证明已知()x v n ∑在区间I 绝对一致收敛,即对cε∀0>(其中c 为正常数),11,N n N N >∀∈∃及I x N p ∈∈,,有()()()cx v x v x v p n n n ε<++++++ 21;又由条件知I x N n N ∈>∀∃,,00有()x v c x u n n <)(;取{},,max 01N N N =当I x N p N n ∈∈∀>∀,,,有()()()<++++++x u x u x u p n n n 21()()()()εε=⋅<++++++cc x v x v x v c p n n n 21.由收敛级数一致收敛Cauchy 准则知,函数项级数∑)(x u n 在区间I 一致收敛,从而函数项级数()x u n ∑在区间I 绝对一致收敛.定理8[]4若有函数级数()∑x u n 与()x v n ∑,N N ∈∃0,I x N n ∈∀>∀,0有()x cv x u n n <)((其中c 为正常数),且函数项级数()∑∞=1n n x v 在区间I 一致收敛,则函数()∑∞=1n n x u 区间I 绝对一致收敛.证明已知I x N n N ∈>∀∃,,00,有()x v c x u n n <)((其中c 为正常数).又函数项级数()∑∞=1n n x v 在区间I 绝对一致收敛,即I x N p N n N N c ∈∈>∀∈∃>∀,,,,011ε,有()()()()cx v x v x v x v x v p n n p n n n ε<+=++++++++ 121)(;取{},,max 10N N N =当I x N p N n ∈∈>∀,,有()()()()()()x u x u x u x u x u x u p n n n p n n n +++++++++≤++ 2121()()()x v x v c p n n ++++< 1εε=⋅<cc 从而函数项级数()x u n ∑在区间I 绝对一致收敛.推论3比较极限法若有两个函数级数()∑∞=1n n x u 与()())0(1≠∑∞=x v x v n n n ,且有()()k x v x u nn n =∞→lim且+∞<≤k 0,若级数()x v n ∑在区间I 绝对一致收敛,则函数()∑x u n 在区间I 也绝对一致收敛.证明由()()k x v x u nn n =∞→lim且+∞<≤k 0,即,,00N n ∈∃>∀ε当I x N n ∈>,有()()0ε<-k x v x u n n 使()()c k x v x u n n =+<0ε且00>+=εk c .即N n >∀及I x ∈有()()x v c x u n n <,又级数()x v n ∑在区间I 绝对一致收敛,由比较判别法定理7知级数()∑∞=1n n x u 在区间I 绝对一致收敛.推论4[]4有函数列(){}x u n 在区间I 上一致有界,且函数级数()∑∞=1n n x v 在区间I 绝对一致收敛,则函数级数()()x v x u n n ∑在区间I 上也绝对一致收敛.证明由已知函数列(){}x u n 在区间I 上一致有界,即I x N n M ∈∈∀>∃,,0有()M x u n ≤,使当I x N n ∈∈∀,有()()()x v M x v x u n n n ≤⋅,又因函数级数()∑x v n 在区间I 绝对一致收敛,由比较判法定理7知,函数级数()()x v x u n n ∑在区间I 上绝对一致收敛.例5若函数级数()()x c x a n n ∑∑,在区间I 一致收敛,且I x N n ∈∈∀,,有()()()x c x b x a n n n ≤≤,则函数项级数()x b n ∑在区间I 上一致收敛.证明由条件函数()()x c x a n n ∑∑,在区间I 一致收敛,则级数()()()∑-x a x c n n 在区间I 上一致收敛.又I x N n ∈∈∀,有()()()x c x b x a n n n ≤≤,故()()()()x a x c x a x b n n n n -≤-≤0且级数()()()∑-x a x c n n 在区间I 绝对一致收敛,由定理8知,级数()()()∑-x a x b n n 在区间I 上一致收敛.又已知()x a n ∑在区间I 一直收敛,从而级数()()()()()[]()()()()x a x a x b x a x a x b x b nnnnnnn∑∑∑∑+-=+-=在区间I 上一致收敛.推论5设函数项级数()∑x u n 定义在数集]2[上,()∑x v n 在上一致收敛且()0>x v n ,若对一切D x ∈,有()()x v x u n n ≥, ,2,1则函数项级数()∑x u n 在D 上一致收敛.定理9逼近法[]5若对任意的自然数n 和D x ∈,都有()()()x w x u x v n n n ≤≤成立,又()x v n ∑和()x w n ∑都在数集D 上一致收敛于)(x S ,则()x u n ∑也在D 上一致收敛于)(x S .证明设()()x v x V nk k n ∑==1,()()x u x U nk k n ∑==1,()()x w x W nk k n ∑==1因为D x N n ∈∀∈∀+,都有()()()x w x u x v n n n ≤≤,所以D x N n ∈∀∈∀+,有()()()x W x U x V n n n ≤≤.又()x v n ∑,()x w n ∑在区间D 上一致收敛于)(x S ,即+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()εε+<<-x S x V x S n 及()()()εε+<<-x S x W x S n ;所以+∈∃>∀N N ,0ε,当N n >时,对一切D x ∈∀有()()()()()εε+<≤≤<-x S x W x U x V x S n n n .由函数项级数一致收敛定义知,()x u n n∑∞=1在D 上也一致收敛于)(x S .定理10由有性质判别若()x u n ∑和()x v n ∑在点集D 上一致收敛,则[]∑±)()(x v x u n n 在D 上也一致收敛证明由()x u n ∑和()x v n ∑均在点集D 上一致收敛知,对N ∃>∀,0ε(自然数),使得当N n ≥时,对∀自然数p 和x 有()()()ε<+++++x u x u x u p n n n 21()()ε<++++++x v x v x v p n n n 21)(所以()()()()()())()()(2211x v x u x v x u x v x u p n p n n n n n ++++++++++++ ()()()+++≤+++x u x u x u p n n n 21()()x v x v x v p n n n ++++++ 21)(εεε2=+<由函数项级数一致收敛的Cauchy 收敛准则知,[]∑±)()(x v x u n n 在D 上也一致收敛定理11Dini 定理设()()()() ,2,10,0=≤≥n x u x u n n 在[]b a D ,=上连续,又()x u n ∑在[]b a ,上收敛于连续函数,则函数项级数()x u n ∑在[]b a ,一致收敛.使用步骤:⑴判定()0≥x u n 且连续;⑵求和函数)(x S ;⑶判定求和函数)(x S 在[]b a ,上连续.Abel 引理定理12Abel 判别法[]1证明推论6设函数项级数()x u n ∑在D 上一致收敛,函数()x g 在D 上有界,则()()x u x g n ∑在D 上一致收敛.证明因为()x g 在D 上有界,所以,0>∃M 使()M x g ≤,对D x ∈∀成立.因()x u n ∑在D 上一致收敛,,0,,0>∃>∀∴p N ε使当N n >,时有()Mx u p n nk k ε<∑+=,对D x ∈∀成立,此式表明()()()()εε=⋅<<∑∑+=+=MM x u x g x u x g pn nk k p n nk k .由Cauchy 准则知()()x u x g n ∑在D 上一致收敛.定理13Dirichlet 判别法[]1设(i )()x u n ∑的部分和函数列()()x u x s nk k n ∑==1在I 上一直致有界;(ii )对每一个I x ∈,()x v n 单调;(ⅲ)在I 上()()∞→→n x v n 0,则级数和()()x u x v n n ∑在I 上一致收敛.证明充分性由(i )∃正数M ,对一切I x ∈,有()M x s n ≤,因此当为任何正整数p n ,时()()()()()M x s x s x u x u x u n p n p n n n 221≤-=++++++ ,对任何一个I x ∈,再由(ii )及Abel 引理,得到()()()()()x v x v M x v x v x v p n n p n n n ++++++≤+++22)(121 .再由(ⅲ)对,0,0>∃>∀N ε当N n >时,对一切I x ∈,有()ε<x v n ;所以()()()()εεεM M x v x u x v x u p n p n n n 6)2(211=+<++++++ 于是由一致收敛的Cauchy 准则级数()()x u x v n n ∑在I 上一致收敛.注:事实上必要性也成立,即已知()()x u x v n n ∑在I 上一致收敛,可推出(i )(ii )(ⅲ)成立,这里不再赘述.例6若数列{}n a 单调且收敛于0,则级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.证明由()π2,0,2sin221sin cos 211∈⎪⎭⎫ ⎝⎛+=+∑=x x x n kx nk 得在[]απα-2,上有212sin 21212sin21212sin 221sin cos 1+≤+≤-⎪⎭⎫ ⎝⎛+=∑=αx x x n kx nk ,所以级数∑nx cos 的部分和函数列在[]απα-2,上一致有界,于是令()()nnnax v nx x u ==,cos ,则由Dirichlet 判别法可得级数∑nx a n cos 在[]()πααπα<<-02,上一致收敛.定理14积分判别法[]4设()y x f ,为区域(){}+∞<≤∈=y D x y x R 1,|,上的非负函数,()x u n∑是定义在数集D 上的正项函数级()()n x f x u n ,=,如果()y x f ,在[)+∞,1上关于y 为单调减函数,若含参变量反常积分()⎰+∞1,dy y x f 在数集D 上一致收敛,则()x u n ∑在数集D 上一致收敛.证明由()⎰+∞1,dy y x f 在数集D 上一致收敛,对0>∀ε,∃一个N ,当N n >时,对一切自然数p 和一切D x ∈,有()ε<⎰+pn ndy y x f ,.由()()()<+++++x u x u x u p n n n 21()ε<⎰+pn ndy y x f ,,所以()x u n ∑在数集D 上一致收敛.例7设()∑∞=-⋅=1n nx e n x S ,证明()x S 在区间()+∞,0连续.证明首先对任意取定一点()+∞∈,00x ,都存在0>δ,使得[)+∞∈,0δx ,我们只要证明()x S 在0x 即可.令()yx e y y x f -⋅=,,[)+∞∈,δx ,由()δy yx e y e y y x f --⋅<⋅=,,[)+∞∈,δx ,并且无穷级数dy ey y ⎰+∞-⋅δδ1收敛,所以含参积分dy e y y ⎰+∞-⋅δδ1在[)+∞∈,δx 上一致收敛.又因为()()()()⎭⎫⎩⎨⎧>+∞<≤=∈<-=-δ1,0|,,,01,y x y x R y x yx e y x f yx y 即对任意固定[)+∞∈,δx ,()yx e y y x f -⋅=,关于y 在区间⎪⎭⎫⎢⎣⎡+∞,1δ上是单调递减的,由定理14知,函数级数∑∞+⎥⎦⎤⎢⎣⎡=-⋅11δn nxen 在区间[)+∞∈,δx 上是一致收敛的.利用函数项级数的性质可得,()∑∞+⎥⎦⎤⎢⎣⎡=-⋅=11*δn nxen x S 在区间[)+∞∈,δx 连续,从而()()x S e n x S n nx *11+⋅=∑=-δ在区间[)+∞∈,δx 也连续,所以()x S 在0x 连续,由0x 在()+∞,0的任意性可知,()x S 在()+∞,0上连续.含参变量无穷积分与函数项级数都是对函数求和的问题,前者连续作和,后者离散作和,因此它们的一致收敛性定义及判别法都是平行的,而且所表示的函数分析性质(如连续、可微、可积性)也一致,在此不在赘述.由定理14,我们可利用积分的便利条件判断某些数项级数的一致收敛,也可用函数项级数的一致收敛性判别某些含参变量积分一致收敛.定理15函数列(){}x u n 在[]b a ,上连续且单调,级数()∑a u n 和级数()||b u n 收敛,则级数()x u n ∑在[]b a ,上一致收敛.证明级数()∑a u n 和()∑b u n 收敛.则()∑a u n +()∑b u n 收敛.由(){}x u n 在[]b a ,上连续且单调,则()||x u n <()||a u n +()||b u n ,由M 判别法知,级数()x u n ∑在[]b a ,上一致收敛.定理16[]6设函数()x u n ,() ,2,1=n 在[]b a ,上可微(其中b a ,为有限数),且满足如下条件:(i )函数项级数()x u pn n k k∑++=1在[]b a ,上收敛;(ii )存在常数M ,使得对任意的自然树1≥m ,任意的实数[]b a x ,∈,恒有()M x u n<∑/,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明对0>∀ε,因为b a ,为有限数,所以存在自然数k ,使得()εεk a b k a +≤≤-+1,我们在闭区间[]b a ,上插入分点i a x a x i ε+==,0,()1,2,1-=k i ,b x k =,于是,闭区间被分成k 个小区间[]i i x x ,1-,()k i ,2,1=.从而有[]b a ,=[]i i ki x x U ,11-=.又因为函数项级()x u n n ∑∞=1在[]b a ,上是收敛的,故对任意i x ()1,2,1-=k i ,存在自然数()i x N ,ε,使得()i x N n ,ε>时,对任意p ,有()ε<∑++=pn n j ijx u 1.于是,对任意[]i i x x x ,1-∈,在自然数()i x N ,ε,使得()1,->i x N n ε时,对任意p ,有()()()()ipn n j jp n n j p n n j ijjpn n j jx u x u x u x u ∑∑∑∑++=++=++=++=+-=1111()()()∑∑∑++=++=++=+-≤pn n j ijpn n j pn n j ijjx u x u x u 111()εε+-≤-++=∑11/i pn n j jxx u ()()εεε+--≤-=+=∑∑11/1/i nj jpn j jxx u u ()()εεε+-+≤-=+=∑∑11/1/||i nj jpn j jxx u u ()ε12+≤M 因此,对0>∀ε,存在自然数(){}1,,1,0|,max 0-==k i x N N i ε,使得当0N n >时,任意[]b a x ,∈,任意自然数p ,均有()ε)12(1+<∑++=M x u pn n j j.即函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.定理17设()x u nn ∑为定义在数集D 上的函数项级数,D x ∈0为()x u nn ∑的收敛点,且每个()x u n 在上一致可微,()x u nn∑/在上一致收敛,记()=x S ()x u nn∑.定理18设函数列(){}x u n 在闭区间[]b a ,上连续可微,且存在一点[]b a x ,0∈,使得()x u n n∑∞=1在点0x处收敛;()x u n n ∑∞=1/在[]b a ,上一致收敛,则函数项级数()x u n n∑∞=1在[]b a ,上一致收敛.证明已知()x u n n ∑∞=1在点[]b a x ,0∈处收敛,()x u n n ∑∞=1/在[]b a ,上一致收敛.即对()εε1,N o ∃>∀,使得()ε1N n ≥时,对+∈∀N p ,有()ε<∑+=+=p n k n k kx u 1成立.对[]b a x ,∈∀,有()ε<∑+=+=p n k n k k x u 1/.根据拉格朗日中值定理,[]b a x N p N n ,,,∈∀∈∀>∀+,有()()∑∑++=++=-pn n k pn n k kkx u x u 11≤()∑+=+=p n k n k ku 1/ξ0x x -<()a b -ε,(ξ介于x 与0x 之间).于是[]b a x N p N n ,,,∈∀∈∀>∀+,()()()()∑∑∑∑++=++=++=++=+-≤pn n k kp n n k p n n k kkpn n k kx u x u x u x u 1111||()()1+-=+-≤a b a b εεε.即()x u n n ∑∞=1在[]b a ,上一致收敛.引理2若函数项级数()x u n ∑在[]b a ,上收敛,()()N n b x u n n bx ∈=-→lim 则()x u n ∑在[]b a ,一致收敛的必要条件是()x b n n ∑∞=1收敛.证明由函数项级数的柯西收敛准则有,[]b a x N p N n N N ,,,,,0∈∀∈∀>∀∈∃>∀++ε,有()()()ε<+++++x u x u x u p n n n 21.()4又()n n bx b x u N n =∈∀-→+lim ,,在(4)的两端取极限,令-→b x 得ε≤+++++p n n n b b b 21,于是由Cauchy 收敛准则知()x b n n ∑∞=1收敛.(①若()n n x b x u b =+∞=+∞→lim ,,则()x u n ∑在[)+∞,a 一致收敛的必要条件是()x b n ∑收敛.②若(){}x u n 在[)b a ,连续,则()x u n ∑在[)b a ,一致收敛()b u n ∑⇒收敛.)定理19利用内闭一致收敛判别[]7若函数项级数()x u n ∑在[)b a ,内闭一致收敛,则()x u n ∑在[]b a ,一致收敛⇔{}[)b x b a x n n n =⊂∀+∞→lim ,,,级数()n n x u ∑收敛.证明必要性,充分性用反正法,这里不再赘述.注:仅由闭一致收敛性和引理的必要条件(集函数级数在区间端点收敛或端点的极限级数收敛)是不能得到函数级数在区间一致收敛的.例8证明∑∞=1sin n n nx在()π2,0内闭一致收敛,且在端点收敛,但在()π2,0不一致收敛.证明∑<<∀nx sin ,0,πεε的部分和函数列(){}x S n 在[]επε-2,一致有界,而⎭⎬⎫⎩⎨⎧n 1在[]επε-2,一致收敛于0,于是由Dirichlet 判别法知,∑n nx sin 在[]επε-2,一致收敛,从而在()π2,0内闭一致收敛.当0=x 或π2时,级数显然收敛.取()+∈∈=N n n x n ,2,02ππ,则0lim =∞→n n x 但()∑∑∑∞=∞==⋅=1112sin n n n n n nn n x u π发散,故由定理19知,∑∞=1sin n n nx在()π2,0不一致收敛.推论7若()x u n ∑在[)+∞,a 内闭一致收敛,则()x u n ∑在[)+∞,a 一致收敛的充要条件是{}[)+∞=+∞⊂∀∞→n n n x a x lim ,,,()x u n∑皆收敛.证明与定理19类似,略.定理20[]7设函数级数()x u n ∑在[)b a ,收敛,且满足引理2中必要条件,则()x u n ∑在[)b a ,一致收敛⇔[){}[)00lim ,,,,x x b a x b a x n n n =⊂∀∈∀∞→,()n n n x u ∑∞=1皆收敛.证明必要性用反证法.假设[]{}[]00lim ,,,,x x b a x b a x n n n =⊂∃∈∃∞→,而()n n n x u ∑∞=1发散.若a x =0或b x =0,则由定理20知不可;若()b a x ,0∈,则存在{}n x 的子列{}kn x 或00lim ,x x x x k k n k n =≥∞→或00lim ,x x x x k k n k n =≤∞→,于是由定理19知()x u n ∑在()b x ,0或()0,x a 在不一致收敛,从而在[)b a ,不一致收敛,矛盾.必要性获证.充分性用反证法.设()x u n n ∑∞=1在[)b a ,不一致收敛,则由定理18的证明可得,{}[)b a x n ,⊂且[]b a x x n n ,lim 0∈=∞→而()n n n x u ∑∞=1发散,矛盾.推论8设()x u n n ∑∞=1在[)+∞,a 收敛,且满足引理的必要条件,则()x u n ∑在[)+∞,a 一致收敛⇔[)+∞∈∀,0a x 或{}[)00lim ,,,x x a x x n n n =+∞⊂∀+∞=∞→,()n n n x u ∑∞=1皆收敛.证明与定理20的类似,略.推论12[]4设∑)(x u n 使定义在数集D 上的正项函数项级数,)(x u n ,),2,1( =n 在D上有界,若D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,设{})(inf x q q =,则当1>q 时,∑)(x un在D 上一致收敛.证明由1>q ,D x n ∈∞→,时,1)()(1-+x u x u nn n 一致收敛于)(x q ,取10-<<∀q ε,11,N n N ≥∃时,对一切D x ∈,有ε<--+)(1)()(1x q x u x u nn n ,所以1)(1)()(1>->->-+εεq x q x u x u n n n ,取22,,1N n N q s ≥∃-<<ε,有sn n q 111+≥-+ε,取{}21,max N N N o =,当O N n >时,对一切D x ∈,有sssn n nn n n q x u x u )1(111)()(1+=+>-+>+ε,因此)()1()(1x u n x u n n sn s ++≥,所以sS O N S On sn M N x u N x u n O ≤≤)()(,由1>s 时,∑s S O n MN 收敛,由优级数判别法可知∑)(x u n 在D 上一致收敛.推论13函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若+∈∃N N 对一切的D x N n ∈∀>,,有1)()(1<≤+q x u x u n n ,则函数项级数∑∞=1)(n n x u 在D 上一致收敛.证明不妨设对于+∈∀N n ,有q x u x u n n ≤+)()(1,即q x u x u n n )()(1≤+,则1=n ,q x u x u )()(12≤,假设当1-=k n ,111)()()(--≤≤k k k q x u q x u x u 成立,则当k n =,k k k q x u q x u x u )()()(11≤≤+也成立,故由数学归纳法得11)()(-≤n n q x u x u ,且)(1x u 在D 有界,即0>∃M ,对D x ∈,有M x u ≤)(1所以1)(-≤n n Mq x u ,又已知几何级数∑∞=1n n q 收敛,故级数∑∞=-11n n Mq收敛,由优级数判别法知∑∞=1)(n n x u 在D 上一致收敛.推论14函数列{})(x u n 定义于数集D 上,且)(1x u 在D 上有界,若D x ∈∀,有1)()(lim1<=+∞→l x u x u n n n ,则函数项级数在D 上一致收敛.证明因为1)()(lim1<=+∞→l x u x u n n n .即1-=∃q o ε)1(<<q l ,+∈∃N N ,对一切D x N n ∈∀>,,有1)()(1-≤-+q l x u x u n n ,即q x u x u n n ≤+)()(1,由推论10得函数项级数∑∞=1)(n n x u 在数集D 上一致收敛.例11判断函数项级数∑∞=1!n nn x n n 在[)+∞,1上一致收敛性.证明因为11)(1≤=xx u ,且11111lim !)1()!1(lim )()(lim 111<<=⎪⎭⎫ ⎝⎛+=++=∞→++∞→+∞→e xe x n n n x n x n n x u x u nn n n n n n nn n ,由推论13可知函数项级数∑∞=1!n nn xn n 在[)+∞,1上一致收敛.定理23[]8(根式判别法)设∑)(x u n 为定义在数集D 上的函数项级数,记n n n x u x q )()(=,若存在正整数N ,正数q ,使得1)(<≤q x u n n 对一切的N n >,D x ∈成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由定理条件n n q x u ≤)(对一切N n >,D x ∈成立,而几何级数∑n q 收敛,由优级数判别法知,函数项级数∑)(x u n 在D 上一致收敛.推论15[]8(根式判别法的极限形式)设)(x u n 为定义在数集D 上的函数列,若n n x u )(一致收敛于)(x q ,且1)(<≤q x q {}1)(sup (<∈x q Dx ,即1)()(lim <≤=∞→q x q x u n n n ,对D x ∈∀成立,则函数项级数∑)(x u n 在D 上一致收敛.证明由n n x u )(一致收敛于)(x q )(∞→n ,取q -<<10ε,O N ∃,当o N n >时,对一切D x ∈有ε<-)()(x q x u n n ,所以εε+<+<q x q x u n n )()(,所以n n q x u )()(ε+<,又因为1<+εq ,由优级数判别法知∑)(x u n 在D x ∈上一致收敛.推论51'设()∑x u n 为定义在数集D 上的正项函数项级数,记()n n n x u q =,若()1sup lim <=∈∞→q x q n Dx n ,则函数项级数()∑x u n 在D 上一致收敛.证明由假设()1sup lim <=∈∞→q x q n Dx n ,则存在正整数N ,使得当N n >时,有()1<≤q x q n ,则对任意的N n >,D x ∈∀有()n n q x u ≤,而几何级数∑n q 收敛,由函数项级数一致收敛性优级数判别法知()∑x u n 在D 上一致收敛,即得证.例12函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛,(其中r 是实常数且1>r ),因为()x nx u q nnn n ==,设()()+∞⋃-∞-=,,r r D ,()11lim sup lim <==∞→∈∞→r r n x q nn n Dx n ,由推论51'得函数项级数∑n xn在()()+∞⋃-∞-,,r r 上一致收敛.推论16[]8有函数项级数()∑x u n ,若对D x ∈∀,有()1lim <=∞→l x u n n n ,则函数项级数()∑x u n 在D 上一致收敛.证明因()1lim <=∞→l x u n n n ,则1-=∃q o ε,1<<q l ,+∈∃N N ,D x ∈∀,有()l q l x u nn -<-,即()1<<q x u n n ,从而()n n q x u <依定理8得函数项级数()∑x u n 在D上一致收敛.例13判别函数项级数nn x ∑⎪⎭⎫⎝⎛+12在R 上的一致收敛性.证明因()1012lim lim 12<=+=∞→+∞→n xn nnn x n ,依推论15函数项级数nn x ∑⎪⎭⎫ ⎝⎛+12在R 上一致收敛.定理24[]8(对数判别法)设()x u n 为定义在D 上的正的函数列,若()()x p nx u n n =-∞→ln ln lim 存在,那么①若D x ∈∀,()1>>p x p 对,则函数项级数()∑x u n 一致收敛;②若对D x ∈∀,()1<<p x p ,则函数项级数()∑x u n 不一致收敛.证明由定理条件知,对任意0>ε,N ∃,使得对一切N n >,有()()()εε+<-<-x p nx u x p n ln ln ,即()()()εε-+<<x p n x p n x u n 11,则当()1>>p x p 对D x ∈∀成立时,有()pn n x u 1<,而p 级数∑p n 1当1>p 时收敛,由优级数判别法知函数项级数()∑x u n 在D 上一致收;而当()1<<p x p ,对D x ∈∀成立时,有()p n n x u 1>,而p 级数∑p n1当1<p 时发散,从而函数项级数()∑x u n 不一致收敛.定理25设函数项级数()∑x u n ,()∑x v n 都是定义在数集D 上的正项函数项级数,当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,设(){}1inf q x q D x =∈,(){}2sup q x q Dx =∈;①当+∞<=21,0q q 时,若()∑x v n 在D 上一致收敛,则()∑x u n 在D 上也一致收敛.②当+∞=>21,0q q 时,若()∑x u n 在D 上一致收敛,则()∑x v n 在D 上也一致收敛.③当+∞<>21,0q q 时,()∑x u n 与()∑x v n 在数集D 上同时一致收敛,或同时不一致收敛.证明由当D x ∈,∞→n 时,()()x v x u n n 一致收敛于()x q ,则任取0>ε,总+∈∃N N ,当N n >时,对一切D x ∈有()()()ε<-x q x v x u n n ,得到()()()()εεεε+<+<<+-≤+-21q x q x v x u x q q n n 即()()()()()x v q x u x v q n n n εε+<<-21.①当+∞<=21,0q q 时,由上式的右半部分可知若()∑x v n 在D 上一致收敛,则()∑x u n在D 上也一致收敛;②当+∞=>21,0q q 时,由上式左半部分可知若()∑x u n 在D 一致收敛,则()∑x v n 在D 上也一致收敛;③当+∞<>21,0q q 时,取1q <ε易知()∑x u n 与()∑x v n 同时一致收敛或同时不一致收敛.Lipschitz (莱布尼茨)型函数项级数一致收敛判别[]5定义4设有函数项级数()()∑+-x u n n 11,其中()x u n ,(),,2,1 =n 是区间[]b a ,上的连续函数()0≥x u n ,且函数列(){}x u n 在区间[]b a ,上单调减少收敛于0,则称这类级数为Lipschitz 型函数项级数.定理26若()()∑+-x u n n 11,[]b a x ,∈为L 型函数项级数,则①此级数在[]b a ,上一致收敛;②()()()()()()()()()x u x u x u x u x u n p n p n n n n n pn n k k k 211111231211≤-++-+-=-+++++++++=+∑ .证明①因为()x u n 是[]b a ,上的连续函数,函数列(){}x u n 在区间[]b a ,上单调减少且收于连续函数()0=x u .所以()()x u x u k k 1+-在[]b a ,连续非负,而()()()[]()x u x u x u x u n k k k n 1111--=-∑-=+,由Dini 定理知函数项级数()()[]()x u x u x u n k k 111--∑∞=+在区间[]b a ,一致收敛于0,从而函数列(){}x u n 在[]b a ,一致收敛于0.又()⎩⎨⎧=+==+-+-=-∑==k n k n nk k 2,012,111111111,所以()1111≤-∑=+nk k ,故()∑=+-n k k 111一致有界,由Dirichlet 判别法知交错函数项级数()()∑+-x u n n 11在区间[]b a ,上一致收敛.②由①得()()∑+-x u n n 11一致收敛,设()()()x s x u n n =-∑+11,于是()()()()()()()()x s x s x s x s x s x s x u n p n n p n pn n k k k -+-==-++++=+∑111()()()()()()()()()()().211x u x u x u x u x u x r x r x s x s x s x s n n n p n n p n n n p n =+≤+≤+=-+-≤+++++例14试证()∑+--211x n n 在区间[]b a ,一致收敛.证明⎭⎬⎫⎩⎨⎧+21x n 是任意闭区间[]b a ,上的连续函数列且[]b a x ,∈∀,()()x u x u n n ≤≤+10,()0lim =∞→x u n n 由定理26知函数项级数()∑+--211x n n 在[]b a ,上一致收敛.推论17设函数列(){}x S n 在[]b a ,上收敛于)(x S ,若()x S n 可写成L 型函数项级数的部分和,则函数列(){}x S n 在上一致收敛于)(x S .证明设有L 型函数项级数()()∑+-x u n n 11一致收敛于()x u ,[]b a x ,∈而()()()x u x S k nk k n ∑=+-=111,则对[]b a x ,∈∀,都有()()()()()x S x S x u x u n n nk k k n ==-=∞→=+∞→∑lim 1lim 11,即()()x S x u =,故函数列(){}x S n 在[]b a ,上一致收敛于)(x S .例15证明()∑-x nn11在[)+∞,δ上一致收敛.证明因为[)+∞∈∀,δx ,()x xn n 1110≤+≤,01lim =∞→xn n .由②[)+∞∈∀,δx ,+∈∀N p 有()()()δn x u x u n pn n k k K2211≤≤-∑++=,由δn 2与x 无关且02lim =∞→δn n 故()()εδ<≤-∑++=n x u pn k n k k 211,由Cauchy 准则证毕.定理27[]9利用结论:设幂级数∑∞=1n n n x a 的收敛半径0>R ,则①当∑∞=1n nn R a (或()∑∞=-1n nn R a )收敛时,∑∞=1n n n x a 在[]R ,0或()0,R -一致收敛;②∑∞=1n nn x a 在(]R R ,-内一致收敛,当且仅当∑∞=1n n n x a 在[]R R ,-上一致收敛.注:1Cauchy 准则与M 判别法比较实用一般优先考虑;2Cauchy 准则、M 判别法、放大法要实现对函数项级数一致收型性的判别,均要对一定的表达式进行有效是我放大.三非一致收敛性的判别1利用非一致收敛的定义定义3,略.例16讨论函数项级数()[]()∑++-111nx x n x在()+∞∈,0x 是否一致收敛.解()()[]()()111)11111(11111+-=+-+-=++-=∑∑==nx kx x k kx x k x x s nk nk n 当()+∞∈,0x 时,有()()1lim ==∞→x s x s n n .取o ε使210≤<o ε,无论n 多大只要nx 1=',就有()()o n n n s n s x s x s ε≥=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛='-'2111,故()[]()∑++-111nx x n x 在()+∞,0上非一致收敛.2利用确界原理的逆否命题定理28若函数项级数()∑x u n 在数集D 上非一致收敛的充要条件是()0sup lim ≠∈∞→x R n Dx n .证明它是确界原理的逆否命题,故成立.例17函数项级数()∑x u n 的部分和函数为()xx x S nn --=11,讨论()∑x u n 在()1.1-上是否一致收敛.证明部分和函数()x x x S n n --=11,当1<x 时,()(),11lim xx S x S n n -==∞→又当∞→n时,()()()()∞→⎪⎭⎫ ⎝⎛+=+-⎪⎭⎫⎝⎛+≥-=----∈11,11,11111supsup n nnx n x n n n n nn n x x x S x S ,故()∑x u n 在()1.1-内非一致收敛.注:极限函数知道时值得用3利用定理5的逆否命题定理29设()()x S x u n =∑,若存在{}D x n ⊂使得()0lim ≠∞→n n n x r ,则()∑x u n 在D 上不一致收敛.证明略.注:此定理比较实用.4利用Cauchy 准则逆否命题定理30函数项级数()∑x u n 在区间D 上非一致收敛的充要条件是存在0>o ε,+∈∀N N ,N n o >∃,D x ∈'∃,+∈N p 使得()opn n k kx u ε≥'∑++=1证明它是Cauchy 准则的逆否命题,故成立.例18讨论∑nnxsin 在[]π2,0=D 上的一致收敛性.解取21sin 31=o ε,对+∈∀N N ,N n o >∃,1+=o n p ,及()[]π2,0121∈+=o o n x 使()()()()()1212sin 121122sin 21121sin 11++++++++++++=-+o o o o o o o o o o n p n n n n n n n n n n x s x s o o ⎪⎪⎭⎫⎝⎛++++++>121211121sin o o o n n n 21sin 31>oε=故∑nnxsin 在[]π2,0=D 上非一致收敛.注:该类型关键是要找出o x 与o n 及p 之间的关系,从而凑出o ε,该类型题也有一种简便方法,即取1=p 能适用于很多例题.此方法比较实用,优先考虑.推论18函数列(){}x u n 在上非一致收敛于0,则函数项级数()∑x u n 在数集D 上非一致收敛.证明它是推论1的逆否命题,故成立.例19设()()()()12sin 1212cos+⋅++=n n x n n n x u n ,()∞∞-∈,x .讨论函数项级数()∑x u n的一致收敛性.解取()12+=n n x n ,则()()1sin 12cos lim 0lim +=-∞→∞→n x u n n n n ,此极限不存在,所以(){}x u n 在定义域内非一致收敛于0,则()∑x u n 在()∞∞-∈,x 内非一致收敛.推论19[]9若函数项级数()∑x u n 在区间D 上逐点收敛,且在区间D 中存在一点列{}n x ,使()0lim ≠∞→n n n x u ,则函数项级数()∑x u n 在区间D 上非一致收敛.例20讨论∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-nx n x e n 11在()+∞,0上的一致收敛性.解因为()0.,,0a x ∃+∞∈∀使a x ≤,有ax nx e n a e nx n x e n 222211≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+-,知∑⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛+-nx n x e n 11在()+∞,0上非一致收敛.5利用求极值的方法定理31()()∑∞+==1n k kn x u x R ,若()0sup lim ≠∈∞→x R nDx n ,则()∑x u n 在D 上不一致收敛.例21证()∑-n n x x 1在[]1,0上处处收敛,但不一致收敛.证明因为()∑∑∑-=-n n n n x x x x 21,对[)1,0∈x ,∑n x 与∑n x 2都收敛,所以()∑-nnx x 1收敛,1=x 时()01=-∑nnx x 收敛,故()∑-nnx x 1在[]1,0上处处收敛;而()∑---=++x x x x x R n n n 11221,所以[]()22211,01111111sup ⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛--⎪⎭⎫⎝⎛-≥++∈n n n n x R n n n x ,又+∞=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛-++∞→22211111111lim n n n n n n n ,故()∑-n n x x 1在[]1,0非一致收敛.注:极限函数知道时,可考虑用.6利用一致收敛函数列的一个性质判别[]10引理2若连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则D x o ∈∀,{}D x n ⊂∀,o n n x x =∞→lim ,有()()o n nn x f x f=∞→lim 证明由(){}x f n 在D 上一致收于()x f ,即有()()0sup lim =-∈∞→x f x f n Dx n ,D x o ∈∀,{}D x n ⊂∀:o n n x x =∞→lim ,有()()()()x f x f x f x f n Dx n n n -≤-∈sup ,得()()0lim =-∞→x f x f n n n .根据连续函数列(){}x f n 在区间D 上一致收敛于()x f ,则()x f 也必在D 上连续,从而()()o n n n x f x f =∞→lim .定理32连续函数项级数()∑x u n 在区间D 上逐点收于)(x S ,且D x o ∈∃,{}Dx n ⊂∃o n n x x =∞→lim ,有()()o n n n x S x S ≠∞→lim 则函数项级数()∑x u n 在区间D 上非一致收敛于)(x S .例22讨论∑+221x n x在()+∞∞-,上一致收敛性.解显然()∑x u n 在()+∞∞-,上逐点收,且每一项都在()+∞∞-,上连续,取() ,2,11==n n x n ,则0lim =∞→n n x .再设()221x k x x u k +=,由定积分概念()()∑∑=∞→=∞→+=nk nk nn nk n k n x u 12111lim lim ()∑=∞→+=n k n k n n 12111lim dx x ⎰+=1021110arctgx =4π=()00=≠s 故知∑+221xn x在()+∞∞-,上非一致收敛.推论20设连续函数列(){}x S n 在区间D 上逐点收敛,且在D 中存在数列{}n a 和{}n b 满。
函数项级数的一致收敛

∑x
n =0
n
在区间 ( −1 , 1 ) 内闭一致收敛 .
Ex
[1]P44—45
1 ⑹⑺, 4,6.
四. 函数项级数一致收敛判别法:
1.
M Th 4
判别法: ( Weierstrass 判别法 ) 设级数
∑u
n
( x)
定义在区间 D 上,
∑M
n
是收敛
的正项级数.若当 n 充分大时, 对 ∀x ∈ D 有|
f ( x) =
lim
n→∞
⎛ 1 ⎞ max | f n ( x) − f ( x) |= f n ⎜ ⎟ = n → / 0 f n ( x) = 0 . 但 由 于 x∈[ 0,1] ⎝ 2n ⎠ ,
(n→∞),
因此 , 该函数列在 [ 0 , 1 ] 上不一致收敛.
例8
f n ( x) =
⑴
∑u
n
( x)
, 前 n 项部分和函数列
{S n ( x)} ,收敛
例 9 定义在 ( − ∞ , + ∞ ) 内的函数项级数( 称为几何级数 )
∑x
n=0
∞
n
= 1+ x + x2 + L + xn +L
1− xn S n ( x) = ( x ≠ 1) 1− x 的部分和函数列为 , 收敛域为 ( − 1 , 1 ) .
lim
n→∞
f n ( x) = f ( x ) , … … , 有
| f m ( x) − f n ( x) | <
ε
2.
| f n ( x) − f ( x) | ≤
ε
2
令m → ∞, ⇒
函数项级数的一致收敛-精品文档

的任一正数)一致收敛,但在 0,1 非一致收敛.这说明了 一致收敛与所讨论的区间有关,当 S n ( x ) 在某一区间一致 收敛时,它当然在含这区间内的任一区间一致收敛,
但在含这个区间的较大的区间上却不一定一致收敛.另 一方面,这两个例子也说明了虽然在 a, b 内的任一闭 区间上 S n ( x ) 一致收敛,但 S n ( x ) 在区间 a, b 却不一定 一致收敛.当 S n ( x ) 在 a, b 内任一 闭区间上一致收敛时, 称 S n ( x ) 在区间 a, b 内闭一致收敛.因此在 a, b 一致收 敛一定内闭一致收敛,但反之不然.但从 S n ( x ) 在 a, b 内 闭收敛,却可得到它在区间 a, b 也收敛,这是因为对 a, b 上每一点,恒可取 a, b 内的一个闭区间包含这个点,于 是 S n ( x ) 在这闭区间上的收敛性就得到它在这个点收 敛.这正是由于一致收敛是整体性质而收敛是局部性质 的缘故.
如果
lim S S 0 n
n
x X
就称 S ( x )在 X 上一致收敛于 S ( x )。
x ) 例3 S n(x 2 2 1n x
例4 讨论
一致收敛。 , 在 X
的一致收敛性。 x 在 S ) n(x X 0 , 1 2 2 1n x
1 1 x
二、一致收敛的定义
u ( x ) x ( x x ) ( x x ) 例1
2 3 2
它的每一项都在 0x 上连续,其 n 次部分和为 1 n S ( x ) x n 。很明显有 0 , 0 x 1 时 lim s ( x ) s ( x ) n n 1 , x 1 时 级数的和S ( x )在 x 1 不连续,因此,它不是 0,1 上的 连续函数。这个例子还告诉我们,上述级数的 每一项 都在 0,1 上可导,但它的和函数 S ( x ) 在 x 1 不可导。
一致收敛

∞
n= 1
∞
∫x
证: 因为
k= 1
x
0
S(x)d x = ∑ ∫ un(x)d x
n= 1 x0
x
且上式右端级数在 [a, b] 上也一致收敛 .
∑ ∫x
n
x
0
uk (x)d x = ∫
x
x0
k= 1
∑uk (x)d x = ∫x
目录
n
x
0
Sn(x)d x
下页 返回 结束
上页
所以只需证明对任意 x0, x∈[a,b] (x0 < x), 一致有
2 n n− 1
在 [0,1] 上不一致收敛 .
+ 证: Sn(x) = x +(x − x) +L (x − x
)=x
n
0, S(x) = 1,
− xn, 0 ≤ x <1 rn(x) = S(x) −Sn(x) = 0, x =1 1 1, 对无论多么大的正数 N , 取x = (1) N+1, 取正数 ε < 0 2 2
*第六节
第十二章
函数项级数的一致收敛性 及一致收敛级数的基本性质
一、函数项级数的一致收敛性 二、一致收敛级数的基本性质
目录
上页
下页
返回
结束
一、函数项级数的一致收敛性
幂级数在收敛区间上的性质类似于多项式, 但一般函 数项级数则不一定有这么好的特点. 例如, 例如 级数
x +(x − x) +(x − x ) +L+(x − x
2) 正 级 ∑an 收 , 项 数 敛
则函数项级数 ∑un(x) 在区间 I 上一致收敛 .
函数项级数一致收敛性判别及应用

函数项级数一致收敛性判别及应用函数项级数的一致收敛性是数学分析中的重要概念,对于研究函数项级数的性质和应用具有重要意义。
本文将从一致收敛性的定义开始,介绍一致收敛性的判别定理和具体的应用,希望读者通过本文的了解和学习,能够更好地理解和应用函数项级数的一致收敛性。
一、一致收敛性的定义在介绍一致收敛性的判别定理和应用之前,我们首先来了解一下一致收敛性的定义。
对于一般的数项级数来说,我们只需要关注级数的部分和序列是否收敛即可。
但对于函数项级数来说,因为级数的每一项都是函数,所以我们不仅需要考察级数的部分和序列的收敛性,还需要考察函数序列在定义域上的收敛性。
设对于定义在区间上的函数序列,对于给定的,如果对于任意,都存在一个自然数,使得当时,有∣∣fn(x)−f(x)∣∣<ε那么我们称函数序列在区间上一致收敛于函数,并记作。
换句话说,对于一致收敛的函数序列而言,不仅级数的部分和序列收敛于函数,且对于每一个自然数,其函数项序列在整个区间上都趋向于函数。
二、一致收敛性的判别定理对于函数项级数的一致收敛性,我们有一些判别定理可以帮助我们进行判断。
这里我们简要介绍几个重要的判别定理:1. 魏尔斯特拉斯判别定理(Weierstrass判别定理)魏尔斯特拉斯判别定理是判别函数项级数一致收敛性的重要定理之一。
该定理表述如下:若对于区间上的函数序列,存在一个数项级数使得对于任意和有∣∣fn(x)−an∣∣<bn,则级数在区间上一致收敛。
通过以上判别定理的介绍,我们可以看到,判别函数项级数一致收敛性的方法有多种多样,我们可以根据具体的情况选择不同的方法来进行判断,更好地理解和应用函数项级数的一致收敛性。
三、一致收敛性的应用函数项级数的一致收敛性不仅在理论上具有重要意义,而且在实际问题中也有着广泛的应用。
下面我们将介绍一些函数项级数一致收敛性在实际问题中的应用。
1. 函数项级数的积分和微分操作在实际问题中,我们经常会遇到需要对函数项级数进行积分和微分操作的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 函数项级数的一致收敛性本节将讨论函数项级数有关性质。
定义 1 设 )(1x u ,)(2x u ,……,)(x u n ,……,是集合E 上的函数列,我们称形为)(1x u +)(2x u +……+)(x u n +……为E 上的函数项级数,简记为∑∞=1)(n n x u 。
其中)(x u n 称为第n 项.)(x u k +)(1x u k ++……+)(x u n +……也记为∑∞=kn n x u )(. 记号中n 可以用其它字母代之.同研究常数项级数一样,我们类似可以定义其收敛性。
定义 2 设∑∞=1)(n n x u 是集合E 上的函数项级数,记∑==ni i n x u x S 1)()(=)(1x u +)(2x u +……+)(x u n ,它称为级数∑∞=1)(n n x u 的部分和函数(严格地说是前n 项部分和函数).{})(x S n 称为∑∞=1)(n n x u 的部分和函数列。
如果{})(x S n 在0x 点收敛,我们也说∑∞=1)(n n x u 在0x 点收敛或称0x 为该级数的收敛点。
如果|)(|1∑∞=n n x u 在0x 点收敛,我们称∑∞=1)(n n x u 在0x 点绝对收敛。
非常容易证明绝对收敛一定收敛。
{})(x S n 的收敛域也称为该级数的收敛域。
如果{})(x S n 在0x 点不收敛,我们说∑∞=1)(n n x u 在0x 点发散。
如果{})(x S n 在D 上点态收敛于)(x S ,我们称∑∞=1)(n n x u 在D 上点态收敛于)(x S . )(x S 称为该级数的的和函数。
)()()(x S x S x R n n -=称为该级数关于前n 项部分和的余项. {})(x R n 称为该级数的余项函数列.如果{})(x S n 在D 上一致收敛于)(x S ,我们称∑∞=1)(n n x u 在D 上一致收敛于)(x S ,或∑∞=1)(n n x u 在D 上一致收敛. 如果{})(x S n 在D 上内闭一致收敛于)(x S ,我们称∑∞=1)(n n x u 在D 上内闭一致收敛.用N -ε的进行叙述将是:设∑∞=1)(n n x u 是D 上函数项级数,)(x S 是D 上函数。
若对任意ε>0,总存在一个正数正数N (只能依赖于ε,绝对不依赖于x ),当N n >时,对一切的D x ∈,总有ε<-∑=|)()(|1x S x u ni i ,则称该函数项级数在D 上一致收敛于)(x S . 同样一致收敛一定点态收敛.例 1 定义在(—∞,+∞)上的函数项级数(几何级数)ΛΛΛΛ+++++=∑∞=-n n n x x x x2111的部分和函数是xx x S nn --=11)( .显然当|x |<1时xx S n n -=∞→11)(lim . 1||≥x 时,几何级数是发散的。
其收敛域是(—1,1). 显然几何级数在(—1,1)上不是一致收敛的.函数列的有关结论,都可以不加证明地推广到函数项级数.定理11. 8 (函数项级数一致收敛Cauchy 准则)函数项级数∑∞=1)(n n x u 在集合D 上一致收敛的充分必要条件是: 对任意ε>0,总存在正数N ,使得当正整数m ,n ,有 m >n >N 时,对一切的x ∈D,都有推论 ∑∞=1)(n n x u 在D 上一致收敛的必要条件是{})(x u n 在D 上一致收敛于0。
反之未必(请读者举例).定理11. 9 ∑∞=1)(n n x u 在D 上一致收敛的充分必要条件是其余项函数列{})(x R n 一致收敛于0.定理11. 10 (Weierstrass 判别法)设∑∞=1n n a 是收敛的正项级数,∑∞=1)(n n x u 是D 上的函数项级数。
如果ΛΛ,3,2,1,,|)(|=∈≤n D x a x u n n ,则∑∞=1)(n n x u 在D上一致收敛。
证明 因正项级数∑∞=1n n a 收敛,所以,任意ε>0,存在正数N , 当 N n m >,(m >n ) 时,ε<+++++||11m n n a a a ΛΛ.那么对任意,D x ∈<+++++|)()()(|11x u x u x u m n n ΛΛε<+++++m n n a a a ΛΛ11,由Cauchy 准则,得证。
例 ∑∞=+1221)sin(n n nx 在(—∞,+∞)上一致收敛。
定理11. 11 (Abel 判别法)设函数项级数∑∞=1)(n n x b 在D 上一致收敛,函数列{})(x a n 在D 上一致有界,即存在常数M, 使得M x a n ≤|)(|,D x ∈,ΛΛ,3,2,1=n ,如果{})(x a n 关于n 是单调的,那么 ∑∞=1)()(n n n x b x a 在D 上一致收敛。
证明 因∑∞=1)(n n x b 一致收敛,所以任意ε>0,存在正数N , 当 N n m >,(m >n ) 时,对所有,D x ∈ 13|)()()(|11+<+++++M x b x b x b m n n εΛΛ。
又εε<++≤++=∑|))(|2|)((|13)()(11x a x a M x b x a m n mn k n n .由一致收敛Cauchy 准则即证。
定理11. 12 (Dirichlet 判别法)设D 上函数项级数∑∞=1)(n n x b 的部分和函数列在D 上一致有界,函数列{})(x a n 在D 上一致收敛于0,如果{})(x a n 关于n 是单调的,那么 ∑∞=1)()(n n n x b x a 在D 上一致收敛。
证明 因∑∞=1)(n n x b 的部分和函数列在D 上一致有界, 所以存在M>0,使得∑==n kn k n x b x S 1)()(满足);,3,2,1(,|)(|D x n M x S n ∈=≤Λ, 所以,2|)(|M x b mkn k ≤∑=),(D x n m ∈>. 又{})(x a n 在D 上一致收敛于0,所以任意ε>0,存在正数N , 当 N n > 时, 对所有,D x ∈16|)(|+<M x a n ε。
当 N n m >, (m >n ) 时,对所有,D x ∈εε<+⨯≤+≤++=∑1632|))(|2|)((|2)()(11M M x a x a M x b x a m n mn k k k .又由Cauchy 一致收敛准则即证。
例 如果常数列{}n a 单调收敛于0,那么∑∞=1)sin(n n nx a 在(0,2π)上内闭一致收敛。
证明 数列{}n a 收敛于0意味着关于x 一致收敛于0,对任意(0,2π)的子集[a, b ],当记 M =min{2sin ,2sin b a }>0, 则任意[a, b ]中的x ,有Mx 1|2sin|1≤. 所以 M x xx n kx nk 1|2sin |2|2cos )21cos(||)sin(|1≤-+=∑=. 由Dirichlet 判别法知道,原级数在(0,2π)上内闭一致收敛. 下面将给出与函数列相应的一些性质,不于证明:定理11. 13 (连续性)若函数函数项级数∑∞=1)(n n x u 的每一项在区域D 上都连续。
如果∑∞=1)(n n x u 在D 上一致收敛于)(x S ,则其和函数)(x S 在D 上也连续。
即∑∑∞=→∞=→=11)(lim )(limn n x x n nx x x u x u.定理11. 14 (逐项可积性)设函数列∑∞=1)(n n x u 在],[b a 上一致收敛,每一项在],[b a 上都连续, 则∑⎰⎰∑∞=∞==11)()(n ban b a n ndx x u dx x u.即积分与无限求和运算可交换。
定理11.15 (逐项可微性)设函数列{})(x u n 在],[b a 上满足: (1),......)3,2,1(),(=n x u n 有连续导函数; (2)∑∞=1)(n n x u 点态收敛于)(x S ;(3)∑∞=1)('n n x u 一致收敛于)(x v ,则)(x S 在],[b a 上可导,并且 )()()('x v dxx dS x S ==, 即∑∑∞=∞==11))(())((n n n n x u dxdx u dx d . 也就是说在一定条件下,求导运算与无限求和运算交换顺序。
定理11. 16 设函数项级数∑∞=1)(n n x u 在区域D 上点态收敛于)(x S ,如果(1)在 D 上连续;(2))(x S 在D 上连续;(3)对D 上每个固定的x ,不变号,则∑∞=1)(n n x u 在D 上一致收敛于)(x S .习题 11-31.判别下列级数的一致收敛性,.....)3,2,1)((=n x u n {})(x u n1) 2||21),(!12≤≤+-∞=∑x x x n n nnn ; 2),10,!)(ln 1≤≤∑∞=x n x x n n n3);0,31sin 21∞<<∑∞=x x n n n4)1,)1(1->+-∑∞=x n x n n; 2.设)(x u n 在(0, 1 )里单调增加, )(x u n ≥0, (n =1,2,……). 如果∑∞=1)(n nx u在 (0, 1 )里点态收敛,且有上界, 那么∑∞=1)(n n x u 在(0, 1 )里一致收敛. 且 ∑∑∞=-→∞=-→=1111)(lim )(lim n n x n nx x u x u3.证明 ∑∞=-12)(1n x n 当x ≠整数时收敛, 其和函数是为1的周期函数, 并且当x ≠整数时, 和函数连续.4.设)(x u n 在[a, b ]上连续(n =1,2,……), ∑∞=1)(n n x u 在 (a, b 1 )里一致收敛, 证明∑∞=1)(n n x u 在[a, b ] 上一致收敛.5.设{}n x 是(0, 1)中的两两不同的数列, 讨论∑∞=-12)sgn(n nn x x 在(0, 1)中的连续性.其中 0,0,0,101sgn <=>⎪⎩⎪⎨⎧-=x x x x . 6. 证明∑∞=+12)1(n nx x在(0,+∞)上,∑∞=1ln n n x x 在[0,1]上非一致收敛. 7.证明∑∞=-1n nx ne 在(0,+∞)内收敛, 但非一致收敛, 而和函数在(0,+∞)内有无穷次导数.8.证明∑∞=11nxn在x>1内连续。