交通流理论
《交通流理论 》课件

数值模拟法
定义:通过计 算机程序模拟 交通流现象的
方法
优点:可以模拟 复杂的交通流现 象,包括车辆之 间的相互作用、
道路条件等
缺点:需要较 高的计算能力 和技术水平, 且可能存在误
差
应用:用于研 究交通流的基 本规律、优化 交通设计和控
制等方面
交通流分析与评价方法
交通流流量分析
交通流量定义:单位时间内通过道路某一断面的车辆数 交通流量分类:基本流量、设计流量、实际流量 交通流量调查方法:路边调查、断面调查、连续调查
交通信号优化:通过调整交通 信号的配时方案,减少车辆在 路口的等待时间和延误
智能交通系统应用:利用智能 交通系统技术,实时监测交通
状况,调整交通流分配
交通流控制策略
交通信号控制:通过调整交通信号灯的配时方案,优化交通流分配,减少 拥堵和事故发生率。
智能交通系统:利用先进的技术手段,实时监测交通流量、车速等参数, 为交通管理部门提供决策支持,实现交通流优化与控制。
交通流分析与评价方法在交 通安全与控制中的应用
交通流分析与评价方法介绍
交通流分析与评价方法在环境 保护与可持续发展中的应用
交通流数据的采集与处理
交通流分析与评价方法的发 展趋势与挑战
交通流优化与控制策略
交通流优化方法
道路设计优化:优化道路布局 和设计,提高道路通行能力和 安全性
交通管理优化:加强交通管理, 提高交通运行效率和管理水平
交通组织优化:通过合理规划道路网络、优化交通标志标线等措施,提高 道路通行效率,减少交通冲突。
公共交通优先:通过设置公交专用道、提高公交服务质量等措施,鼓励市 民选择公共交通出行,减少私家车使用,从而优化交通流。
交通流理论-统计分布

爱尔朗分布 爱尔朗分布也是较为通用的描述车头时距分布、速度分布等交通流参数分布的概率分布模型,根据分布函数中参数“l”的改变而有不同的分布函数。 爱尔朗分布形式如下: 其概率密度函数为:
交通流理论的发展历程
1959年12月,交通工程学应用数学方面学者100多人在底特律举行首届交通流理论国际研讨会,并确定每三年召开一次。从此,交通流理论的研究进入了一个迅速发展的时期。
1975年丹尼尔(Daniel I.G)和马休(marthow,J.H)汇集了各方面的研究成果,出版了《交通流理论》一书,较全面、系统地阐述了交通流理论的内容及其发展。
交通流的统计分布特性;
01
排队论的应用;
02
跟驰理论;
03
交通流的流体力学模拟理论;
04
本章交通流理论的内容
第二节 交通流的统计分布特性
一、交通流统计分布的含义与作用
在建设或改善交通设施,确定新的交通管理方案时,均需要预测交通流的某些具体特性,并且常希望能用现有的或假设的有限数据作出预报。如在信号灯配时设计时,需要预测一个信号周期到达的车辆数;在设计行人交通管制系统时,要求预测大于行人穿越时间的车头时距频率。交通流特性的统计分布知识为解决这些问题提供了有效的手段。
交通流理论的发展历程
20世纪30年代才开始发展,最早采用的是概率论方法。1933年,金蔡(Kinzer.J.P)论述了泊松分布应用于交通分析的可能性;1936年,亚当斯(Adams.W.F)发表了数值例题;格林希尔茨(Greenshields)发表了用概率论和数理统计的方法建立的数学模型,用以描述交通流量和速度的关系。 40年代,由于二战的影响,交通流理论的发展不多。 50年代,随着汽车工业和交通运输业的迅速发展,交通量、交通事故和交通阻塞的骤增, 交通流中车辆的独立性越来越小,采用的概率论方法越来越难以适应,迫使理论研究者寻求新的模型,于是相继出现了跟驰(Car Following)理论、交通波(Traffic Wave Theory)理论(流体动力学模拟)和车辆排队理论(Queuing Theory)。这一时期的代表人物有Wardrop、Reuschel、Pipes、Lighthill、Whitham、Newel、Webster、Edie、Foote、Herman、Chandler等。
交通工程学课件-第八章--交通流理论

m 1)!
Pk
•时间t内到达车辆数小于k的概率P(K<k) •时间t内到达车辆数大于等于k的概率P(K≥k) •时间t内到达车辆数大于等于x但不超过y的概率
P(x≤K≤y)
第八章 交通流理论
• 该分布的均值M和方差D都等于m=λt。
• 实际应用中,均值M=E(X)和方差D(X)可分别由其样本 均值和样本方差S2分别进行估计:
1、负指数分布
• 交通流到达服从泊松分布,则交通流到达的车头时距 服从负指数分布, 反之亦然
• 已知到达某交叉口的车流车头时距(单位:s)服从负
指数分布,且 P(h 10) 0.2
• 试求任意10s到达车辆数不小于2辆的概率
P0 0.2 et P1 t et P( X 2) 1 P0 P1
交通工程中,另一个用于描述车辆到达随机特性的度量 就是车头时距的分布,常用的分布有负指数分布、移位的 负指数分布、M3分布和爱尔朗分布
1、负指数分布(Exponential Distribution)
由泊松分布知 P( X 0) (T )0 eT eT
0!
四、连续性分布(continuous distribution)
第八章 交通流理论
一、概述
• 交通流理论是运用物理学与数学的定律来描述交 通特征的一门科学,是交通工程学的基础理论。 它用分析的方法阐述交通现象及其机理,从而使 我们能更好地掌握交通现象及其本质,并使城市 道路与公路的规划设计和营运管理发挥最大的功 效。
第八章 交通流理论
一、概述 当前交通流理论的主要内容: • 1、交通流量、速度和密度的相互关系及测量方法 • 2、交通流的统计分布特性 • 3、排队论的应用 • 4、跟驰理论 • 5、驾驶员处理信息的特性 • 6、交通流的流体力学模拟理论 • 7、交通流模拟
交通流理论及其应用

交通流理论及其应用第一章交通流理论概述交通流理论研究的是交通系统中的车辆运动、交通管制、道路设施、交通信息和旅行者的行为等方面的问题。
交通流理论在道路规划、公路建设和交通管理等领域有着非常广泛的应用。
交通流理论的一个重要假设是,车辆在道路上的移动速度不仅受到道路设计的限制,还受到其他车辆的影响。
因此,在交通流理论中,车辆被看作是一个组成整体的流体,而不是独立的个体。
第二章交通流模型交通流模型是交通流理论的核心部分。
交通流模型通过建立数学方程,来描述交通系统中的车辆运动和相关因素。
常用的交通流模型有三种:宏观模型、微观模型和混合模型。
宏观模型是指从整体上研究交通流的模型,宏观模型的主要参数是车流量、速度和密度。
宏观模型常用的方法包括现场观测、测量和统计分析。
微观模型是指从个体车辆的行为入手研究交通流的模型,微观模型的主要参数是车辆的位置、速度和加速度。
微观模型常用的方法是仿真模拟和建立基于车辆运动方程的数学模型。
混合模型是宏观模型和微观模型的结合,既考虑了交通流的整体特征,又考虑了车辆个体行为的影响。
混合模型综合了宏观模型和微观模型的优点,是目前研究交通流的主要方法之一。
第三章交通流参数交通流参数是交通流模型中的重要参数,主要包括车流量、速度和密度。
车流量是单位时间内通过某一道路断面的车辆数量,常用的单位是辆/小时。
车流量是衡量交通流量大小的主要指标,它直接影响道路的通行能力和交通拥堵的程度。
速度是车辆在单位时间内通过某一道路断面的平均速度,常用的单位是公里/小时。
速度是衡量交通流运行状况的主要指标,它受到道路状况、车辆性能和交通运行管理等因素的影响。
密度是单位时间内通过某一道路断面的车辆数量和车辆行驶长度之比,常用的单位是辆/公里。
密度是衡量交通流集聚程度的主要指标,它与车速和车流量有着密切的关系。
第四章交通流控制交通流控制是交通流理论的一项重要应用,包括交通信号灯、路口红绿灯、限速标志和车道指示标志等。
交通流理论基础知识概要课件

单位时间内通过道路某一断面的车辆数量,单位为辆/小时。
交通流分类
依据车辆类型
可分为机动车流、非机动车流和 行人流等。
01
02
依据交通目的
03
可分为客运交通流、货运交通流 等。
04
依据交通方式
可分为道路交通流、铁路交通流 、水路交通流和航空交通流等。
依据交通组织形式
可分为自由流、信号控制流和潮 汐流等。
噪音污染
交通工具产生的噪音对城市环境造成严重影响,影响居民的生活质 量,甚至导致听力受损。
土地资源占用
交通设施的建设需要占用大量的土地资源,对土地生态环境造成破坏 。
环保型交通方式的发展
公共交通
公共交通工具是环保型交通方式之一,如公交车、地铁等,能够 减少私家车出行,降低交通排放。
非机动车出行
鼓励市民使用自行车、电动车等非机动车出行,减少机动车的使 用,降低排放。
、道路状况、客流量等因素。
公共交通优化需要采用先进的智能调度系统和数据分 析技术,实现实时监控、智能调度和数据分析,以提
高公共交通系统的运行效率和可靠性。
06
交通流与环境保护
Chapter
交通排放对环境的影响
空气污染
交通排放的废气中含有大量的有害物质,如一氧化碳、氮氧化物、 碳氢化合物等,这些物质对大气环境造成严er
仿真软件介绍
软件名称
PanoSim
功能特点
PanoSim是一款基于微观仿真的 交通流模拟软件,能够模拟城市 道路、高速公路等不同交通场景 下的交通流情况。
适用范围
广泛应用于城市规划、交通工程 、道路设计等领域,为交通管理 部门提供决策支持。
仿真流程
6.交通流理论

一、交通流概述 二、交通流中各参数之间的关系 三、交通流统计分析特性 四、排队论及其应用 五、跟驰理论简介 六、流体力学模拟理论
一 交通流理论概述
交通流理论是使用物理学和数学的定律来描述交通特 性的一门边缘科学,是交通工程学的基础理论。 性的一门边缘科学,是交通工程学的基础理论。 概率论数理统计理论——微观的研究对各个车辆行驶 微观的研究对各个车辆行驶 概率论数理统计理论 微观 规律,找出交通流变化规律。 规律,找出交通流变化规律。 流体力学方法——宏观的研究整个交通流体的演变过 宏观的研究整个交通流体的演变过 流体力学方法 宏观 求出交通流拥挤状态的变化规律。 程,求出交通流拥挤状态的变化规律。 动力学跟踪理论——建立道路上行驶车辆流动线性微 动力学跟踪理论 建立道路上行驶车辆流动线性微 分方程式来分析跟驰车辆行驶情况和变化规律。 跟驰车辆行驶情况和变化规律 分方程式来分析跟驰车辆行驶情况和变化规律。
损失时间
启动损失时间:当信号灯变为绿灯时,车辆由停止状态开始运动, 启动损失时间:当信号灯变为绿灯时,车辆由停止状态开始运动,前几 辆车的车头时距是大于h 对于前几辆车,应增加其车头时距, 辆车的车头时距是大于ht 的,对于前几辆车,应增加其车头时距,从 而得到一个增量值,称为启动损失时间, 而得到一个增量值,称为启动损失时间,记为 l1
K=0 →V=Vf K=Kj→V=0 K=Km→V=Vm Q→Qmax
二、交通流中各参数之间的关系
1959年,格林柏(Greenberg)提出了用于密度很大时对数模 年 格林柏( ) 型:
V = Vm ln(
Kj K
)
格林柏模型 的适用范围
二、交通流中各参数之间的关系
1961年安德伍德(Underwood)提出了用于密度很小时的指数 年安德伍德( 年安德伍德 ) 模型: 模型:
交通流理论

交通流理论1. 引言交通流理论是研究交通流动特性和交通流量的理论体系,是交通工程学科中的重要分支之一。
交通流理论的研究旨在提供对交通流动过程的深入了解,以便进一步优化交通系统设计和交通管理,提高道路通行效率和交通安全性。
本文将介绍交通流理论的基本概念、流量参数和交通流模型。
2. 交通流的基本概念2.1 交通流定义交通流是指在一定时间内通过交通线路或交通节点的车辆数量。
由于道路容量和车辆需求之间的差异,交通流不断变化。
为了研究交通流的特性,人们引入了一些概念和参数。
2.2 交通密度和车头时距交通密度指单位长度上通过的车辆数,常以辆/km表示。
车头时距是指相邻车辆之间的时间间隔,常以秒表示。
交通密度和车头时距是交通流理论中重要的参数。
3. 流量参数3.1 交通流量和实际容量交通流量是指通过某一断面的单位时间内的车辆数量。
实际容量是指在现实条件下通过断面所能容纳的交通流量。
实际容量受到道路几何条件、交通信号控制和车辆行为等因素的影响。
3.2 具备流量具备流量是指交叉口或道路中单位面积内通过的车辆数目。
具备流量与交通流量之间存在一定的关系,是进行交通流计算和交通规划的重要参数。
4. 交通流模型4.1 简单线性模型简单线性模型是最基本的交通流模型之一,假设速度和车头时距成正比。
该模型可以用来预测车辆平均速度、车头时距和交通流量之间的关系。
4.2 瓶颈模型瓶颈模型是一种描述交通拥塞现象的模型,可以用来研究交通流在瓶颈区域的行为。
通过分析瓶颈模型,可以找到减少交通拥堵的措施,提高交通流动效率。
4.3 非线性模型非线性模型是对交通流动过程更为细致的描述,考虑了交通流量对车速和车头时距的影响。
非线性模型可以更准确地预测交通流的行为,并为交通系统优化提供更实用的建议。
5. 结论交通流理论是研究交通流动特性和优化交通系统的重要理论体系。
通过研究交通流的基本概念、流量参数和交通流模型,可以更好地理解和优化交通系统设计,提高道路通行效率和交通安全性。
第四章交通流理论(详细版)

二、排队论的基本原理
幻灯片 35§4-3 排队论的应用 2.排队系统的组成 (2)排队规则:指到达的顾客按怎样的次序接受服务。 例如: 损失制:顾客到达时,若所有服务台均被占,该顾客就自动消失,永不再来。 等待制:顾客到达时,若所有服务台均被占,他们就排成队伍,等待服务,服务次序有先到先服务(这是最通常的
36
二、排队论的基本原理
幻灯片 37-3 排队论的应用 2.排队系统的组成 (3) 服务方式:指同一时刻多少服务台可接纳顾客,每一顾客服务了多少时间。每次服务可以成批接待,例如公
7.5m
Q=360辆/h
Qt
3607.5
P(h7.5) e 3600 e 3600 0.4724
360 0.4724 170
(次)
幻灯片 27 当 Q = 900 辆/h 时,车头时距大于 7.5s 的概率为:
26 §4-2 交通流的统计分布特性
1h 内车头时距次数为 900,其中 h≥7.5s 的车头时距为可以安全横穿的次数:
33
二、排队论的基本原理
幻灯片 34§4-3 排队论的应用 2.排队系统的组成 (1) 输入过程:就是指各种类型的"顾客(车辆或行人)"按怎样的规律到达。有各式各样的输入过程,例如: D—定长输入:顾客等时距到达。 M—泊松输入:顾客到达时距符合负指数分布。 Ek—爱尔朗输入:顾客到达时距符合爱尔朗分布。
p m s2 m
m
1 N
N
i
i 1
n
m2 m s2
s 2
1 N 1
N i 1
(i
m)2
14 幻灯片 15 【例 4-2】:在一交叉口,设置左转弯信号相,经研究来车符合二项分布,每一周期平均来车 30 辆,其中有 30%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交通流理论是运用数学、物理学和力学的原理描述交通流特性的一门边缘学科,是研究交通流随时间和空间变化规律的模型和方法体系,其目的是为了阐述交通现象形成的原理。
目前,对交通流理论的定义不尽相同,但归纳各种定义的主要思想,可以给交通流理论这样一个定义:交通流理论是研究在一定环境下交通流随时间和空间变化规律的模型和方法体系。
根据上述定义,交通流理论设计的范围非常广泛,其研究内容很难一言以蔽之。
参考各种文献资料后,将交通流理论的研究内容分为以下12部分:
(1)交通流特性
主要介绍交通流的几个参数的概念和基本公式及交通调查的几种常用方法和特点。
重点研究交通流参数经常用到的两类统计分布,即:离散型分布和连续型分布。
(2)交通流模型
交通流模型主要指速度—流量,速度—密度,流量—密度模型。
交通流模型能实现交通流变量之间的转换,即能实现控制变量与交通性能指标之间的转换,从而在交通管理中可用于控制某个变量以使交通性能达到最优的的目的。
(3)驾驶人交通特性
在此驾驶人交通特性主要是指驾驶人对交通流的影响。
包括人—车—路系统中驾驶人的驾驶任务,驾驶人的离散交通特性及根据闭环控制原理,研究驾驶传递函数及其应用,驾驶人交通特性在交通流中的应用,驾驶人交通特特性在交通流中的作用,包括坡道加速公式,可叉车间隙和合流,停车视距和交叉口视距以及速度错觉,信息干扰,实时信息等内容。
(4)车辆跟驰理论
交通流车辆跟驰理论是应用动力学方法,将交通流处理为分散的粒子组成,从围观角度探究在无法超车的单一车道上车辆列队行驶时,后车跟随前车的行驶状态,并用数学模式表达而加以分析阐明的一种理论。
(5)排队理论及应用
(6)连续交通流模型
(7)宏观交通流模型
(8)交通影响模型
(9)无信号交叉口理论
(10)信号交叉口理论
(11)交通系统仿真
(12)交通流理论的应用
城市道路信号交叉口作为城市道路网络中通行能力和交通安全的瓶颈,在道路衔接中起着举足轻重的作用,其通行能力的大小很大程度上决定或制约着整个城市路网的通行能力,影响着城市交通网络的运输能力。
平面交叉口处反复地分流、合流、交叉,使其交通状况尤其复杂。
日常的交通拥堵大部分都是由于交叉口的通行能力不足造成的,因此信号交叉口成为路网规划、建设、改造和交通治理的重点。
提高交叉口的通行能力,减少交叉口延误是城市道路交通追求的目标,也是改善城市道路整体状况的最有效的方法。
我国大多数城市道路信号交叉口采用多相位信号控制,基于我国城市信号交
叉口的交通流现状越来越多的信号交叉口设置了左、右转专用车道,以改善交通拥堵的状况。
随着我国城市交通压力日趋增大,信号交叉口的管理方法也有了很大的改进。
如需要分析某个城市所有交叉口的运行情况,就不可能每个交叉口都去采集大量的数据进行研究,再给出解决方案,而应先利用某些比较实用的方法分析问题,找到存在问题较大的交叉口,然后具体问题具体分析,用更精确的模型,实地采集更多的数据,从而得到较为理想的解决问题的方案。
因此,城市交叉口通行能力的实用分析方法就是希望能以较少的人力、财力和物力投入,快速地得到相对较为全面、准确的城市道路交叉口通行能力,能够大致把握城市道路交叉口的运行情况和质量。
( A)信号交叉口分类
信号交叉口的种类形式各异,不同地点、不同种类的信号交叉口运行情况差异很大。
为了能够系统全面地开展对信号交叉口通行能力的研究,针对不同类型的信号交叉口给出通行能力推荐值,需要对信号交叉口进行分类研究。
目前,在通行能力研究中对信号交叉口种类的划分没有统一的标准。
以下为三种常用的划分方法:1)按照城市道路性质划分——把城市道路分为主干路、次干路、支路,三种主要道路类型两两相交形成不同种类的信号交叉口;2)按照信号控制形式划分——包括两相位、三相位、四相位等交叉口;3)按照交通特性划分。
4)按交通组织的形式划分,平面交叉口可分为一般交叉口、渠化交叉口及多相位信号交叉口三类。
一般交叉口已难以适应城市交叉口机非混行严重、交通流量大的情况;渠化交叉口通过扩宽路口、对路口进行渠化,配合一定的交通管理条件,能够较为合理地解决各方向交通流的相互干扰和冲突,从而提高交叉口通行能力;多相位信号交叉口通过拓宽入口段的驶入车道、增加入口车道数量、设置交通岛、交通标志和在路面上划标线,可在平面几何构造上对路口进行改良。
在交通组织管理上采用多相位交通信号灯控制车辆和行人通行,可实现人车分流引导不同流向的车辆和行人各行其道。
上述各种分类方法在信号交叉口通行能力研究中各有利弊,本次研究通过对锦州市信号交叉口的调查并结合锦州市交通特点采用一种新的分类方法:按照信号交叉口处机动车冲突特性并结合信号交叉口的特点划分为两类:
1)机动车冲突较少的信号交叉口——有左转专用相位信号交叉口;
2)机动车冲突较多的信号交叉口——无左转专用相位信号交叉口。
按照上述方法进行分类是基于以下几点考虑:
从通行能力研究方法方面考虑:通过对国内外文献的阅读,对机动车冲突特性不同的信号交叉口,通行能力研究方法有所差异。
美国HCM(饱和流率法)、停车线法适用于机动车冲突较少的信号交叉口;冲突点法适用于机动车冲突较多的信号交叉口。
按照冲突特性分类,能够有针对性的对不同类型信号交叉口采用不同的研究方法,有利于对通行能力的研究。
从规划应用的方面考虑:由于目前国内对信号交叉口通行能力研究相对薄弱,没有一套系统完善的方法或指南,规划部门在进行道路规划、评价和信号交叉口设计时没有可靠的方法作为依据。
本次研究通过对信号交叉口的调查,从规划应用的角度对信号交叉口进行分类,对应每类信号交叉口给出通行能力计算方法和推荐值,为今后信号交叉口设计及路网规划提供数据支持.
(B)信号控制交叉口服务水平的评价方法
国外关于信号控制交叉口服务水平的研究成果主要有:美国采用控制延误作为信号交叉口服务水平的评价标准;日本规定以车流量与通行能力的比值(v/C)来划
分服务水平等级等。
由于国情的不同,美国的延误模型并不完全适用于我国,模型中的一些参数值的设定需要考虑我国交通的自身特性。
我国信号交叉口服务水平基本上均处于美国等级划分中的C、D、E三个等级。
日本的评价方法主要是出自经济方面的考虑,注重投资效益,并不是从道路使用者的角度出发对道路服务水平进行的评价。
这种评价方法不全面也不尽合理,不适用于我国的信号交叉口服务水平评价。
近几年来,国内学者也对相关问题进行了一定的研究,研究成果体现出了综合评价的思想。
服务水平的影响因素错综复杂,有的因素可以用数字和公式来描述,而大量的因素都是无法准确度量的。
评价指标的作用是对所要评价的对象进行科学、准确、全面和客观的描述时又要求所选取的指标具有实用的价值,便于应用。
我们认为在进行指标选取时,应遵循以下原则:使用综合指标、定性与定量相结合、具有可行性、便于计算与分析。
目前,国内外常用来评价信号控制交叉口服务水平的指标包括:饱和度、速度比、红灯平均阻车长度、延误、交叉口条件、交通管理水平、安全度、环境条件、乘客及驾驶员在交叉处的感受等。
考虑到我国信号控制交叉口的交通运行特征,在本文提出的服务水平等级评价体系中,采用六级(即 I、Ⅱ、Ⅲ、Ⅳ、Ⅵ、Ⅶ六个等级)评价标准,应用了权重的思想,通过加权平均确定某个信号控制交叉口的服务水平等级。
选取饱和度、延误、驾驶员和乘客通过交叉口时的满意程度为评价指标。
通行能力和服务水平的概念是交叉口分析的中心内容。
对于信号交叉口,通行能力和服务水平是分别加以分析,而不是仅仅简单地彼此相关。
评价信号交叉口的总体运行,必须对通行能力和服务水平二者同时充分考虑。
国内交叉口通行能力定义为相关关键车道通行能力之和,是整个交叉口的通行能力。
国内提出以实测法给出交叉口的通行能力,即测其饱和车头时距T,由公式3600/T(单位:辆/小时)得出一个车道的通行能力。
这种方法精确简单,但是只能在交叉口修建好后,给出此时的通行能力,不具有先期评估与预测未来的能力对于平面交叉口,其服务水平同路段一样也是考察交叉口为用路者提供的服务质量,其服务水平与交叉口的交通控制方式,车辆通过交叉口所需要时间、延误时间、停车时间等都有相当大的关系,衡量交叉口服务水平的具体指标与路段不同。
因平面交叉口某个进口的通行能力不能作为交叉口的整体通行能力,只能用各进口的交通流状态指标来衡量各进口引道的服务水平。