交流伺服电动机及其驱动
伺服电动机

伺服电动机认知1.永磁交流伺服系统概述现代高性能的伺服系统,大多数采用永磁交流伺服系统,其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。
(1)交流伺服电动机的工作原理伺服电机内部的转子是永久磁铁,驱动器控制的u/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电动机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电动机的精度决定于编码器的精度(线数)。
伺服驱动器控制交流永磁伺服电动机(PMSM)时,可分别工作在电流(转矩)、速度、位置控制方式下。
系统的控制结构框图如图7-17所示。
系统基于测量电机的两相电流反馈(Ia、Ib)和电机位置。
将测得的相电流(Ia、Ib)结合位置信息,经坐标变化(从a,b,c坐标系转换到转子d,q坐标系),得到Ia、Ib分量,分别进入各自的电流调节器。
电流调节器的输出经过反向坐标变化(从d,q坐标系转换到a,b,c坐标系),得到三相电压指令。
控制芯片通过这三相电压指令,经过反向、延时后,得到6路PWM波输出到功率器件,控制电机运行。
伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,实现数字化、网络化和智能化。
功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入了软启动电路,以减小启动过程对驱动器的冲击。
智能功率模块(IPM)的主要拓扑结构是采用了三相桥式电路,原理图如图7-18所示。
利用了脉宽调制技术(Pulse width Modulation,PWM),通过改变功率晶体管交替导通的时间来改变逆变器输出波形的频率,改变每半周期内晶体管的通断时问比,即通过改变脉冲宽度来改变逆变器输出电压幅值的大小以达到调节功率的目的。
关于图7-17中的矢量控制原理,此处不予讨论。
交流伺服电机

交流伺服电机交流伺服电机是一种广泛应用于工业自动化领域的电机类型,在现代生产中发挥着重要作用。
交流伺服电机通过内置的编码器反馈系统,可以实现精确的位置控制和速度控制,从而提高了生产效率和产品质量。
本文将介绍交流伺服电机的工作原理、应用领域以及优势特点。
工作原理交流伺服电机通过电子控制系统控制电流的大小和方向,从而控制电机转子的位置和速度。
其工作原理包括位置控制回路、速度控制回路和电流控制回路。
位置控制回路接收编码器反馈信号,比较目标位置和当前位置之间的差异,通过控制电流大小和方向来驱动电机转子转动至目标位置。
速度控制回路根据编码器反馈信号和设定速度值之间的差异,控制电机的转速。
电流控制回路则根据速度控制回路的输出,控制电机的电流大小和方向,以实现精确的速度控制。
应用领域交流伺服电机广泛应用于各种自动化设备和机械领域,如工业机器人、数控机床、包装设备、印刷设备等。
在这些领域,交流伺服电机可以提供精确的位置控制和速度控制,满足高效生产的需求。
同时,在医疗设备、航空航天等领域也有着重要应用,用于控制精密的运动系统。
优势特点交流伺服电机相比其他类型的电机具有以下优势特点:•高精度:交流伺服电机具有较高的控制精度,可以实现微米级的定位精度,适用于需要高精度控制的应用。
•高效率:交流伺服电机运行稳定,能够提供较高的效率,降低能源消耗,节省生产成本。
•响应速度快:交流伺服电机响应速度快,可以在短时间内实现从静止到目标速度的转变,提高生产效率。
•可编程控制:交流伺服电机可以通过程序控制实现各种运动模式和轨迹规划,满足不同应用的需求。
总体而言,交流伺服电机在工业自动化领域具有重要地位,通过其高精度、高效率和快速的特点,为生产提供了稳定可靠的动力支持。
本文简要介绍了交流伺服电机的工作原理、应用领域以及优势特点,希望能够帮助读者更好地了解交流伺服电机的基本知识。
交流伺服电动机实验报告

交流伺服电动机实验报告交流伺服电动机实验报告一、引言交流伺服电动机是一种广泛应用于工业自动化领域的电动机。
它具有高精度、高效率和快速响应等优点,在机械控制系统中扮演着重要的角色。
本实验旨在通过对交流伺服电动机的实际应用和性能测试,深入了解其工作原理和特性。
二、实验设备与方法本实验采用了一台常见的交流伺服电动机系统,包括电机、伺服驱动器和控制器。
实验过程中,我们通过改变控制器发送给驱动器的指令,来控制电动机的转速和位置。
同时,利用示波器和测速仪等仪器,对电动机的性能进行测试和分析。
三、实验结果与分析1. 转速控制实验首先,我们进行了转速控制实验。
通过改变控制器发送的转速指令,我们观察到电动机的转速能够准确地跟随指令变化。
实验结果显示,交流伺服电动机具有较高的转速控制精度和稳定性,能够满足工业自动化系统对转速精度的要求。
2. 位置控制实验接下来,我们进行了位置控制实验。
通过改变控制器发送的位置指令,我们观察到电动机能够准确地移动到指定位置。
实验结果显示,交流伺服电动机具有较高的位置控制精度和响应速度,能够满足工业自动化系统对位置控制的要求。
3. 转矩控制实验为了进一步了解交流伺服电动机的性能,我们进行了转矩控制实验。
通过改变控制器发送的转矩指令,我们观察到电动机能够在不同负载下输出相应的转矩。
实验结果显示,交流伺服电动机具有较高的转矩输出能力和稳定性,能够适应不同负载的需求。
四、实验结论通过本次实验,我们对交流伺服电动机的工作原理和性能有了更深入的了解。
实验结果表明,交流伺服电动机具有高精度、高效率和快速响应等优点,适用于工业自动化系统中对转速、位置和转矩等要求较高的场景。
五、实验总结本实验通过对交流伺服电动机的实际应用和性能测试,深入了解了其工作原理和特性。
同时,我们还学习到了如何通过控制器发送指令来控制电动机的转速、位置和转矩,并通过仪器测试和分析来评估电动机的性能。
这些知识和技能对于我们今后在工业自动化领域的研究和实践具有重要意义。
交流电动机驱动及其控制

5、4、1 交流伺服电机特点及其调速方法
直流伺服电机具有电刷与整流子,尺寸较大且必须 经常维修,使用环境也受到一定影响,特别就是其容量较 小,受换向器限制,很多特性参数随速度而变化,因而限制 了直流伺服电机向高转速、大容量发展。
交流伺服电机采用了全封闭无刷结构,以适应实际 生产环境,不需要定期检查与维修。其定子省去了铸件壳 体,结构紧凑、外形小、重量轻(只有同类直流电机得75 %~90%)。定子铁芯较一般电机开槽多且深,绕组绕在 定子铁芯上,绝缘可靠,磁场均匀。可对定子铁芯直接冷 却,散热效果好,因而传给机械部分得热量小,提高了整个 系统得可靠性。转子采用具有
5、4、2 变频器调速装置(VFD)
一、晶闸管变频器得工作原理
图5-36所示为交-直-交变频器得主电路,它由整 流器、中间滤波环节及逆变器三部分组成。整流器为 晶闸管三相桥式电路,它得作用就是将恒压恒频交流电 变换为直流电,然后再用作逆变器得直流供电电源。逆 变器也就是晶闸管三相桥式电路,但它得作用与整流器 相反,它就是将直流电变换调制为可调频率得交流电,就 是变频器得主要组成部分。中间滤波环节由电容器、 电抗器组成,它得作用就是对整流后得电压或电流进行 滤波。
需要运动与位置控制场合得就是同步型交流伺服电机。 这种伺服电机通常具有永磁得转子,故称为永磁交流伺 服电机,以区别于有笼型转子得异步型交流伺服电机。 在这里主要讨论永磁交流伺服系统。
现代永磁交流伺服系统中所采用得永磁同步电机 经特殊设计,同轴安装有转子位置传感器、速度传感器, 根据需要还可以安装安全制动器与强迫冷却得风机等。
永磁交流伺服驱动系统按照其工作原理、驱动电 流波形与控制方式得不同,又可分为两种伺服系统;矩形 波电流驱动得永磁交流伺服系统与正弦波驱动得永磁 交流伺服系统。其原理分别如图5-42与5-43所示。
交流伺服电机驱动器说明书

交流伺服电机驱动器使用说明书浙江卧龙伺服技术有限公司2006年5月10注意:·本驱动器电源为三相或单相交流220V,推荐使用三相隔离变压器。
驱动器不能直接接交流380V,否则会造成驱动器损坏;·端子排U、V、W端子必须与电机A、B、C相接线一一对应;·本手册内容适用于驱动器软件V1.00及以上版本目录第1章 规格--------------------------------------------------------1 1.1 伺服驱动器规格 ---------------------------------------------1 1.2 伺服驱动器尺寸 ---------------------------------------------2 第2章 安装与接线 -------------------------------------------------32.1 安装与接线--------------------------------------------------32.1.1 安装场合-----------------------------------------------3 2.1.2 安装方法-----------------------------------------------4 2.2 标准连线----------------------------------------------------52.2.1 位置控制-----------------------------------------------52.2.2 速度控制-----------------------------------------------62.2.3 转矩控制-----------------------------------------------7 2.3 配线规格----------------------------------------------------8 2.4 配线方法----------------------------------------------------8 2.5 注意事项----------------------------------------------------8 第3章 接口--------------------------------------------------------83.1 外部端子----------------------------------------------------9 3.2 控制信号输入/输出端子 CN1-----------------------------------9 3.3 编码器信号输入端子 CN2--------------------------------------9 3.4 接口端子配置-----------------------------------------------12 3.5 输入/输出接口类型------------------------------------------133.5.1 开关量输入接口------------------------------------------133.5.2 开关量输出接口------------------------------------------133.5.3 脉冲量输入接口------------------------------------------143.5.4 模拟输入接口--------------------------------------------163.5.5 编码器信号输出接口--------------------------------------183.5.6 编码器Z信号集电极开路输出接口--------------------------193.5.7 伺服电机光电编码器输入接口------------------------------19 第4章 参数-------------------------------------------------------204.1 参数一览表 ------------------------------------------------204.2 型号代码参数与电机对照表------------------------------------29 第5章 保护功能---------------------------------------------------305.1 报警一览表-------------------------------------------------305.2 报警处理方法-----------------------------------------------31 第6章 显示与键盘操作---------------------------------------------356.1 第1层-----------------------------------------------------356.2 第2层-----------------------------------------------------366.2.1 监视方式------------------------------------------------366.2.2 参数设置------------------------------------------------37 6.2.3 参数管理------------------------------------------------38 6.2.4 速度试运行----------------------------------------------39 6.2.5 JOG运行------------------------------------------------ 39 第7章 运行-------------------------------------------------------407.1 接地-------------------------------------------------------40 7.2 工地时序---------------------------------------------------40 7.2.1 电源接通次序--------------------------------------------40 7.2.2时序图---------------------------------------------------417.3 注意事项---------------------------------------------------42 7.4 试运行-----------------------------------------------------427.4.1 运行前的检查--------------------------------------------427.4.2 通电试运行----------------------------------------------43 7.5 位置控制模式的简单接线运行---------------------------------44 7.6 速度控制模式的简单接线运行---------------------------------467.7 转矩控制方式的简单接线运行---------------------------------487.8 调整-------------------------------------------------------49 7.8.1 基本增益调整--------------------------------------------49 7.8.2 基本参数调整图------------------------------------------50 7.9 常见问题---------------------------------------------------50 7.9.1 恢复缺省参数--------------------------------------------50 7.9.2 频繁出现Err-15、Err-30、Err-32报警---------------------51 7.9.3 出现Power灯不能点亮现象--------------------------------51 7.10 相关知识---------------------------------------------------51 7.10.1 位置分辨率和电子齿轮的设置------------------------------51 7.10.2 位置控制时的滞后脉冲------------------------------------52 第8章 动态电子齿轮使用-------------------------------------------538.1 动态电子齿轮使用-------------------------------------------53 8.1.1 简要接线------------------------------------------------53 8.1.2 操作----------------------------------------------------53第一章 规格1.1 伺服驱动器规格型号 WLSA-05WLSA-10WLSA-20WLSA-15输入电源 单相或三相 AC220V -15~+10% 50/60Hz 三相 AC220V-15~+10% 50/60Hz温度 工作:0~40ºC 存贮:-40ºC~50ºC湿度 40%~80%(无结露) 使用环境大气压强 86~106kpa控制方法 ① 位置控制 ② 速度控制 ③ 转矩控制 ④ JOG 运行 再生制动 内置或外置 速度频率响应 200Hz 或更高速度波动率 <±0.03(负载0~100%);<±0.02(电源-15~+10%) (数值对应于额定速度) 调速比1:5000 特性脉冲频率 ≤500KHz控制输入① 输入使能 ② 报警清除 ③ CCW 驱动禁止 ④ CW 驱动 禁止 ⑤ 偏差计数器清零/速度选择1/零速箝位 ⑥ 指令 脉冲禁止/ 速度选择2 ⑦ CCW 转矩限制 ⑧CW 转矩限制 控制输出① 伺服准备好 ② 伺服报警 ③ 定位完成/速度到达④ 机械制动释放 ⑤ 转矩限制中 ⑥ 零速检出 输入方式① 脉冲+符号 ② CCW 脉冲/CW 脉冲 ③ 两相 A/B 正交脉冲 电子齿轮1/50--50 位置控制反馈脉冲2500线/转速度控制 4种内部速度和模拟速度外部控制 监视输出 转速、电机转矩、电机电流保护功能 超速、主电源过压欠压、过流、过载、制动异常、 编码器异常、控制电源异常、位置超差等 通讯功能 Windows 界面下参数设定,运行操作,状态监视 适用负载惯量小于电机惯量的5倍 尺寸规格L W H s e f d WLSA-20、15 机械 安装 WLSA-05、101. 2 伺服驱动器尺寸图1.1 WLSA-20尺寸图第二章 安装与接线2.1安装与接线2.1.1 安装场合(1)电气控制柜内的安装电气控制柜内部电气设备的发热以及控制柜内的散热条件,伺服驱动器周围的温度将会不断升高,所以在考虑驱动器的冷却以及控制柜内的配置情况,保证伺服驱动器周围温度在55ºC以下,相对湿度90%以下。
两相异步交流伺服电动机

两相异步交流伺服电动机相异步交流伺服电动机是一种常用的运动控制设备,广泛应用于机械、自动化和机器人领域。
它采用电动机作为执行器,通过控制电机的运动来实现精确的位置、速度和力控制。
1. 相异步交流伺服电动机的原理相异步交流伺服电动机是基于感应电机原理的,电动机的转子中有一个永磁体,它提供转矩输出。
电机的定子绕组(主相)通过变频器供电,变频器控制电流频率和幅值,从而控制电机的转速和转矩。
电机的转子绕组(辅助相)通过传感器检测转子位置,并反馈给控制器,控制器利用该信息来实现闭环控制。
2. 相异步交流伺服电动机的优势相异步交流伺服电动机具有以下优势:- 高响应速度:由于采用了闭环控制系统,相异步交流伺服电动机能够快速响应外部指令,实现高速度运动。
- 高精度控制:相异步交流伺服电动机能够实现精确的位置、速度和力控制,通过调整电机驱动信号的频率和幅值,可以达到很高的控制精度。
- 广范围的运动范围:相异步交流伺服电动机具有较大的转速范围,能够适应不同的运动需求,在低速和高速之间切换自如。
- 高能效:相异步交流伺服电动机采用了闭环控制系统和高效的变频器,能够提高电机的能效,降低能耗。
- 高可靠性:相异步交流伺服电动机采用了先进的控制算法和保护功能,能够保证系统的稳定性和可靠性。
3. 相异步交流伺服电动机的应用相异步交流伺服电动机广泛应用于各种工业领域,包括:- 数控机床:相异步交流伺服电动机可以实现工作台的高精度定位和快速移动。
- 包装设备:相异步交流伺服电动机能够精确控制包装机械的运动速度和力度,提高包装效率。
- 机器人:相异步交流伺服电动机可以实现机器人的精确运动控制,使其更加灵活和高效。
- 自动化生产线:相异步交流伺服电动机可以用于生产线上的输送带、升降机械等设备的控制。
4. 相异步交流伺服电动机的关键技术相异步交流伺服电动机的关键技术包括:- 转子位置检测技术:通过传感器对转子位置进行检测,实现闭环控制,提高系统的控制精度和稳定性。
交流伺服电机驱动电路

交流伺服电机驱动电路在许多自动化系统和机械设备中,使用电动马达进行精确的位置控制是至关重要的。
交流伺服电机作为一种高性能电机,通常用于需要高精度位置控制和速度控制的应用中。
为了有效地驱动交流伺服电机,需使用专门设计的电路。
本文将介绍交流伺服电机驱动电路的基本原理和设计要点。
1. 交流伺服电机简介交流伺服电机是一种能够在宽范围内实现高精度位置和速度控制的电机。
它通常由电动机本体、编码器、控制器和驱动电路组成。
与普通交流电动机相比,交流伺服电机通常配备有更高分辨率的编码器,以便实现更精确的位置反馈。
2. 交流伺服电机驱动电路组成交流伺服电机驱动电路一般由以下几个主要组成部分构成:2.1 三相功率放大器交流伺服电机通常为三相电机,因此需要使用三相功率放大器来驱动。
功率放大器的作用是将控制信号转换为电流,通过电流驱动电机转子旋转。
2.2 位置反馈回路位置反馈回路通过编码器等装置获取电机当前位置信息,并将其反馈给控制器。
控制器可以根据位置反馈信息来调节电机的转速和位置,实现闭环控制。
2.3 控制器控制器是交流伺服系统的大脑,负责接收位置指令、位置反馈信息等,并根据反馈信息实时调节电机的输出信号,以实现精确的位置和速度控制。
2.4 电源模块电源模块为整个系统提供稳定的电源供应,并通过节能模式等功能来优化系统性能。
3. 交流伺服电机驱动电路设计要点3.1 电源系统设计在设计交流伺服电机驱动电路时,首先要考虑的是电源系统的设计。
电源系统需要提供稳定的电源输出,并能够应对电机启动、制动等瞬时大电流需求。
3.2 电流限制和过流保护在电机运行过程中可能会出现过载或短路等情况,因此需要设计电流限制和过流保护电路,以防止电机受损。
3.3 位置反馈系统设计位置反馈系统对于实现精确的位置控制至关重要。
设计时需选择高分辨率的编码器,并确保编码器与控制器之间的通信稳定可靠。
3.4 控制器设计控制器是整个系统的核心,需要具备强大的计算和响应能力。
交流伺服驱动器原理及调试资料

5. 低速大转矩,过载能力强 一般来说,伺服驱动器具有数分钟甚
至半小时内1.5倍以上的过载能力,在短时间 内可以过载4~6倍而不损坏。
6. 可靠性高 要求数控机床的进给驱动系统可靠性高、
工作稳定性好,具有较强的温度、湿度、振 动等环境适应能力和很强的抗干扰的能力。
对电机的要求
1、从最低速到最高速电机都能平稳运转,转矩波动要 小,尤其在低速如0.1r/min或更低速时,仍有平稳的 速度而无爬行现象。
④ 反馈值与给定值相比较,如果有偏 差通过电流环输出控制电流使用其 差值改为零
17
1.3.1 伺服放大器控制回路
伺服放大器三种控制方式
1 转矩控制: 通过外部模拟量的输入或直接的地址的赋值来设定电机 轴对外的输出转矩的大小,主要应用于需要严格控制转 矩的场合。 ——电流环控制
2 速度控制: 通过模拟量的输入或脉冲的频率对转动速度的控制。 ——速度环控制
3 位置控制: 伺服中最常用的控制,位置控制模式一般是通过外部输入 的脉冲的频率来确定转动速度的大小,通过脉冲的个数来 确定转动的角度,所以一般应用于定位装置 。 ——三环控制
思考:三环中哪个环的响应性最快?
18
2.2 伺服的作用
按照定位指令装置输出的脉冲串,对工件进行定位控制。
伺服电机锁定功能
2、电机应具有大的较长时间的过载能力,以满足低速 大转矩的要求。一般直流伺服电机要求在数分钟内 过载4~6倍而不损坏。
3、为了满足快速响应的要求,电机应有较小的转动惯 量和大的堵转转矩,并具有尽可能小的时间常数和 启动电压。
4、电机应能承受频繁启、制动和反转。
三、 伺服驱动器的电气控制原理
1.外部控制电路结构 2.内部电路结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 气隙磁场难于直接检验,可以用转子的位置和速度的等效控 制(矢量控制)来代替
▪ T=CMI2 cos (T:转矩;CM:转矩系数;:气隙磁通;I2: 转子电流;cos:转子功率因数)
▪ ,I2,cos 都是转差率S的函数,难以直接控制
• 改变定子电压U和定子供电频率f之间的不同比例关系,得到不 同的变频调速方式。
5)变频调速器装置(VFD)
可分为电压型和电流型两大类 大功率晶体管组成的电压型变频调速装置使用广泛
6、改变转差率调速(适用于绕线式转子) 7、三相异步电动机的反转 对调任意两根电源线即可。
六、选用
同直流伺服电动机的选用
BUPT
• 转子的转速ns与旋转磁场转速相同,称为同步转速。ns与所接交 流电的频率f及电机的磁极对数p之间的关系为 ns=f/p。在中
国,电源频率为50赫 ,因此二极电机同步转速为3000 转/分, 四极电机同步转速为1500转/分, • 采用永久磁铁磁场,不需要磁化电流控制,只要检测磁铁转子的 位置即可;也称为无刷直流伺服电动机。容易控制;转矩产生机 理与直流伺服电动机相同 • T=CMIa。(T:转矩;CM:转矩系数;:气隙磁通;Ia :转子 电流)
▪ 关键是解决对交流电动机的控制和驱动 ▪ 气隙磁场难于直接检验,可以用转子的位置和速度的等效控
制(矢量控制)来代替
▪ 矢量控制是交流伺服系统的关键,可以利用微处理器和微型 计算机数控对交流电动机作磁场的矢量控制,从而获得对交 流电动机的最佳控制。
▪ 矢量控制原理:
矢量控制:同时控制电动机输入电流I1的幅值和相位以 得到交流电动机的最佳控制。
2)电气旋转磁场:三相对称的交流绕组通入三相对称的交流电 流时会在电机的气隙空间产生。· 两种旋转磁场尽管产生的机理
不相同,但在交流绕组中形成的电磁感应效果是一样的。
▪ 交流绕组处于旋转磁场中,并切割旋转磁场,产生感应电势。
• 通常三相交流电机的定子都有对称的三相绕组。任意一相绕组通 以交流电流时产生的是脉振磁场。但若以平衡的三相电流通入三 相对称绕组,就会产生一个在空间旋转的磁场。
P 1 s n0
(4)转子电流的旋转磁场相对于定子的转速:
n2 n n 1 sn0 s n0 n0
BUPT
动画演示
BUPT
(5)转子电流的旋转磁场相对于定子电流的旋转磁场的转速:
n2 n0 0
所以转子电流的旋转磁场和定子电流的旋转磁场相对静止, 合成共同的旋转主磁通Φ0
▪ 异步电机转子的转速则总是低于或高于旋转磁场的转速,两 者之差(称为转差)通常在10%以内。
2.异步(IM)型: • 结构 1)定子: 定子铁心:由0.35mm-0.5mm的硅钢片叠成。 定子绕组:按一定规律排列的三相绕组。 2)转子: 转子铁心:由0.35mm-0.5mm的硅钢片叠成。 转子绕组: 鼠笼式;绕线式:
BUPT
原理
①、定子绕组通入三相对称电流时产生旋转磁场;
②、旋转磁场的转向与三相电流的相序相同;
等良好的技术性能。
四、交流调速系统
BUPT
1、调速:改变电动机的转速;
2、调速方法:
1)机械调速:靠机械的传动改变电动机的转速;
2)电气调速;用电气的方法改变电动机的转速;
3、电气调速方法:由式
n
1 s60 f 1
P
式中,n:电动机转速;f:外加电源频率;P:电动机极对数;S:转差率
可知,调速方法有变极调速、变频调速、改变转差率调速。
3)原理: 60 f
n0
1
2
4)应用:专用的变频技术,无级调速。
• 为了保持调速时电动机的最大转矩不变,需要维持磁通恒定: 需调节定子供电电压,即要求对交流电动机供电的变频器(VFD) 具有调压调频两种功能。
• 晶闸管和大功率晶体管(它们具有接近理想开关元件的性能) 的运用,使变频器VFD迅速发展。
BUPT
BUPT
总结:
▪ 交流电机主要包括异步电机和同步电机两大类;两类电机在结构 上既具有共同之处,又各有其自身特点。
▪ 共同之处在于定子铁心和绕组,不同之处在于转子结构和绕组。
▪ 旋转磁场:交流电机工作的基础;是电能和机械能之间互相转换 的基本条件;在交流电机理论中有两种旋转磁场:
1)机械旋转磁场:通过原动机拖动磁极旋转产生。
• 磁场的对称轴线随时间而转动,其转速(n)由电流频率(f)和 磁极对数(p)决定:n=60f/p。一般说来,旋转磁场的转向总
是从电流超前的相移向滞后的相。如果通入三相绕组的电流相序 相反,旋转磁场的转向也相反。
BUPT
二、矢量控制原理
▪ 交流电动机作为执行元件:实现精密的位置控制,并能在较 宽的调速范围内产生理想的扭矩,提高生产率
BUPT
第五节 交流伺服电动机
一、类型和原理
1.同步(SM)型:
• 结构模型:
• 转子上有成对磁极,定子上有三相对称交流绕组。 • 原动机带动转子旋转,形成旋转磁场,该磁场在气隙空间可以取基波
(正弦)进行研究。 • 定子绕组的有效边被旋转磁场切割,并在其中产生感应电势。
机械旋转磁场(四极同步电机原理演示)
BUPT
BUPT
r1,X1为定子绕组的电阻和漏抗;r2,X2为转子绕组的电阻和漏抗; rm为与定子铁心相对应的等效电阻;Xm为与主磁通相对应的铁心 电路的电抗;S为滑差率。Im为励磁电流,在整个负载范围保持不 变;I2为转子电流,电磁转矩T与I2成正比。I1为输入电流。
矢量控制:同时控制电动机输入电流I1的幅值和相位以得到交流电动 机的最佳控制。
三、异步电动机的特点
(1)全封闭无刷构造,无需定期检查和维修; (2)定子无铸件壳体,结构紧凑,外形小,重量轻; (3)定子铁芯开槽多且深,绝缘可靠,磁场均匀; (4)可对定子铁芯直接冷却,散热效果好,提高系统可靠性; (5)转子采用精密磁极形状的永久磁铁,可实现高扭矩/惯量比,动
态响应好,运行平稳; (6)应用矢量控制技术,具备调速范围宽、稳速精度高、动态响应快
③、电气旋转磁场
④、旋转磁场的转速(称为同步转速):
60 f
n • 各种旋转磁场的相对关系:
0
⑴、定子电流的旋转磁场相对于定子的转速:
1
P
⑵、定子电流的旋转磁场相对于转子的转速:
n0 n n0 1 sn0 s n0
BUPT
(3)转子电流的旋转磁场相对于转子的转速:
60 f 60 f
n
2s P
4、变极调速
1)概念:改变磁极对数的调速方法;
2)方法:一相绕组的两个线圈由串联改为并联, 3)原理:极对数由P变为P/2 ,旋转磁场的转速由n0变为2n0 ;
4)应用:专用的多速电动机,有级调速。
BUPT
5、变频调速
1) 概念:改变电源频率的调速方法;
BUPT
2)方法:通过变频技术改变电源的频率f1;