第四章道路交通流理论.
交通流理论-统计分布

爱尔朗分布 爱尔朗分布也是较为通用的描述车头时距分布、速度分布等交通流参数分布的概率分布模型,根据分布函数中参数“l”的改变而有不同的分布函数。 爱尔朗分布形式如下: 其概率密度函数为:
交通流理论的发展历程
1959年12月,交通工程学应用数学方面学者100多人在底特律举行首届交通流理论国际研讨会,并确定每三年召开一次。从此,交通流理论的研究进入了一个迅速发展的时期。
1975年丹尼尔(Daniel I.G)和马休(marthow,J.H)汇集了各方面的研究成果,出版了《交通流理论》一书,较全面、系统地阐述了交通流理论的内容及其发展。
交通流的统计分布特性;
01
排队论的应用;
02
跟驰理论;
03
交通流的流体力学模拟理论;
04
本章交通流理论的内容
第二节 交通流的统计分布特性
一、交通流统计分布的含义与作用
在建设或改善交通设施,确定新的交通管理方案时,均需要预测交通流的某些具体特性,并且常希望能用现有的或假设的有限数据作出预报。如在信号灯配时设计时,需要预测一个信号周期到达的车辆数;在设计行人交通管制系统时,要求预测大于行人穿越时间的车头时距频率。交通流特性的统计分布知识为解决这些问题提供了有效的手段。
交通流理论的发展历程
20世纪30年代才开始发展,最早采用的是概率论方法。1933年,金蔡(Kinzer.J.P)论述了泊松分布应用于交通分析的可能性;1936年,亚当斯(Adams.W.F)发表了数值例题;格林希尔茨(Greenshields)发表了用概率论和数理统计的方法建立的数学模型,用以描述交通流量和速度的关系。 40年代,由于二战的影响,交通流理论的发展不多。 50年代,随着汽车工业和交通运输业的迅速发展,交通量、交通事故和交通阻塞的骤增, 交通流中车辆的独立性越来越小,采用的概率论方法越来越难以适应,迫使理论研究者寻求新的模型,于是相继出现了跟驰(Car Following)理论、交通波(Traffic Wave Theory)理论(流体动力学模拟)和车辆排队理论(Queuing Theory)。这一时期的代表人物有Wardrop、Reuschel、Pipes、Lighthill、Whitham、Newel、Webster、Edie、Foote、Herman、Chandler等。
第四章 交通流

[
]
从S与m的比值看,用泊松分布或负二项分布拟合可能是合适的. 若用泊松分布拟合,起分布参数m=5.254 若用负二项分布拟合,它的两个分布参数计算如下: p=m/ S=5.254/6.753=0.78 β= m/( S-m)=5.254 /(6.753-5.254)=18.4
P (0) = e m m P (k ) P ( k + 1) = k +1
1 N 1 g 2 S = (ki m ) = (k j m )2 f j ∑ ∑ N 1 i =1 N 1 j =1
2
应用举例
例题1 : 设60辆汽车随机分布在4km长的道路上,服从泊松分 60辆汽车随机分布在 辆汽车随机分布在4km长的道路上 长的道路上,
布,求任意400m路段上有4辆及4辆以上汽车的概率. 求任意400m路段上有 辆及4辆以上汽车的概率. 路段上有4
∑k
m=
j =1
g
j
fj =
N
1 × (0 × 2 + 1 × 15 + 2 × 20 + ......12 × 2) = 5.254 232
1 g 1 2 2 2 2 S = ( k j m )2 f j = × 2 × (0 5.254) + 15 × (1 5.254) + 20 × (2 5.254) + ... + 2 × (12 5.254) = 6.753 ∑ N 1 j =1 232 1
车辆到达数kj 包含kj的间隔出现次数 <3 3 4 5 6 7 8 9 10 11 12 >12 1 1 0
0 3 0 8 10 11 10 11 9
表4-1
上午高峰期间以15s间隔观测车辆到达的数据 上午高峰期间以 间隔观测车辆到达的数据
道路交通流理论-PPT课件

• 应用条件:车流密度不大,车流随机; • 泊松分布的均值M和方差D均为λt; • 均值m,方差S2;二者接近时可用。
i 1 n i i n n
f
i 1
i 1
i i
N
i
• 其中:n——观测数据分组数; • fi——计算间隔T内到达xi辆车(人)发生的次(频) • •
数; xi——计数间隔T内的到达数或各组的中值; N——观测的总计间隔数。
泊松分布
• 递推公式
P (X 0 ) e m P (X x ) P (X x 1 ) x
Greenshilds模型
• 1933年(Greenshields)在对大量观测数据进行分析之后,
提出了速度——密度的单段式直线性关系模型:
• V=a-bK • 当K=0时,畅行速度V=Vf ; • 得: a=Vf • 当密度达到最大值,即K=Kj时,车速V=0; • 得: b=Vf/Kj
K • 将a、b代人式(7-2)得: V V ( ) f 1 Kj
V Q K j (V ) Vf
2
例
• 已知车流速度与密度的关系V=88-1.6K,如限制车流的实 • • • • • • • • •
际流量不大于最大流量的0.8倍,求速度的最低值和密度 的最高值。 解:V=88-1.6K,则Q=VK=88K-1.6K2; V=0时,Kj=88/1.6=55辆/Km; K=0时,Vf=88Km/h Qm=KmVm=88/2*55/2=1210辆/h Q≤Qm*0.8=968辆/h 88K-1.6K2=968 得: K=(55±11)/2=39.8(不符,舍去)=15.2 故:Kmax=15.2辆/Km ; Vmin=88-1.6*15.2=63.7Km/h
交通工程学交通流理论习题解答

《交通工程学第四章交通流理论》习题解答4-1在交通流模型中,假定流速 V 与密度k 之间的关系式为 V=a(1-bk)2,试依据两个边界条 件,确定系数a 、b 的值,并导出速度与流量以及流量与密度的关系式。
1解答:当 V=0 时,K =Kj ,••• b =—;k j当 K = 0 时,V =V f ,• a =V f ;2把a 和b 代入到 V=a(1-bk)K•- V =V f 1-—— l 心丿又 Q =KV流量与密度的关系 Q=V f K 1 4-2已知某公路上中畅行速度 V f =82km/h ,阻塞密度 K j =105辆/km,速度与密度用线性关系模型,求:(1) 在该路段上期望得到的最大流量; (2) 此时所对应的车速是多少?解答:(1) V — K 线性关系,V f =82km/h , K j =105 辆/km•- V m =V f /2=41km/h , K m =K j /2=52.5 辆/km, •- Q m =V m K m =2152.5 辆/h (2) V m = 41km/h4-3对通过一条公路隧道的车速与车流量进行了观测,发现车流密度和速度之间的关系具有 如下形式:乂 =35.9 ln 180k式中车速V s 以km/h 计;密度k 以/km 计,试问在该路上的拥塞密度是多少?_ 180解答:V =35.9In ——k拥塞密度K j 为V=0时的密度,,180 门…ln 0K j•- K j =180 辆/km4-5某交通流属泊松分布,已知交通量为 1200辆/h,求: (1 )车头时距t> 5s 的概率;(2) 车头时距t> 5s 所出现的次数; (3) 车头时距t> 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q=1200辆/h流量与速度的关系Q=K j 1V f r-t—x 」翅(1) P(h t—5)=e i 二e 3600二e3=0.189(2) n=P(h K5)XQ=226 辆/h5»訂水4-6已知某公路q=720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。
[工学]交通流理论
![[工学]交通流理论](https://img.taocdn.com/s3/m/8ef2b977b9d528ea80c779a9.png)
且有:∑fi =N,∑Fi =N
3、确定统计量的临界值χ2a
χ2a值与置信水平α和自由度DF有关,α通常取0.05 。
DF=g-q-1,式中,q为约束数,指原假设中需确定的未知数的个 数,对泊松分布q=1(只有m需确定),对二项分布和负二项分布 q=2(需确定P、n两个参数)。
N1=λ·P(h≥a1)= λe-λa1 主要道路车流中车头时距大于a2的数目:N2= λe-λa2
…… 则,主要道路车流中允许一辆车穿过的车头间隔数目为:N1-N2
主要道路车流中允许二辆车穿过的车头间隔数目为:N2-N3 主要道路车流中允许三辆车穿过的车头间隔数目为:N3N4
……
15
∴到达率为λ的车流允许穿越的车辆数总和为: Q次=1(N1-N2)+2(N2-N3)+3(N3-N4)+… =N1+N2+N3+N4+…=λ[e-λa1 + e-λa2 + e-λa3 +…] =λ[e-λa + e-λ(a+a0) + e-λ(a+2a0) +…]
P(h≥t) =e-λ(t-τ) t≥τ 其概率密度函数为: λe-λ(t-τ) t≥τ
P(t) =
0
t<τ
1
1
移位负指数分布的均值M= +τ ,方差D= 2
用样本的均值(平均车头时距)m和方差S2代替M、D,即可求
得λ和τ。
17
2、适用条件 用于描述不能超车的单列车流和车流量低的车流的车头时距分布。 3、移位负指数分布的局限性
2
第一节 离散型概率统计模型
我们在观测交通量或车辆的车头时距时,会发现在固定的计 数时间间隔内,每个间隔内查到的车辆数是变化的,所观测到 的连续车头时距也是不同的,这说明车辆的到达是有一定随即 性的,为了描述这种随机性而采用的概率统计方法可分为两种: 离散型和连续型。
4-3 交通流理论-跟驰模型

跟驰理论——研究在限制超车的单车道上,行驶车队中前 车速度的变化引起的后车反应。
研究条件——限制超车、单车道 研究前提——前车行驶状态变化 研究对象——后车的行驶状态 研究目的——单车道交通流特性
3/42
一、跟驰状态的判定
跟驰状态临界值的判定是车辆跟驰研究中的一个关键, 现有的研究中,对跟驰状态的判定存在多种观点。
10/42
最早出现的跟弛模型 形式简单 是其他跟弛模型的基础
2辆车跟驰
N+1 S(t) Xn+1(t)
某时刻N+1车位置 正常情况下两车间距 N车停车位置
N
Xn(t) 某时刻N车的位置
N车开始减速位置
d3:N车的制动距离
N+1 N+1 N
d1
反应时间T内N+1 车的行驶距离
d2
N+1车的制动距离
线性模型的缺憾!!!
(t T ) [ X (t ) X (t )] X n 1 n n 1
两边对时间积分
n 1 (t T ) [ xn (t ) xn 1 (t )] C0 x
n 1 (t T ) [ xn (t ) xn 1 (t )] C0 x
(t T ) [ X (t ) X (t )] X n 1 n n 1
1/ T
Xn1(t T) [ Xn (t) Xn1(t)]
反 应
灵敏度
刺 激
反应 灵敏度 刺激
驾驶员,T约为1.5秒
8/42
3、传递性
由制约性可知,第一辆车的运行状态制约着第二辆车的运
行状态,第二辆车又制约着第三辆车,…,第n辆车制约 着第n+1辆。一旦第一辆车改变运行状态,它的效应将会 一辆接一辆的向后传递,直至车队的最后一辆,这就是传 递性。
第四章 交通流理论ppt课件

达时间间隔),为确定设施规模、信号配时、安全对策提供依 据;
.
4.2.1 离散型分布
车辆的到达具有随机性
描述对象:
在一定的时间间隔内到达的车辆数, 在一定长度的路段上分布的车辆数
4.2 概率统计模型
.
4.2 概率统计模型
4.2.1 离散型分布
2. 二项分布:
适用条件:车辆比较拥挤、自由行驶机会不多的车流 基本模型:计数间隔t内到达k辆车的概率
P (k)C n k n t k 1 n t nk,k1 ,2,.n ..
λ:平均到达率(辆或人/秒) 令:p=λt/n, 0 <p <1
出分布参数 p 和 n;
.
4.2 概率统计模型
4.2.1 离散型分布
3. 负二项分布:
适用条件:到达的车流波动性很大时适用。 典型:信号交叉口下游的车流到达。
4. 离散型分布拟合优度检验——χ2检验
用于根据现场实测数据来判断交通流服从何种分布 原理和方法:
1) 建立原假设:随机变量X服从某给定的分布 2) 选择合适的统计量 3) 确定统计量的临界值 4) 判断检验结果
.
4.2 概率统计模型
4.2.1 离散型分布
1. 泊松分布:
递推公式:由参数m及数量k可递推出Pk+1;
P0 em
Pk1
m k 1Pk
分布的均值M与方差D皆等于λt,这是判断交通流到达规律是否 服从泊松分布的依据。
运用模型时的留意点:关于参数m=λt可理解为时间间隔 t 内的 平均到达车辆数。
4. 有效性指标——延误
《交通工程学 第四章 交通流理论》习题解答 答案

《交通工程学 第四章 交通流理论》习题解答 4-1 在交通流模型中,假定流速 V 与密度 k 之间的关系式为 V = a (1 - bk )2,试依据两个边界条件,确定系数 a 、b 的值,并导出速度与流量以及流量与密度的关系式。
解答:当V = 0时,j K K =, ∴ 1jb k =; 当K =0时,f V V =,∴ f a V =;把a 和b 代入到V = a (1 - bk )2∴ 21f j K V V K ⎛⎫=- ⎪ ⎪⎝⎭, 又 Q KV = 流量与速度的关系1j Q K V ⎛= ⎝ 流量与密度的关系 21f j K Q V K K ⎛⎫=- ⎪ ⎪⎝⎭ 4-2 已知某公路上中畅行速度V f = 82 km/h ,阻塞密度K j = 105 辆/km ,速度与密度用线性关系模型,求:(1)在该路段上期望得到的最大流量;(2)此时所对应的车速是多少?解答:(1)V —K 线性关系,V f = 82km/h ,K j = 105辆/km∴ V m = V f /2= 41km/h ,K m = K j /2= 52.5辆/km ,∴ Q m = V m K m = 2152.5辆/h(2)V m = 41km/h解答:35.9ln V k= 拥塞密度K j 为V = 0时的密度,∴ 180ln 0jK =∴ K j = 180辆/km 4-5 某交通流属泊松分布,已知交通量为1200辆/h ,求:(1)车头时距 t ≥ 5s 的概率; (2)车头时距 t > 5s 所出现的次数;(3)车头时距 t > 5s 车头间隔的平均值。
解答:车辆到达符合泊松分布,则车头时距符合负指数分布,Q = 1200辆/h(1)1536003(5)0.189Q t t t P h e e e λ-⨯-⨯-≥====(2)n = (5)t P h Q ≥⨯ = 226辆/h(3)55158s t t e tdt e dt λλλλλ+∞-+∞-⎰⋅=+=⎰4-6 已知某公路 q =720辆/h ,试求某断面2s 时间段内完全没有车辆通过的概率及其 出现次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
描述车速和可穿越空档这类交通特性时,也用到连续分布理 论。在交通工程学中,离散型分布有时亦称计数分布;连续型分 布根据使用场合的不同而有不同的名称,如间隔分布、车头时距 分布、速度分布和可穿越空档分布等等。
二. 离散型分布
1. 泊松分布
2. 二项分布
3. 负二项分布
4. 离散型分布拟合优度检验——χ2检验
2. 数学描述
(1)速度与密度关系 格林希尔茨(Greenshields)提出了速度一密度线性 关系模型: K
V V f (1 Kj )
当交通密度很大时,可以采用格林柏(Grenberg)提 出的对数模型: Kj
V Vm ln K
式中:Vm—对应最大交通量时速度。 当密度很小时,可采用安德五德 (Underwood) 提出 K 的指数模型: K
一、四种交通流理论 二、当前交通流理论的主要内容 三、交通流的特性
一、四种交通流理论
1. 概率统计分布的应用;
2. 随机服务系统理论(排队论)的应用;
3. 流体力学模拟理论(波动理论)的应用;
4. 跟驰理论(动力学模拟理论)的应用。
二、当前交通流理论的主要内容
交通流量、速度和密度的相互关系及测量方法
① 到达数小于k辆车(人)的概率:
me P ( k ) i! i 0
k 1
i m
② 到达数小于等于k的概率:
mi e m P ( k ) i! i 0
k
③ 到达数大于k的概率:
me P( k ) 1 P( k ) 1 i! i 0
④ 到达数大于等于k的概率:
3.连续交通流的拥挤分析
(1) 交通拥挤的类型 ①周期性的拥挤 ②非周期性的拥挤 (2) 瓶颈处的交通流 (3) 交通密度分析
(4) 非周期性拥挤
§离散型分布 三、连续性分布
一、交通流统计分布的含义与作用
交通流的统计分布特性为设计新的交通设施和确定新的交通 管理方案,提供交通流的某些具体特性的预测,并且能利用现有 的和假设的数据,作出预报。 描述交通这种随机性的统计规律有两种方法。一种是以概率 论中的离散型分布为工具,考察在一段固定长度的时间内到达某 场所的交通数量的波动性;另一种是以概率论中的连续型分布为 工具,研究上述事件发生的间隔时间的统计特性,如车头时距的 概率分布。
V Vf e
m
式中:Km—为最大交通量时的速度。
(2)流量与密度的关系
K Q KV f (1 ) Kj
(3)流量与速度关系
V K K j (1 ) Vf
V2 Q K j (V ) Vf
综上所述,按格林希尔茨的速度—密度模型、流量—密度 模型、速度—流量模型可以看出,Qm、Vm和Km是划分交通是 否拥挤的重要特征值。当 Q≤Qm、K>Km、V<Vm 时,则交 通属于拥挤;当 Q≤Qm、K≤Km、V≥Vm 时,则交通属于不拥 挤。 例
例 设车流的速度密度的关系为V=88-1.6K,如限制车流的实际流量 不大于最大流量的0.8倍,求速度的最低值和密度的最高值?(假定 车流的密度<最佳密度Km)
解:由题意可知: 当K=0时,V=Vf=88km/h,当V=0时,K=Kj=55辆/km。 则:Vm=44Km/h, Km=27.5辆/km, Qm=VmKm=1210辆/h。 由Q=VK和V=88-1.6K,有Q=88K-1.6K2 (如图)。 当Q=0.8Qm时,由88K-1.6K2=0.8Qm=968,解得:KA=15.2, KB=39.8。 则有密度KA和KB与之对应,又由题意可知,所求密度小于Km, 故为KA。 故当密度为KA=15.2辆/km,其速度为: VA=88-1.6KA =88-1.6×15.2=63.68km/h 即 KA=15.2辆/km,VA=63.68km/h为所求密度最高值与速度最低 值。
k
i m
me P( k ) 1 P( k ) 1 i! i 0
第四章 道路交通流理论
§4-1 概述
§4-2 交通流的统计分布特性
§4-3 排队论的应用
§4-4 跟驰理论简介
§4-5 流体力学模拟理论
§4-1 概述
交通流理论是运用物理学与数学的定律来描述交通特征的一 门边缘科学,是交通工程学的基础理论。 它用分析的方法阐述交通现象及其机理,从而使我们能更好 地掌握交通现象及其本质,并使城市道路与公路的规划设计和营 运管理发挥最大的功效。
交通流模型关系曲线图
能反映交通流特性的一些特征变量:
(1)极大流量Qm,就是Q-V曲线上的峰值。
(2)临界速度Vm,即流量达到极大时的速度。
(3)最佳密度Km,即流量达到极大时的密量。
(4)阻塞密度Kj,车流密集到车辆无法移动(V=0)时的
密度。 (5) 畅行速度 Vf,车流密度趋于零,车辆可以畅行无 阻时的平均速度。
• 连续流主要存在于设置了连续流设施的高速 公路及一些限制出入口的路段。 • 间断流设施是指那些由于外部设备而导致了 交通流周期性中断的设置。
1. 总体特征
交通量Q、行车速度 V s 、车流密度K是表征交通流 特性的三个基本参数。 此三参数之间的基本关系为:
Q V s K
式中:Q——平均流量(辆/h); V s ——空间平均车速(km/h); K—平均密度(辆/km)。
交通流的统计分布特性
排队论的应用
跟驰理论
驾驶员处理信息的特性
交通流的流体力学模拟理论
交通流模拟
三、 交通流的特性
(一) 交通设施种类 (二)连续流特征
1. 总体特征 2. 数学描述 3.连续交通流的拥挤分析
(三)间断流特征
(一)交通设施种类
• 交通设施从广义上被分为连续流设施与间断 流设施两大类。
1. 泊松分布
(1)基本公式
(t ) k e t P(k ) , k 0,1,2, k! 式中:P(k)——在计数间隔t内到达k辆车或k个人的概率; λ——单位时间间隔的平均到达率(辆/s或人/s); t——每个计数间隔持续的时间(s)或距离(m); e——自然对数的底,取值为2.71828。 若令m= λt——在计数间隔t内平均到达的车辆数,则m又称 为泊松分布的参数。