专题12 解析几何-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

合集下载

专题12 解析几何-十年(2012-2021)高考数学真题分项详解(全国通用)(原卷版)

专题12 解析几何-十年(2012-2021)高考数学真题分项详解(全国通用)(原卷版)

则|MN|=
A. 3 2
B.3
C. 2 3
D.4
20.(2018 年全国普通高等学校招生统一考试理数(全国卷
II))双曲线 x2 a2

y2 b2
= 1(a
0,b
0) 的离心率
为 3 ,则其渐近线方程为
A. y = 2x
B. y = 3x
C. y = 2 x 2
D. y = 3 x 2
21.(2018 年全国普通高等学校招生统一考试文数(全国卷 II))已知 F1 ,F2 是椭圆 C 的两个焦点,P 是 C
一条渐近线的
倾斜角为 130°,则 C 的离心率为
A.2sin40°
B.2cos40°
C. 1 sin50
D. 1 cos50
12.(2019 年全国统一高考数学试卷(文科)(新课标Ⅰ))已知椭圆 C 的焦点为 F1( −1, 0),F2(1, 0),过 F2
的直线与 C 交于 A,B 两点.若│AF│2 = 2│F2B│,│AB│=│BF│1 ,则 C 的方程为

y2 b2
= 1 (a>0,b>0)的左、
右焦点分别为 F1,F2,离心率为 5 .P 是 C 上一点,且 F1P⊥F2P.若△PF1F2 的面积为 4,则 a=( )
A.1
B.2
C.4
D.8
11.(2019
年全国统一高考数学试卷(文科)(新课标Ⅰ))双曲线
C:
x2 a2

y2 b2
= 1(a 0,b 0) 的
点(–2,0)且斜率为
2 3
的直线与
C
交于
M,N
两点,则
FM
FN

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

2019年高考数学真题及答案(含全国1卷,全国2卷,全国3卷共3套)

绝密★启用前 全国卷Ⅰ2019年普通高等学校招生全国统一考试理科数学本试卷共4页,23小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}242{60{}M x x N x x x =-<<=--<,,则M N =A .}{43x x -<<B .}42{x x -<<-C .}{22x x -<<D .}{23x x <<2.设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .221(1)x y +=-C .22(1)1y x +-=D .22(+1)1y x +=3.已知0.20.32log 0.220.2a b c ===,,,则 A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190cm5.函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为 A . B .C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则A .25n a n =-B . 310n a n =-C .228n S n n =-D .2122n S n n =- 10.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③12.已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F分别是P A ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D二、填空题:本题共4小题,每小题5分,共20分。

2019年全国新课标II卷试题及解析

2019年全国新课标II卷试题及解析

2019高考数学试题+完美解析!2019全国新课标II卷试题+解析一.选择题:本题共12道,每小题5分,共60分。

在每小题给出的四个选项中,只有一个项是符合题目要求的。

【解析】考察一元二次不等式,一元一次不等式的解法,集合的运算【解析】考察复数的共轭,及其坐标表示【解析】考察向量的坐标运算,向量的减法,求模,数量积等基本公式,此题只要依题意进行公式套入即可。

【解析】考察统计中各个数据的含义,此题需理解中位数的求法即可。

【详解】9个数的中位数去掉两端的两个数据后,新7个数的中位数和原来相同,故选A【解析】此题看似不等式,实则是考察函数的单调性,通过函数单调性比较函数值的大小关系。

【解析】此题考察面面平行的判定定理。

【详解】判定定理:如果一个平面内有两条相交直线分别与另一个平面内的两条相交直线平行,那么这两个平面平行。

故选B【解析】圆锥曲线,考察抛物线和椭圆的焦点坐标,代入焦点坐标公式中即可求解,难度中等。

注意识别焦点位置。

【解析】考察图像变换中的含绝对值的图像变换,则利用图像判断函数单调区间【解析】考察三角函数的恒等变换,利用二倍角公式,可化简求tanα,进而求sinα【解析】此题考察双曲线的离心率的求法,根据题意做出图像,已知条件中的PQ=OF ,寻找关于a,b,c的等量关系,变形整理出离心率,是难题【解析】此题是“类周期函数”函数每向右一个单位,纵坐标总扩大2倍,做出函数图像,解出相应的函数解析式,再根据恒成立的条件,可求m的取值范围。

【解析】统计问题,考察频率分布中的平均值的求法,方法:频率乘相应数据再求和【解析】考察函数的奇偶性,及指数对数的计算。

根据已知区间的函数值,利用奇函数性质转换到未知区间的函数值,可求参数a【解析】此题考查解三角形中余弦定理,面积公式的应用。

应用余弦定理课解出a和c,在用面积公式可解【解析】本题考察数学文化,注重社会主义核心价值观,并将5分拆成2+3分两部分,利于学生拿分;第一空,应用题中“对称”二字,可数出面数;第二空,恰当做出截面是关键,把立体图形的放在平面几何中研究,是解决立体几何的重要手段1【解析】(1)问考察线面垂直的判定定理,找到与BE垂直的两条相交直线(2)问考察空间向量中二面角的求法,注意此题问的是正弦值,还需将余弦值转化为正弦值。

(2021年整理)专题03程序框图-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

(2021年整理)专题03程序框图-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

(完整)专题03程序框图-2019年新课标全国卷(1、2、3卷)理科数学备考宝典编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)专题03程序框图-2019年新课标全国卷(1、2、3卷)理科数学备考宝典)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)专题03程序框图-2019年新课标全国卷(1、2、3卷)理科数学备考宝典的全部内容。

2019年新课标全国卷(1、2、3卷)理科数学备考宝典3.程序框图一、考试大纲1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句的含义。

二、新课标全国卷命题分析程序框图一般考含有循环体的较多,都比较简单,一般与数列求和联系较多,难度不大。

程序框图考查考生的读图能力,这是数学阅读能力的一个重要方面,主要考查方向有:对程序框图基本知识的考查、程序框图与函数、数列知识相结合,考查分段函数、条件分支结构,强化基础知识及其应用。

三、典型高考试题讲评题型1 算法的基本结构例1(2017·新课标Ⅱ,理8)执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .5【答案】B 解析:∵ 00S =,01K =,01a =-,S S a K =+⋅,a a =-,∴ 执行第一次循环:11S =-﹑11a =﹑12K =;执行第二次循环:21S =﹑21a =-﹑23K =;执行第三次循环:32S =-﹑31a =﹑34K =;执行第四次循环:42S =﹑41a =-﹑45K =;执行第五次循环:53S =-﹑51a =﹑56K =;执行第五次循环:63S =﹑61a =﹑67K =;当676K =>时,终止循环,输出63S =,故输出值为3。

专题12 空间几何体的体积与表面积-2019年高考理数母题题源系列(全国Ⅰ专版) Word版含解析

专题12 空间几何体的体积与表面积-2019年高考理数母题题源系列(全国Ⅰ专版) Word版含解析

专题12 空间几何体的体积与表面积【母题来源一】【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,则2R ==R =344π33V R ∴=π==. 故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴===, 在AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D \为AC 的中点,1cos 2AD EAC PA x∠==,2243142x x x x +-+∴=,2212122x x x ∴+=∴==,,,PA PB PC ∴===又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,344338V R ∴=π=π⨯=. 故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.【母题来源二】【2017年高考全国Ⅰ卷理数】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【答案】【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则13OG x =6x =.∴5FG SG x ==,SO h ====,∴三棱锥的体积21133△ABC V S h x =⋅==设()4553n x x x =-,x >0,则()34203n x x x '=-,令()0n x '=,即4340x -=,得x =易知()n x 在x =∴max 4812V ==【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.【命题意图】通过考查几何体的表面积和体积等相关知识,考查数形结合思想和运算求解能力.【命题规律】本部分是高考考查的重点内容,主要考查空间几何体的表面积与体积的计算,同时还考查距离、翻折、存在性等比较综合性的问题.命题形式以选择题与填空题为主,考查空间几何体的表面积与体积的计算,涉及空间几何体的结构特征、三视图等内容,要求考生要有较强的空间想象能力和计算能力,能用转化与化归的思想解题.【方法总结】1.求解几何体的表面积或体积的方法:(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解.对于某些三棱锥,有时可采用等体积转换法求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.(4)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.2.解决与球有关的“切”“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.3.构造法在定几何体外接球球心中的应用常见的构造条件及构造方法有:(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.4.性质法在定几何体外接球球心中的应用立体几何问题转化为平面几何问题,体现了等价转化思想与数形结合思想,方法是利用球心O与截面圆圆心O′的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.5.记住几个常用的结论:(1)正方体的棱长为a,球的半径为R.①对于正方体的外接球,2R;②对于正方体的内切球,2R=a;③对于球与正方体的各棱相切,2R.(2)在长方体的同一顶点的三条棱长分别为a,b,c,球的半径为R,则2R=(3)正四面体的外接球与内切球的半径之比为3∶1.1.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】某几何体的三视图如图所示,则该几何体的表面积为A .3π4+B .9π42+ C .4π2+D .11π42+【答案】B【解析】由三视图可得该几何体是一个以俯视图为底面的四分之三圆柱, 其底面半径为1,高为2, 故其表面积2339π2π12π122214442S =⨯⨯⨯+⨯⨯⨯+⨯⨯=+. 故选B .【名师点睛】本题考查圆柱的表面积,简单几何体的三视图,难度不大.2.【广东省肇庆市2019届高中毕业班第三次统一检测数学】某几何体的三视图如图所示,则该几何体的外接球的体积是A BC .3πD .【答案】B【解析】根据几何体的三视图,可知该几何体是由一个正方体切去右下角得到的. 故该几何体的外接球为正方体的外接球,所以球的半径r ==则该几何体的外接球的体积是34π322V ⎛⎫=⋅⋅= ⎪ ⎪⎝⎭. 故选B .【名师点睛】本题考查了三视图和几何体之间的转换,几何体的外接球,主要考查空间想象能力和运算求解能力.3.【湖北省黄冈中学2019届高三第三次模拟考试数学】已知一个简单几何体的三视图如图所示,若该几何体的体积为24π48+,则r =A .1B .2C .3D .4【答案】B【解析】通过三视图可知:该几何体是一个三棱锥和14圆锥组成的几何体,设组合体的体积为V , 所以21111π9433424π48,4332V r r r r r =⨯⨯⨯⨯+⨯⨯⨯⨯=+ 解得2r =. 故选B .【名师点睛】本题考查了通过三视图识别组合体的形状,并根据体积求参数问题,考查了空间想象能力和数学运算能力.4.【江西省九江市2019届高三第二次高考模拟统一考试】已知一圆锥的底面直径与母线长相等,一球体与该圆锥的所有母线和底面都相切,则球与圆锥的表面积之比为 A .23 B .49CD .827【答案】B【解析】设圆锥底面圆的半径为R ,球的半径为r ,由题意知,圆锥的轴截面是边长为2R 的等边三角形,球的大圆是该等边三角形的内切圆,所以3r R =, S 球的表面积=2224π4π4π3r R ⎫=⋅=⎪⎪⎝⎭, 圆锥的表面积S 22π2π3πR R R R =⋅+=,所以球与圆锥的表面积之比为224π433π9RR =. 故选B .【名师点睛】本题考查了圆锥与球体的结构特征应用问题,也考查了表面积计算问题.5.【江西省新八校2019届高三第二次联考】在三棱锥A BCD -中,AB ⊥平面,4,BCD AB AD ==BC CD ==A BCD -的外接球的表面积是A. B .20π C .5πD【解析】因为AB ⊥平面BCD ,所以AB BD ⊥,又4,AB AD ==2BD =,又BC CD ==222BD CD BC =+,所以BC CD ⊥.由此可得三棱锥A BCD -是长方体中的一个几何体,如下图:长方体的外接球就是三棱锥A BCD -的外接球, 则长方体的体对角线长就是外接球的直径, 设外接球的半径为R ,则2R ==可得三棱锥A BCD -的外接球的表面积是:24π20πS R ==. 故选B.【名师点睛】本题考查了三棱锥的外接球问题,将几何体还原到长方体中是解题的关键,考查了学生的思考能力和空间想象能力,属于中档题.6.【湖北省武汉市2019届高三4月调研测试】如图,在棱长为1的正方体1111 ABCD A B C D -中,M 为CD 中点,则四面体1A BC M -的体积为A .12 B .14 C .16D .112【解析】M 为CD 中点,1122△AMB ABCDS S ∴==, 又1CC ⊥平面ABCD ,1111136△A BC M C ABM ABM V V S CC --∴==⋅=.故选C.【名师点睛】本题考查三棱锥体积的求解问题,利用等体积法即可求解.7.【河北省示范性高中2019届高三下学期4月联考数学】《九章算术》是我国古代第一部数学专著,它有如下问题:“今有圆堡瑽()cong ,周四丈八尺,高一丈一尺.问积几何?”意思是“今有圆柱体形的土筑小城堡,底面周长为4丈8尺,高1丈1尺,问它的体积是多少?”(注:1丈=10尺,取π3=) A .704立方尺 B .2112立方尺 C .2115立方尺D .2118立方尺【答案】B【解析】设圆柱体底面圆的半径为r ,高为h ,周长为C . 因为2πC r =,所以2πCr =, 所以222224811ππ4π4π12C C h V r h h ⨯==⨯⨯==2112=(立方尺).故选B.【名师点睛】本题以数学文化为背景考查圆柱体的体积计算,属于一般题.8.【陕西省西安地区陕师大附中、西安高级中学等八校2019届高三4月联考】已知在三棱锥P ABC -中,1PA PB BC ===,AB =AB BC ⊥,平面PAB ⊥平面ABC ,若三棱锥的顶点在同一个球面上,则该球的表面积为A B .π3C .2πD .3π【答案】D【解析】根据题意,AC 为截面圆的直径,AC =设球心到平面ABC 的距离为d ,球的半径为R ,1,PA PB AB ===PA PB ∴⊥,平面PAB ⊥平面ABC ,∴P 到平面ABC 的距离为2, 由勾股定理可得222221222R d d骣琪琪琪=+=+-琪琪琪桫桫桫,230,4d R \==, ∴球的表面积为24π3πR =故选D.【名师点睛】本题考查三棱锥外接球表面积的求法,考查数学转化思想方法,构造直角三角形求出外接球的半径是解题的关键.9.【山东省泰安市2019届高三第二轮复习质量检测数学】如图,已知正方体 的棱长为1,点 为棱 上任意一点,则四棱锥 的体积为__________.【答案】13【解析】连结AC 交BD 于O 点,则有 平面 ,所以,AO 就是点P 到平面 的距离,即高, 又矩形 的面积为 ,所以,四棱锥 的体积为V =11323=. 故答案为13. 【名师点睛】本题求解的关键是先证明 平面 ,进而得到AO 就是点P 到平面 的距离,然后根据体积公式求出体积.10.【河北省衡水市第十三中学2019届高三质检(四)】在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”.已知三棱柱 是一个“堑堵”,其中 ,点 是 的中点,则四棱锥 的外接球的表面积为__________.【答案】【解析】由题意得四边形 为正方形,设其中心为 ,取 中点 ,则 ,, , ,即 为四棱锥 的外接球球心,且球的半径为 ,则球的表面积为24π8π=.故答案为 .【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.11.【湖北省武汉市2019届高三4月调研测试数学】将一个表面积为100π的木质球削成一个体积最大的圆柱,则该圆柱的高为__________.【解析】由24πS R =得2100π4πR =5R ⇒=,设球心到圆柱底面的距离为d ,圆柱的底面半径为r ,如图,则222225r R d d =-=-,∴圆柱的体积()()223π22π252π50πV d r d d d d d =⋅=-=-+,()26π50πV d d '=-+,令()0V d '=,则3d =,故当3d =时,圆柱的体积()V d 最大,则圆柱的高为23d =.【名师点睛】本题考查圆柱的外接球问题,关键是能够构造圆柱的底面半径与球的半径、球心到底面的距离之间的函数关系式,再利用导数知识求解最值.12.【2019年湖北省武汉市高考数学(5月份)模拟数学】已知四面体ABCD 中,AB AD BC DC===5,8BD AC ===,则四面体ABCD 的体积为__________.【答案】3【解析】如图,取BD 中点O ,AC 中点E ,连接,,AO CO OE ,∵四面体ABCD 中,5,8AB AD BC DC BD AC ======,∴AO BD ⊥,CO BD ⊥,2AO CO ===, ∵AO CO O =,∴BD ⊥平面AOC ,又OE AC ⊥,∴182△AOC S =⨯=则1522323A BCD B AOC V V --==⨯⨯⨯=..【名师点睛】三棱锥的体积的计算需选择合适的顶点和底面,此时顶点到底面的距离容易计算.有时还需把复杂几何体分割成若干简单几何体便于体积的计算或体积的找寻,这些几何体可能有相同的高或相同的底面,或者它们的高或底面的面积的比值为定值.13.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为__________.【答案】48π【解析】如图,在等边三角形ABC 中,取AB 的中点F ,设等边三角形ABC 的中心为O ,连接PF ,CF ,OP .由6AB =,得23AO BO CO CF OF ===== PAB △是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又平面PAB ⊥平面ABC ,PF ∴⊥平面ABC ,PF OF ∴⊥,OP ==则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(24π48π⨯=.故答案为48π. 【名师点睛】本题主要考查四面体外接球表面积,考查空间想象能力,是中档题.要求外接球的表面积和体积,关键是求出球的半径.求外接球半径的常见方法有:①若三条棱两两垂直,则用22224R a b c =++(,,a b c 为三条棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC △外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径. 14.【山东省威海市2019届高三二模考试数学】在直三棱柱111ABC A B C -中,190,2A ABC A ∠=︒=,设其外接球的球心为O ,已知三棱锥O ABC -的体积为1,则球O 表面积的最小值为__________.【答案】16π【解析】如图,在Rt △ABC 中,设,AB c BC a ==,则AC =.分别取11,A C AC 的中点12,O O ,则12,O O 分别为111Rt △A B C 和Rt △ABC 外接圆的圆心,连接12,O O ,取12O O 的中点O ,则O 为三棱柱外接球的球心.连接OA ,则OA 为外接球的半径,设半径为R .∵三棱锥O ABC -的体积为1,∴1()1132O ABC ac V -=⨯⨯=, ∴6ac =.在2Rt △OO A 中, 22222212()()11224O O AC a c R +=+=+=+,∴22224π4π(1)4π(1)16π44球表面积a c acS R+==+≥+=,当且仅当a c=时等号成立,∴球O表面积的最小值为16π.故答案为16π.【名师点睛】解答几何体外接球的体积、表面积问题的关键是确定球心的位置,进而得到球的半径,解题时注意球心在过底面圆心且垂直于底面的直线上,且球心到几何体各顶点的距离相等.在确定球心的位置后可在直角三角形中求出球的半径,此类问题考查空间想象力和计算能力,难度较大.。

专题09 三角函数与解三角形-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

专题09 三角函数与解三角形-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

2019年新课标全国卷(1、2、3卷)理科数学备考宝典9.三角函数与解三角形一、考试大纲1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出2πα±,απ±的正弦、余弦、正切的诱导公式,能画出 y = sin x ,y =cos x ,y = tan x 的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[ 0,2π ]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间[,]22ππ-内的单调性.(4)理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos xx x=. (5)了解函数 y =A sin(x+ )的物理意义;能画出 y =A sin(x+)的图像,了解参数A ,,对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 3.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.4.应用:能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.二、新课标全国卷命题分析新课标全国卷对于三角函数的考查比较固定,一般考查三角函数的图象与性质、三角恒等变换、解三角形,一般是1小1大,或者3小题,一般考查考生转化与化归思想和运算求解能力。

三角函数求值、三角恒等变换、三角函数的单调性、奇偶性、周期性、对称性、最值范围、图象变换等都是热门考点。

解三角形问题也是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”.三、典型高考试题讲评题型1 三角函数的定义、同角三角函数的基本关系 例1 (2016·新课标Ⅲ,理5)若3tan 4α=,则2cos 2sin 2αα+=( )A.6425 B. 4825 C. 1 D. 1625解析:22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++,故选A. 【解题技巧】本题考查三角恒等变换,齐次化切.题型2 三角函数的恒等变换例2 (2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-解析:227cos 212sin 199αα=-=-=.故选B.例3 (2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A.-.12- D .12解析:sin 20cos10cos160sin10sin 20cos10cos 20sin10sin30-=+=,选D ..题型3 三角恒等变换与三角函数的值域例4 (2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .【答案】233-解析:方法一:()2sin sin 22sin 2sin cos 2sin (1cos )f x x x x x x x x =+=+=+, 所以222223[()]4sin (1cos )4(1cos )(1cos )4(1cos )(1cos )f x x x x x x x =+=-+=+- 4344(1cos )(1cos )(1cos )(33cos )27(1cos )(33cos )3344x x x x x x ++++++-⎛⎫=+-= ⎪⎝⎭≤, 所以函数()f x的值域为⎡⎢⎣⎦,所以()f x的最小值为 方法二:23()2sin sin 22sin 2sin cos 2sin (1cos )4sin cos 2cos 8sin cos 22222x x x x xf x x x x x x x x ⎛⎫=+=+=+=⋅=⋅ ⎪⎝⎭ 3222223(sin cos )3sin cos cos cos 222222x x x x x x ⎛⎫=⋅⋅⋅ ⎪⎝⎭4222243sin cos cos cos 3222244x x xx ⎛⎫+++ ⎪⎛⎫= ⎪ ⎪⎝⎭ ⎪⎝⎭≤,3sin cos 22x x 2sin sin 2x x ∴+≥.方法三:x x x f 2cos 2cos 2)(+=')1cos 2)(1(cos 2-+=x x0)(>'x f 3232ππππ+<<-⇒k x k ,函数)(x f 在)32,32(ππππ+-k k 单调递增;0)(<'x f 32352ππππ-<<-⇒k x k ,函数)(x f 在)32,352(ππππ--k k 单调递减; ∴32ππ-=k x 时,函数)(x f 有最小值,即)32()(min ππ-=k f x f )32(2sin )32sin(2ππππ-+-=k k 233-=.题型4 三角函数的图形变换例5 (2017全国1理9)已知曲线1cos C y x =:,22πsin 23C y x ⎛⎫=+⎪⎝⎭:,则下面结论正确的是( ). A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD.把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C解析 :首先曲线1C ,2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224C y x y x x ⎛⎫⎛⎫⎛⎫=+−−−−−−−−−−→=+=+→ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭上各坐短到原的倍点横标缩来2ππsin 2sin 233y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.注意ω的系数,左右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D.【解题技巧】关于y =Asin (ωx +φ)函数图像由y =sinx 的图像的变换,先将y =sinx 的图像向左(或右)平移|φ|个单位,再将其上的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的1ω倍,再将其纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍,也可先进行伸缩变换,再进行平移变换,此时平移不再是|φ|个单位,而是|φω|个单位,原则是保证x 的系数为1,同时注意变换的方法不能出错.题型5 三角函数的单调性、奇偶性、周期性、对称性 例6 (2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 解析: 函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图像可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误.故选D.π例7 (2016·新课标Ⅱ,理7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .题型6 三角函数性质的综合应用例8 (2016全国乙理12)已知函数π()sin()0,2f x x ωϕωϕ⎛⎫=+>≤⎪⎝⎭,π4x =-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π1836⎛⎫⎪⎝⎭,上单调,则ω的最大值为( ). A.11 B.9 C.7 D.5解析:选B. 方法1:因为x =-π4为函数f(x)的零点,x =π4为y =f(x)图像的对称轴,所以π2=kT 2+T4(k ∈Z,T 为周期),得T =2π2k+1(k ∈Z ).又f(x)在(π18,5π36)上单调,所以T ≥π6,k ≤112,又当k =5时,ω=11,φ=-π4,f(x)在(π18,5π36)上不单调;当k =4时,ω=9,φ=π4,f(x)在(π18,5π36)上单调,满足题意;故ω=9,即ω的最大值为9.方法2:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .题型7 解三角形、正余弦定理例9 (2018·新课标Ⅱ,6)在ABC △中,cos2C 1BC =,5AC =,则AB =( ) A. BC.解析:因为2cos 2cos 12CC =-,所以23cos 215C =-=-⎝⎭, 由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故AB =题型8 三角函数与解三角形的综合应用例10 (2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长解析:(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =, ∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=,又∵()0πA ∈,,∴60A =︒,sin A ,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+ABC △周长为32011年—2018年新课标全国卷理科数学试题分类汇编9.三角函数与解三角形一、选择题(2018·新课标Ⅱ,6)在ABC △中,cos2C =1BC =,5AC =,则AB =( )A .BC .(2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为,b ,,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3π C .4πD .6π (2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 (2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为 )(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625(2016·新课标Ⅲ,8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )C. D.(2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A .2-B .2C .12-D .12(2015·新课标Ⅰ,8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z(2014·新课标Ⅰ,6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )(2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC ,则AC =( )A .5BC .2D .1(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2](2012·新课标Ⅱ,9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是( )A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2](2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增(D )()f x 在3(,)44ππ单调递增(2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45(2011·新课标Ⅱ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( )A .45-B .35-C .35D .45(2011·新课标Ⅱ,11)设函数()si n()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增二、填空题(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. (2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.(2017·新课标Ⅱ,14)函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .(2016·新课标Ⅲ,14)函数sin cos y x x =-的图像可由函数sin y x x =的图像至少向右平移______个单位长度得到.(2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .(2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.(2011·新课标Ⅰ,16)在ABC V 中,60,B AC ==2AB BC +的最大值为 . 三、解答题(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,oADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cosB ;(2)若6a c += , ABC ∆面积为2,求.b .(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 0A A =,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且 AD AC ⊥,求ABD △的面积.(2016·新课标Ⅰ,17)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长.(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin B C ∠∠;(Ⅱ) 若AD =1,DC =2,求BD 和AC 的长.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·新课标Ⅰ,17)已知a,b,c分别为△ABC三个内角A,B,C的对边,--=.a C Cb ccos sin0a=,△ABC b,c.(1)求A;(2)若22011年—2018年新课标全国卷理科数学试题分类汇编9.三角函数与解三角形(逐题解析版)一、选择题(2018·新课标Ⅱ,6)在ABC △中,cos2C =1BC =,5AC =,则AB =( )A .BC .【答案】A 解析:因为2cos 2cos 12CC =-,所以 23cos 215C =-=-⎝⎭, 由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故,AB =(2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-【答案】B 解析:227cos 212sin 199αα=-=-=.故选B.(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为,b ,,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3π C .4πD .6π 【答案】C 解析:2222c o s 1c o s 442ABCa b c ab C S ab C ∆+-===,又1s i n 2ABC S ab C ∆=,故t a n 1C =,∴4C π=.故选C.(2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2【答案】D 解析:1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x ,首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x .注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.故选D ; (2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 【答案】D 解析: 函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图像可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误.故选D.π(2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x为 )(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5【答案】B 解析:由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩则21k ω=+,其中k ∈Z ,()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤,接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭,()f x 在π3π,1844⎛⎫⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调;若π9,4ωϕ==,此时π()s i n 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减.故选B .(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈【答案】B 解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-【答案】D 解析:∵3cos()45πα-=,2ππ7sin 2cos(2)cos[2()]2cos ()124425παααα=-=-=--=,故选D .(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625【答案】A 解析:22222cos 4sin cos 14tan 64cos 2sin 225cos sin 1tan ααααααααα+++===++,故选A.(2016·新课标Ⅲ,8)在ABC△中,π4B=,BC边上的高等于13BC,则cos A=()C.D.【答案】C 解析:如图所示,可设1BD AD==,则AB2DC=,AC∴=,由余弦定理知,cos A==(2015·新课标Ⅰ,2)sin20cos10cos160sin10-=()A.-.12- D.12【答案】D解析:sin20cos10cos160sin10sin20cos10cos20sin10sin30-=+=,选D..(2015·新课标Ⅰ,8)函数()f x=cos()xωϕ+的部分图象如图所示,则()f x的单调递减区间为()A.13(,),44k k kππ-+∈ZB.13(2,2),44k k kππ-+∈ZC.13(,),44k k k-+∈ZD.13(2,2),44k k k-+∈Z【答案】D解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x xππ=+,令22,4k x k kπππππ<+<+∈Z,解得124k-<x<324k+,k∈Z,故单调减区间为(124k-,324k+),k∈Z,故选D.(2014·新课标Ⅰ,6)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,DCAB垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )【答案】B 解析:如图:过M 作MD ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x x OM PM OP =cos sin x x =1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B.(2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】B 解析:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC ,则AC =( )A .5BC .2D .1【答案】B 解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin 2B =,即45B =或135. 又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:||AC =(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2]【答案】A 解析:因为0ω>,2x ππ<<,所以2444x ππππωωωπ⋅+<+<⋅+,因为函数()sin()4f x x πω=+在(2π,π)上单调递减,所以242342πππωππωπ⎧⋅+≥⎪⎪⎨⎪⋅+≤⎪⎩,解得1524ω≤≤,故选A. (2012·新课标Ⅱ,9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2]【答案】A 解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.(2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【答案】A解析:())4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A .(2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45【答案】B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B.(2011·新课标Ⅱ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45-B .35-C .35D .45【答案】B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B. (2011·新课标Ⅱ,11)设函数()si n()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增【答案】A 解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴+=,故选A. 二、填空题(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .【答案】233-解析:方法一:()2sin sin 22sin 2sin cos 2sin (1cos )f x x x x x x x x =+=+=+, 所以222223[()]4sin (1cos )4(1cos )(1cos )4(1cos )(1cos )f x x x x x x x =+=-+=+- 4344(1cos )(1cos )(1cos )(33cos )27(1cos )(33cos )3344x x x x x x ++++++-⎛⎫=+-= ⎪⎝⎭≤,所以函数()f x 的值域为⎡⎢⎣⎦,所以()f x 的最小值为 方法二:23()2sin sin 22sin 2sin cos 2sin (1cos )4sin cos 2cos 8sin cos 22222x x x x xf x x x x x x x x ⎛⎫=+=+=+=⋅=⋅ ⎪⎝⎭3222223(sin cos )3sin cos cos cos 222222x x x x x x ⎛⎫=⋅⋅⋅ ⎪⎝⎭4222243sin cos cos cos 3222244x xx x ⎛⎫+++⎪⎛⎫= ⎪ ⎪⎝⎭ ⎪⎝⎭≤,3sin cos 22x x 2sin sin 2x x ∴+≥. 方法三:x x x f 2cos 2cos 2)(+=')1cos 2)(1(cos 2-+=x x0)(>'x f 3232ππππ+<<-⇒k x k ,函数)(x f 在)32,32(ππππ+-k k 单调递增;0)(<'x f 32352ππππ-<<-⇒k x k ,函数)(x f 在)32,352(ππππ--k k 单调递减; ∴32ππ-=k x 时,函数)(x f 有最小值,即)32()(min ππ-=k f x f )32(2sin )32sin(2ππππ-+-=k k 233-=.(2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 【答案】12-【解析】解法一:2222sin cos 1sin cos 2sin cos 1cos sin 0cos sin 2cos sin 0a αβαβαβαββαβ⎧+=++=⎧⎪−−−−→⎨⎨+=++=⎪⎩⎩两边平方 ()()122sin cos cos sin 1sin 2αβαβαβ−−−−→++=⇒+=-对位相加解法二: sin cos 1cos 1sin cos sin 0sin cos αββααββα+==-⎧⎧⇒⎨⎨+==-⎩⎩① ()()()sin sin cos cos sin sin 1sin cos cos sin 1αβαβαβααααα+=+=-+-=- ②()()22221sin cos 11sin cos 1sin 2ββααα+=⇒-+-=⇒=综上所述:()1sin 2αβ+=-解法三:特殊值法设1sin cos 2αβ==,则cos α=,sin β=,()1sin sin cos cos sin 2αβαβαβ+=+=-.(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 【答案】3 解析:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.(2017·新课标Ⅱ,14)函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 .【答案】1【解析】∵ ()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,22sin cos 1x x +=,∴ ()21cos 4f x x x =-+,设cos t x =,[]0,1t ∈,∴ ()214f x t =-++,函数对称轴为[]0,1t =,∴ ()max 1f x =.(2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = . 【答案】2113 解析:∵4cos 5A =,5cos 13C =,∴3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B A C A C A C =+=+=,由正弦定理得:sin sin b a B A =,解得2113b =.(2016·新课标Ⅲ,14)函数sin cos y x x =-的图像可由函数sin y x x =的图像至少向右平移______个单位长度得到.【答案】23π解析:sin 2sin ,sin 2sin 33y x x x y x x x ππ⎛⎫⎛⎫==-=+=+ ⎪ ⎪⎝⎭⎝⎭,故可前者的图像可由后者向右平移23π个单位长度得到. (2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .【答案】 解析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合于E 点时,AB 最长,在BCE ∆中,75B C ∠=∠=,30E ∠=,2BC =,由正弦定理可得o osin 30sin 75BC BE=,解得BE ;平移AD ,当D 与C 重合时,AB 最短,此时在BCF ∆中,75B BFC ∠=∠=,30FCB ∠=,由正弦定理知o osin 30sin 75BF BC=,解得BF =AB的取值范围为()23sin 4f x x x =+-.(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .解析:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-,∴222b c a bc+-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-=,224b c bc bc =+-≥,∴1sin 2ABC S bc A ∆=≤(2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________. 【答案】1 解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x x ϕϕϕϕϕϕϕϕϕϕ=+++-+=+-+=∵x R ∈,∴()f x 的最大值为1.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.【答案】5- 解析:f (x )=sin x -2cos x x x ⎫⎪⎭,令cos αsin α=,则f (x )α+x ),当x =2k π+π2-α(k ∈Z )时,sin(α+x )有最大值1,f (x )即θ=2k π+π2-α(k ∈Z ),所以cos θ=πcos 2π+2k α⎛⎫- ⎪⎝⎭=πcos 2α⎛⎫- ⎪⎝⎭=sin α==.(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.【答案】 解析:由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan θ=13-,即sin θ=13-cos θ. 将其代入sin 2θ+cos 2θ=1,得210cos 19θ=. 因为θ为第二象限角,所以cos θ=sin θsin θ+cos θ=.(2011·新课标Ⅰ,16)在ABC V 中,60,B AC ==2AB BC +的最大值为 .【答案】解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+;2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是三、解答题(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,oADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .解析:解法1:(1)在A D B ∆中,由正弦定理:AADB ∠=∠sin 5sin 2,所以A ADB ∠=∠sin 52sin 52=,又因为o ADC 90=∠,所以oADB 90<∠,所以523cos =∠ADB . 解法2:在ADB ∆中,由余弦定理可得222252cos 222=⨯⨯-+=∠AD AD ADB ,解得232+=AD (负值舍去),再由余弦定理可得ADB ∠cos =⨯+⨯-++=5)232(225)232(222523. (2)OADB BDC 90=∠+∠,所以=∠BDC cos ADB ∠sin 52=,在BDC ∆中,由余弦定理可知2208252cos 2222BC DC BD BC DC BD BDC -+=⋅-+=∠52=,解得5=BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长解析:(1)∵ABC △面积23sin a S A =.且1sin 2S bc A =,∴21sin 3sin 2a bc A A =, ∴223sin 2a bc A =,∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =,∵πA B C ++=, ∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=, 又∵()0πA ∈,,∴60A =︒,sin A ,1cos 2A =,由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A =⋅,∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+ABC △周长为3(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c += , ABC ∆面积为2,求.b .解析:(Ⅰ)【解法1】由题设及2sin8sin ,2BB C B A ==++π,故sin 4-cosB B =(1), 上式两边平方,整理得 217cos B-32cosB+15=0,解得 15cosB=cosB 171(舍去),=.【解法2】由题设及2sin 8sin ,2B B C B A ==++π,所以2sin 82cos 2sin 22B B B =,又02sin ≠B ,所以412tan =B ,17152tan 12tan 1cos 22=+-=B BB . (Ⅱ)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆==,又17=22ABC S ac ∆=,则,由余弦定理及a 6c +=得22221715b 2cos a 2(1cosB)362(1)4217a c ac B ac =+-=-+=-⨯⨯+=(+c ),所以b=2.(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 0A A =,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且 AD AC ⊥,求ABD △的面积.解析:(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,所以ππ3A +=,得2π3A =. 由余弦定理2222cos a b c bc A =+-⋅.又因为12,cos 2a b A ===-代入并整理得()2125c +=.故4c =.(2)因为2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-=.因为AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD =.由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABD S AD AB =⋅⋅=△(2016·新课标Ⅰ,17)ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2.(Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆的周长. 解析:⑴()2cos cos cos C a B b A c+=,由正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅= ()2cos sin sin C A B C ⋅+=,∵πA B C ++=,()0πA B C ∈、、,,∴()sin sin 0A B C +=>∴2cos 1C =,1cos 2C =,∵()0πC ∈,,∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-⋅,221722a b ab =+-⋅,()237a b ab +-=1sin 2S ab C =⋅==,∴6ab =,∴()2187a b +-=,5a b +=∴ABC △周长为5a b c ++=(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC∠∠;(Ⅱ) 若AD =1,DC ,求BD 和AC 的长.解析:(Ⅰ)1s i n 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2A B D A D CS S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,2DC =,所以BD ABD ∆和ADC ∆中, 由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠, 故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB ,BC =1,P 为△ABC 内一点,∠BPC =90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .解:(1)由已知得∠PBC =60°,所以∠PBA =30°.在△PBA 中,由余弦定理得P A 2=11732cos 30424+-︒=,故P A =2.(2)设∠PBA =α,由已知得PB =sin α,在△PBA sin sin(30)αα=︒-,α=4sin α,所以tan α,即tan ∠PBA(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.解析:(Ⅰ)由已知及正弦定理得sin A =sin B cos C +sin C sin B ①, 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C ②,由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以4B π=.(Ⅱ)△ABC 的面积1sin 2S ac B ==. 由已知及余弦定理得224=+2cos 4a c ac π-. 又a 2+c 2≥2ac,故ac ≤a =c 时,等号成立.因此△ABC .(2012·新课标Ⅰ,17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABCb ,c . 解析:(1)根据正弦定理R CcB b A a 2sin sin sin ===,得A R a sin 2=,B R b sin 2=,C R c sin 2=,因为cos sin 0a C C b c +--=,所以0sin 2sin 2sin )sin 2(3cos )sin 2(=--+C R B R C A R C A R , 即0sin sin sin sin 3cos sin =--+C B C A C A ,(1)由三角形内角和定理,得C A C A C A B sin cos cos sin )sin(sin +=+=,代入(1)式得0sin sin cos cos sin sin sin 3cos sin =---+C C A C A C A C A , 化简得C C A C A sin sin cos sin sin 3=-, 因为0sin ≠C ,所以1cos sin 3=-A A ,即21)6sin(=-πA , 而π<<A 0,6566πππ<-<-A ,从而66ππ=-A ,解得3π=A .(2)若2a =,△ABC1)得3π=A ,则⎪⎪⎩⎪⎪⎨⎧==-+=43cos 233sin 21222a bc c b bc ππ,化简得⎩⎨⎧=+=8422c b bc , 从而解得2=b ,2=c .。

2019年高考数学(理)真题和模拟题分项汇编专题12 数系的扩充与复数的引入- 含解析

2019年高考真题和模拟题分项汇编数学(理)专题12 数系的扩充与复数的引入1.【2019年高考北京卷理数】已知复数2i z =+,则z z ⋅=A B C .3D .5【答案】D【解析】由题2i z =+,则(2i)(2i)5z z ⋅=+-=,故选D .2.【2019年高考全国Ⅰ卷理数】设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .221(1)x y +=- C .22(1)1y x +-=D .22(+1)1y x +=【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案为C . 【答案】C【解析】由题可得i,i (1)i,z x y z x y =+-=+-i 1,z -==则22(1)1x y +-=.故选C .3.【2019年高考全国Ⅱ卷理数】设z =–3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【解析】由32i,z =-+得32i,z =--则32i z =--对应的点(-3,-2)位于第三象限.故选C . 4.【2019年高考全国Ⅲ卷理数】若(1i)2i z +=,则z = A .1i -- B .1i -+ C .1i -D .1i +【答案】D 【解析】()(2i 2i 1i 1i 1i 1i 1i )()z -===+++-.故选D .5.【2019年高考天津卷理数】i 是虚数单位,则5|ii|1-+的值为______________. 【分析】先化简复数,再利用复数模的定义求所给复数的模.【解析】5i (5i)(1i)|||||23i |1i (1i)(1i)---==-=++-. 6.【2019年高考浙江卷】复数11iz =+(i 为虚数单位),则||z =______________. 【分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【解析】由题可得1|||1i |2z ===+. 7.【2019年高考江苏卷】已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是______________.【分析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值. 【答案】2【解析】2(2i)(1i)i 2i 2i 2(2)i a a a a a ++=+++=-++,令20a -=,解得2a =. 8.【江西省南昌市南昌外国语学校2019届高三高考适应性测试】记复数z 的共轭复数为z ,若(1i)2i z -=(i 虚数单位),则||z =A B .1C .D .2【答案】A【解析】由(1i)2i z -=,可得2i 2i(1+i)1i 1i 2z ===-+-,所以1i z =--,||z =A .9.【山东、湖北部分重点中学高三高考冲刺模拟考试(二)】已知复数z 满足||z =2z z +=(z 为z 的共轭复数)(i 为虚数单位)则z =。

2019年普通高等学校招生全国统一考试数学卷(全国Ⅰ.理)含详解

=A B P A P B)()()A在一次试验中发生的概率是k,,2)n}{}0.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶看作时间t的函数,其图像可能是(中,AB =c ,AC =b .若点满足2BD DC =,则AD =( B .33-c b 3-b cD .33+b 0)(1)+∞, 1)(01),1)(1)-+∞,,0)(01),,1x yb+=通过点)α,则( 1≤1+45,求二面角OA AB OB、、成等差数列,且BF与FA同向.被双曲线所截得的线段的长为4,求双曲线的方程.像可知;由()2AD AB AC AD -=-,322AD AB AC c b =+=+,12AD c b =+; ()()()21210,1a i i a ai i a a i a +=+-=-+->=-;另解:设,,AB AC AA 为空间向量的一组基底,,,AB AC AA 的两两间的夹角为a ,平面ABC 的法向量为1133OA AA AB AC =--,1AB AB AA =+ 226,,3OA AB a OA AB ⋅=== 则AB 与底面ABC 所成角的正弦值为1123OA AB AO AB ⋅=种种法;种三种花有42A11(),AN AC AB EM AC AE =+=-,11()()AN EM AB AC AC AE ⋅=+⋅-=1故EM AN ,所成角的余弦值16AN EM AN EM⋅=为坐标原点,建立如图所示的直角坐标系,则3121321(,,),(,,),,3AN EM AN EM AN EM ==-⋅===, EM AN ,所成角的余弦值16AN EM AN EM⋅=. 中,由正弦定理及a AB 90,90∴∠,即CE CE AD ⊥CG ∠zx233AC CD AD =CG GE =,即二面角C AD -2142315325C C =2112)()555P B =+⨯4 31 53,( 5PC=13 ),(5B P= 212。

概率、统计-2019年新课标全国卷理科数学备考---精校解析Word版

2019年新课标全国卷(1、2、3卷)理科数学备考宝典13.排列组合、概率统计一、2018年考试大纲二、新课标全国卷命题分析三、典型高考试题讲评2011—2018年新课标全国(1卷、2卷、3卷)理科数学分类汇编——13.排列组合、概率统计一、考试大纲1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.4.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.5.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.6..随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.7.分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.8.排列与组合(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.9.二项式定理(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.10.概率(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性.(2)理解超几何分布及其导出过程,并能进行简单的应用.(3)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(4)理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.(5)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义.11.统计案例——了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.(1)独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.(2)回归分析:了解回归分析的基本思想、方法及其简单应用.二、新课标全国卷命题分析排列组合、概率统计在新课标全国卷高考中一般考查2小1大,概率中古典概型和几何概型是重点,一般以小题或解答题中的一小问出现,计数原理常考题型有:(1)排列组合;(2)二项式定理,几乎二者是隔一年或隔两年交互出题,排列组合这种排序问题常考,已经属于高考常态,利用二项式定理求某一项的系数或求奇偶项和也已经属于高考常态,尤其是利用二项式定理求某一项的系数更为突出.概率与统计的解答题,全国卷更注重统计的应用,而统计更多的是实际生活和生产中的广泛应用.散型随机变量是高考考点之一,随机变量分布是热点话题,正态分布和二项分布都以小题出现,且在基础题位置,难度较低,在平时复习时不宜研究难题.所以高三复习时,提高自己阅读理解能力的同时,更要关注统计中的概率分布直方图、线性回归方程、随机变量概率分布的数字特征和独立性检验等概念.三、典型高考试题讲评题型1 随机抽样例1 (2013·新课标Ⅰ,3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样解析:因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样.故选C.题型2 根据统计图判断例2 (2018·新课标Ⅰ,理3) 某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下列选项中不正确的是:A.新农村建设后,种植收入减少。

专题15 不等式选讲-2019年新课标全国卷(1、2、3卷)理科数学备考宝典

2019年新课标全国卷(1、2、3卷)理科数学备考宝典15.不等式选讲一、考试大纲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b +≤+ (2)a b a c c b -≤-+-(3)会利用绝对值的几何意义求解以下类型的不等式:ax b c +≤;ax b c +≥;x a x b c -+-≥2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1)a b a b ⋅≥⋅;(2)22222()()()a b c d ac bd ++≥+;(3≥(此不等式通常称为平面三角不等式.) 3.会用参数配方法讨论柯西不等式的一般情形:222111()n nni ii i i i i a ba b ===⋅≥∑∑∑4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题. 6.会用数学归纳法证明伯努利不等式:(1)1n x nx +>+ (1x >-,0x ≠,n 为大于1的正整数),了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值. 8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.二、新课标全国卷命题分析不等式选讲部分主要以考查以考查绝对值不等式的解法为主,偶尔也考查不等式证明的方法,经常与函数结合,考查数形结合和转化与化归思想是,考查去绝对值的方法是试题变化中不变的规律,基本不等式是考查不等式证明方法的主要依据;在求解过程中考查绝对值三角不等式的灵活应用能力。

分析问题的方法是不等式证明的关键,关于不等式证明的方法,没有具体的知识点,只有方法要求,因此它的载体丰富多彩. 三、典型高考试题讲评题型1 绝对值不等式的解法与恒成立问题例1 (2018·新课标I 卷,23)已知()11f x x ax =+--.(I )当1a =时,求不等式()1f x >的解集;(II )若()0,1x ∈时不等式()f x x >成立,求a 的取值范围. 解析:(I )依题意,111x x +-->,该不等式等价于1,111,x x x <-⎧⎨--+->⎩11,111,x x x -≤≤⎧⎨++->⎩或1,111,x x x >⎧⎨+-+>⎩解得12x >,即等式()1f x >的解集为12x x ⎧⎫>⎨⎬⎩⎭; (II )依题意,11x ax x +-->;当()0,1x ∈时,该式化为 11x ax x +-->,即11ax -<,即111ax -<-<,即02ax <<,故0,2,ax ax >⎧⎨<⎩在()0,1上恒成立,故02a <≤,即a 的取值范围为(]0,2.【解题技巧】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解. 不等式的恒成立问题是高考的重难点,此类问题一般有两种解法: (1)利用函数思想转化为函数的最值问题进行分析;(2)通过数形结合构造出两个函数,通过寻找临界状态得到参数的取值范围.题型2 证明不等式例2 (2017·新课标Ⅱ,23)已知330,0,2a b a b >>+=,证明:(1)33()()4a b a b ++≥;(2)2a b +≤. 解析:(1)解法一:由柯西不等式得:55222222332()()))()4a b a b a b a b ⎡⎤⎡⎤++=+⋅+≥+=⎣⎦⎣⎦解法二:5566553325533()()()2a b a b a b ab a b a b ab a b a b ++=+++=+++-33233332()2()4a b a b a b ≥++=+=解法三:()()()()()2555533553342a b a b a b a b a b ab a b a b ++-=++-+=+-又0,0a b >>,所以()255332220ab a b a b ab a b+-=-≥.当a b =时,等号成立.所以,()()5540a b a b ++-≥,即55()()4a b a b ++≥.(2)解法一:由332a b +=及2()4a b ab +≤得2222()()()()3a b a b ab a b a b ab ⎡⎤=+⋅+-=+⋅+-⎣⎦2323()()()()44a b a b a b a b ⎡⎤++≥+⋅+-=⎢⎥⎣⎦所以2a b +≤.解法二:(反证法)假设2a b +>,则2a b >-,两边同时立方得:3323(2)8126a b b b b >-=-+-,即3328126a b b b +>-+,因为332a b +=,所以261260b b -+<,即26(1)0b -<,矛盾,所以假设不成立,即2a b +≤. 解法三:因为332a b +=,所以:()()()3333322333843344a b a b a b a a b ab b a b +-=+-+=+++--()()()()222333a b a b a b a b a b =-+-=-+-.又0,0a b >>,所以: ()()230a b a b -+-≤,所以,()38a b +≤,即2a b +≤.解法四:因为33113,113a a b b ++≥=++≥=,所以3311113()a b a b +++++≥+,即63()a b ≥+,即2a b +≤(当且仅当1a b ==时取等号). 【解题技巧】利用基本不等式证明不等式是综合法证明不等式的一种情况,证明思路是从已知不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理最后转化为需证问题,若不等式恒等变形之后与二次函数有关,可用配方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年新课标全国卷(1、2、3卷)理科数学备考宝典 12.解析几何 一、2018年考试大纲 二、新课标全国卷命题分析 三、典型高考试题讲评 2011—2018年新课标全国(1卷、2卷、3卷)理科数学分类汇编——12.解析几何

一、考试大纲 1.直线与方程 (1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. (2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. (3)能根据两条直线的斜率判定这两条直线平行或垂直. (4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式), 了解斜截式与一次函数的关系. (5)能用解方程组的方法求两条相交直线的交点坐标. (6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离. 2.圆与方程 (1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程. (2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系. (3)能用直线和圆的方程解决一些简单的问题. (4)初步了解用代数方法处理几何问题的思想. 3.空间直角坐标系 (1)了解空间直角坐标系,会用空间直角坐标表示点的位置. (2)会推导空间两点间的距离公式. 3.圆锥曲线 (1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. (2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. (3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. (4)了解圆锥曲线的简单应用. (5)理解数形结合的思想. 4.曲线与方程了解方程的曲线与曲线的方程的对应关系.

二、新课标全国卷命题分析 解析几何部分一般是2小1大,小题一般考查圆、圆锥曲线的性质,如离心率、渐近线,与圆、圆锥

曲线有关的最值、取值范围问题,解答题一般考查直线与圆、圆锥曲线的位置关系,充分地考查了考生的逻辑思维能力、应用解析几何思想解决问题的能力和进行代数运算的能力.突出考查了用解析几何方法解决几何问题的能力,试题计算量较大,在计算的过程中,无论是公式记错了,用错了,还是算错了,都会由于一步的计算错误而导致整道试题的解答错误,因此,强调运算的准确性对于解析几何是十分必要的,充分应用解析几何基本知识与基本思想的通性通法. 三、典型高考试题讲评 题型1 直线与圆的位置关系

例1 (2018·新课标Ⅲ,理6)直线20xy分别与x轴,y轴交于A,B两点,点P在圆2222xy

上,则ABP面积的取值范围是( ) A.26, B.48, C.232, D.2232,

解析:由直线20xy得(2,0),(0,2)AB,∴22||2222AB,圆22(2)2xy的圆心为(2,0),∴圆心到直线20xy的距离为222211,∴点P到直线20xy的距离的取值范围为222222d,即232d,∴1||[2,6]2ABPSABd.

题型2 圆锥曲线的性质——离心率、渐近线 例2 (2018·新课标Ⅲ,理11)设12FF,是双曲线22221xyCab:(00ab,)的左,右焦点,O是坐标原点.过2F作C的一条渐近线的垂线,垂足为P.若16PFOP,则C的离心率为( ) A.5 B.2 C.3 D.2 【答案】C 解析:∵2||PFb,2

||OFc,∴ ||POa;又因为1||6||PFOP,所以1||6PFa;

在2RtPOF中,22||cos||PFbOFc;∵在12RtPFF中,2222121212||||||cos2||||PFFFPFbPFFFc,

∴222222222224(6)464463322bcabbcabcacabcc 223ca3e

.

例3 (2018·新课标Ⅱ,理12)已知1F,2F是椭圆2222:10xyCabab>>的左、右焦点交点,A是C的左顶点,点P在过A且斜率为36的直线上,12PFF△为等腰三角形,12120FFP,则C的离心率为 ( ) A.23 B.12 C.13 D.14 解析:解三角形的方法(几何法) :在12PFF为等腰三角形,012=120FFP,所以,212==2FPFFc,在Rt2PDF

中,2DFc,3DPc,所以,2ADac,在RtPDA中,33=62cac,故离心率14e. 解法二:解三角形的方法(几何法):在12PFF为等腰三角形,012=120FFP,所以,212==2FPFFc, 由余弦定理可知:123PFc, 因为111sinsinAPFPAFAFP, 113sin13PAF,1239cos13PAF 所以139sin26APF,在1APF中,由正弦定理可知:2339132613acc,故离心率14e.

例4 (2018·新课标Ⅱ,理5)双曲线2222100xyabab>,>的离心力为3,则其渐近线方程为( ) A.2yx B.3yx C.22yx D.32yx 解析:由于2222100xyabab,可知:该双曲线的渐近线方程为byxa. 已知离心率3e(cea),设at,则3ct,由222cab可知:2bt,故双曲线的渐近线方程为2yx。 解法二:已知渐近线方程为ykx,由于221ek可得:2k,故双曲线的渐近线方程为2yx。

题型3 求曲线的方程 例5 (2017·新课标Ⅲ,5)已知双曲线C:2222:10,0xyCabab的一条渐近线方程为52yx,

且与椭圆221123xy有公共焦点,则C的方程为( ). A.221810xy B.22145xy C.22154xy D.22143xy 解析: 因为双曲线的一条渐近线方程为52yx,则52ba①

又因为椭圆221123xy与双曲线有公共焦点,易知3c,则2229abc②

由①②解得2,5ab,则双曲线C的方程为22145xy.故选B. 题型4 与圆锥曲线有关的求值、范围问题 例6 (2018·新课标Ⅰ,理8) 设抛物线24Cyx:的焦点为F,过点20,且斜率为23的直线与C交于

M,N两点,则FMFN( ) A.5 B.6 C.7 D.8

解析:焦点F(1,0), 直线l, 2224(2)(2)3333yxxx,242433yxyx,得2540xx,

解得121214,24xxyy,所以M(1,2),N(4,4). (0,2)(3,4).8FMFNFMFN,故选D.

例7 (2017·新课标Ⅰ,理10)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( ) A.16 B.14 C.12 D.10 解析:设AB倾斜角为.作1AK垂直准线,2AK垂直x轴,

易知11cos22AFGFAKAKAFPPGPP(几何关系)(抛物线特性),cosAFPAF∴, 同理1cosPAF,1cosPBF,∴22221cossinPPAB, 又DE与AB垂直,即DE的倾斜角为π2, 22

22πcossin2PPDE





,而24yx,即2P.

∴22

112sincosABDEP



22

22sincos4sincos

22

4

sincos2

41sin2

4



21616sin2≥,当且仅当π4取等号,即ABDE最小值为16,故选A;

【法二】依题意知:22sinPAB,2222πcossin2PPDE,由柯西不等式知: 2222211(11)22816sincossincosABDEPPP





,当且仅当π4取等号,故选A; E

D

AB

C

题型5 与圆锥曲线有关的定值、定点、存在性问题 例8 (2017·新课标Ⅰ,理20)已知椭圆C:2222=1xyab(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32 ),

P4(1,32)中恰有三点在椭圆C上. (1)求C的方程; (2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点. 解析:(1)根据椭圆对称性,必过3P、4P,又4P横坐标为1,椭圆必不过1P,所以过234PPP,,三点,将

23

3

0112PP,,,代入椭圆方程得:222113141bab,解得24a,21b,

∴椭圆C的方程为:2214xy. (2)①当斜率不存在时,设:AAlxmAmyBmy,,,,,

221121AAPAPByykkmmm

,得2m,此时l过椭圆右顶点,不存在两个交点,故不满足.

②当斜率存在时,设1lykxbb∶,1122AxyBxy,,,,

联立22440ykxbxy,整理得222148440kxkbxb,

122

814kbxxk

,21224414bxxk,则

22

12

12

11PAPByykkxx

212121

12

xkxbxxkxbxxx

22222

8888144414kbkkbkbkbk

811411kbbb

,又1b,21bk,此时64k,

存在k使得0成立.∴直线l的方程为21ykxk,当2x时,1y,所以l过定点21,. 题型6 与圆锥曲线有关的范围问题 (2016·新课标Ⅰ,20)设圆015222xyx的圆心为A,直线l过点)0,1(B且与x轴不重合,l交圆A于DC,两点,过B作AC的平行线交AD于点E. (Ⅰ)证明EBEA为定值,并写出点E的轨迹方程; (Ⅱ)设点E的轨迹为曲线1C,直线l交1C于NM,两点,过B且与l垂直的直线与圆A交于QP,两点,求四边形MPNQ面积的取值范围.

相关文档
最新文档