高考物理三轮复习选择题专项训练:磁场(带解析)

合集下载

2021届高考物理三轮冲刺专题突破训练:磁场 (解析版)

2021届高考物理三轮冲刺专题突破训练:磁场 (解析版)

磁场【原卷】1.如图所示,正三角形的三条边都与圆相切,在圆形区域内有垂直纸面向外的匀强磁场,质子11H和氦核42He都从顶点A沿∠BAC的角平分线方向射入磁场,质子11H从C点离开磁场,氦核42He从相切点D离开磁场,不计粒子重力,则质子和氦核的入射速度大小之比为()A.6∶1 B.3∶1C.2∶1 D.3∶22.如图所示,在半径为R的圆形区域内充满磁感应强度为B的匀强磁场,MN是一竖直放置的感光板,从圆形磁场最高点P垂直磁场射入大量的带正电、电荷量为q、质量为m、速度为v的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动,以下说法正确的是( )A.只要对着圆心入射,出射后均可垂直打在MN上B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D.只要速度满足v=qBRm,沿不同方向入射的粒子出射后均可垂直打在MN上3.如图所示,纸面内有半径为R的圆形区域内存在垂直于纸面向外的匀强磁场,磁感应强度为B,一束质子在纸面内以相同的速度射向磁场区域,质子的电量为q,质量为m,速度为qBRvm,则以下说法正确的是( )A.对着圆心入射的质子,其出射方向的反向延长线一定过圆心B.对着圆心入射的质子,其在磁场中的运动时间最长C.所有质子都在磁场边缘同一点射出磁场D.所有质子都以相同的速度射出磁场4.(2020天津卷第7题)如图所示,在Oxy平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B的匀强磁场。

一带电粒子从y轴上的M点射入磁场,速度方向与y轴正方向的夹角45θ=︒。

粒子经过磁场偏转后在N点(图中未画出)垂直穿过x轴。

已知OM a=,粒子电荷量为q,质量为m,重力不计。

则()A. 粒子带负电荷B. 粒子速度大小为qBa mC. 粒子在磁场中运动的轨道半径为aD. N与O点相距1)a+5.(2019年北京卷16题)如图所示,正方形区域内存在垂直纸面的匀强磁场。

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。

()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。

()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。

高考物理新电磁学知识点之磁场知识点训练及答案

高考物理新电磁学知识点之磁场知识点训练及答案

高考物理新电磁学知识点之磁场知识点训练及答案一、选择题1.如图所示,地面附近某真空环境中存在着水平方向的匀强电场和匀强磁场,已知磁场方向垂直纸面向里,一个带正电的油滴,沿着一条与竖直方向成α角的直线MN运动,由此可以判断A.匀强电场方向一定是水平向左B.油滴沿直线一定做匀加速运动C.油滴可能是从N点运动到M点D.油滴一定是从N点运动到M点2.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。

如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。

分别加速氘核和氦核,下列说法正确的是()A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能3.如图所示,有abcd四个离子,它们带等量的同种电荷,质量不等.有m a=m b<m c=m d,以不等的速度v a<v b=v c<v d进入速度选择器后有两种离子从速度选择器中射出,进入B2磁场,由此可判定( )A.射向P1的是a离子B.射向P2的是b离子C.射到A1的是c离子D.射到A2的是d离子4.质量和电荷量都相等的带电粒子M和N,以不同的速率经小孔S垂直进入匀强磁场,运行的半圆轨迹分别如图中的两支虚线所示,下列表述正确的是( )A .M 带正电,N 带负电B .M 的速率大于N 的速率C .洛伦磁力对M 、N 做正功D .M 的运行时间大于N 的运行时间5.在探索微观世界中,同位素的发现与证明无疑具有里程碑式的意义。

质谱仪的发现对证明同位素的存在功不可没,1922年英国物理学家阿斯顿因质谱仪的发明、同位素和质谱的研究荣获了诺贝尔化学奖。

若速度相同的一束粒子由左端射入质谱仪后的运动轨迹如图所示,不计粒子重力,则下列说法中正确的是( )A .该束粒子带负电B .速度选择器的P 1极板带负电C .在B 2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷q m越小 6.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。

高考物理三轮冲刺 考点对接3年高考题 专题十 磁场(含解析)

高考物理三轮冲刺 考点对接3年高考题 专题十 磁场(含解析)

专题十 磁 场高考试题考点一 磁场、磁场对电流的作用 ★★★1.(2013年福建理综,18,6分)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t 1、t 2分别表示线框ab 边和cd 边刚进入磁场的时刻.线框下落过程形状不变,ab 边始终保持与磁场水平边界线OO ′平行,线框平面与磁场方向垂直.设OO ′下方磁场区域足够大,不计空气影响,则下列哪一个图像不可能反映线框下落过程中速度v 随时间t 变化的规律( )解析:线框先做自由落体运动,因线框下落高度不同,故线框ab 边刚进磁场时,速度不同,产生的感应电动势不同,所受安培力不同,其所受安培力F 安与重力mg 的大小关系可分以下三种情况:①当F 安=mg 时,线框匀速进入磁场,其速度v=22mgRB L ,选项D 有可能; ②当F 安<mg 时,线框加速进入磁场,又因F 安=22B L v R ,因此a=22B L v mg R m,即a=g-22B L v mR ,速度v增大,a 减小,线框做加速度逐渐减小的加速运动,选项C 有可能; ③当F 安>mg 时,线框减速进入磁场,a=22B L vmR-g,v 减小,a 减小,线框做加速度逐渐减小的减速运动,当线框未完全进入磁场而a 减为零时,即此时F 安=mg,线框开始做匀速运动,当线框完全进入磁场后做匀加速直线运动,选项B 有可能.选项A 不可能. 答案:A 点评: 分析解答该类问题时要特别注意线框下落时的位置,高度不同时线框进入磁场的速度不同,则线框的运动状态就不同.2.(2011年新课标全国理综,14,6分)为了解释地球的磁性,19世纪安培假设:地球的磁场是由绕过地心的轴的环形电流I 引起的.在下列四个图中,正确表示安培假设中环形电流方向的是( )解析:地球的磁场分布与地理的南北极相反但不重合,即地磁场的N极在地理的南极附近,地磁场的S极在地理的北极附近.地磁场外部的磁感线由地磁N极到地磁S极,在地球内部由地磁S极回到地磁N极;由安培定则可知产生地磁场的环形电流方向应如B中所示,所以B正确. 答案:B3.(2011年新课标全国理综,18,6分)电磁轨道炮工作原理如图所示.待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触.电流I从一条轨道流入,通过导电弹体后从另一条轨道流回.轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与I成正比.通电的弹体在轨道上受到安培力的作用而高速射出.现欲使弹体的出射速度增加至原来的2倍,理论上可采用的办法是( )A.只将轨道长度L变为原来的2倍B.只将电流I增加至原来的2倍C.只将弹体质量减至原来的一半D.将弹体质量减至原来的一半,轨道长度L变为原来的2倍,其他量不变解析:设B=kI,轨道间距为d,则弹体所受安培力F=BId=kI2d;由牛顿第二定律得弹体的加速度a=Fm =2kI dm;由运动学公式v2=2aL,得:v=2aL=I2kd Lm.综上所述,选项B、D正确,选项A、C错误.答案:BD4.(2010年上海卷,13,3分)如图,长为2l的直导线折成边长相等,夹角为60°的V形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B,当在该导线中通以电流强度为I的电流时,该V形通电导线受到的安培力大小为( )A.0B.0.5BIlC.BIlD.2BIl解析:V形导线的有效长度为两端点之间的距离l,则F安=BIl.答案:C点评: (1)弯曲、折线形的通电导线在磁场中的有效长度为两端点之间的连线;(2)当B⊥I时,F安=BIl有效.5.(2013年浙江理综,25,22分)为了降低潜艇噪音,提高其前进速度,可用电磁推进器替代螺旋桨.潜艇下方有左、右两组推进器,每组由6个相同的、用绝缘材料制成的直线通道推进器构成,其原理示意图如下.在直线通道内充满电阻率ρ=0.2 Ω·m的海水,通道中a×b×c=0.3 m×0.4 m×0.3 m 的空间内,存在由超导线圈产生的匀强磁场,其磁感应强度B=6.4 T、方向垂直通道侧面向外.磁场区域上、下方各有a×b=0.3 m×0.4 m的金属板M、N,当其与推进器专用直流电源相连后,在两板之间的海水中产生了从N 到M,大小恒为I=1.0×103A的电流,设该电流只存在于磁场区域.不计电源内阻及导线电阻,海水密度ρm=1.0×103 kg/m3.(1)求一个直线通道推进器内磁场对通电海水的作用力大小,并判断其方向; (2)在不改变潜艇结构的前提下,简述潜艇如何转弯?如何“倒车”?(3)当潜艇以恒定速度v 0=30 m/s 前进时,海水在出口处相对于推进器的速度v=34 m/s,思考专用直流电源所提供的电功率如何分配,求出相应功率的大小. 解析:(1)将通电海水看成导线,所受磁场力F=IBL. 代入数据得:F=IBc=1.0×103×6.4×0.3 N=1.92×103N用左手定则判断可知,磁场对海水作用力的方向向右(或与海水出口方向相同). (2)考虑到潜艇下方有左、右两组推进器,可以通过开启或关闭不同个数的左、右两侧的直线通道推进器,实施转弯.改变电流方向,或者磁场方向,可以改变海水所受磁场力的方向,根据牛顿第三定律,使潜艇 “倒车”.(3)电源提供的电功率中的第一部分:牵引功率P 1=F 牵v 0 根据牛顿第三定律:F 牵=12IBL 当v 0=30 m/s 时,代入数据得:P 1=F 牵v 0=12×1.92×103×30 W=6.9×105W. 第二部分:海水的焦耳热功率对单个直线通道推进器,根据电阻定律:R=ρL S代入数据得:R=ρa ab =0.2×0.30.30.4⨯ Ω=0.5 Ω 由热功率公式,P=I 2R 代入数据得:P 单=I 2R=5.0×105WP 2=12×5.0×105 W=6.0×106W第三部分:单位时间内海水动能的增加值 设Δt 时间内喷出海水的质量为m P 3=12×KE t∆∆ 考虑到海水的初动能为零, ΔE k =E k =12m 2v 水对地 m=ρm bcv 水对地Δt P 3=12×K E t ∆∆=12×12ρm bc 3v 水对地=4.6×104W. 答案:见解析6.(2010年浙江理综,23,20分)如图所示,一矩形轻质柔软反射膜可绕过O 点垂直纸面的水平轴转动.其在纸面上的长度OA 为L 1,垂直纸面的宽度为L 2.在膜的下端(图中A 处)挂有一平行于转轴,质量为m,长为L 2的导体棒使膜绷成平面.在膜下方水平放置一足够大的太阳能光电池板,能接收到经反射膜反射到光电池板上的所有光能,并将光能转化成电能.光电池板可等效为一个电池,输出电压恒定为U,输出电流正比于光电池板接收到的光能(设垂直于入射光单位面积上的光功率保持恒定).导体棒处在方向竖直向上的匀强磁场B 中,并与光电池构成回路,流经导体棒的电流垂直纸面向外(注:光电池与导体棒直接相连,连接导线未画出).(1)现有一束平行光水平入射,当反射膜与竖直方向成θ=60°角时,导体棒处于受力平衡状态,求此时电流强度的大小和光电池的输出功率.(2)当θ变为45°时,通过调整电路使导体棒保持平衡,光电池除维持导体棒力学平衡外,还能输出多少额外电功率?解析:(1)导体棒所受安培力F=IBL 2 ① 导体棒受力平衡,即mgtan θ=F ② 解得I=2tan mg BL③ 所以当θ=60°时,I 1=2tan60mg BL o23mg .光电池输出功率为P 1=UI 123mgU . (2)当θ=45°时,根据③式可知维持平衡需要的电流为I 2=2tan 45mg BL o =2mg BL根据题意可知21P P =1212cos45cos60L L L L oo2则P 22126mgU而光电池产生的电流为I 光电=2P U 26mg 所以能提供的额外电流为I 额外=I 光电-I 262mgBL 可提供额外功率为P 额外=I 额外62mgUBL . 答案:(1)23mg23mgU62mgUBL点评:此题属电、磁、力的综合计算题,安培力是联系电和力的桥梁,因此解题的关键有两点:(1)光电池板输出的电功率P=UI.(2)导体的受力分析特别是安培力方向和大小. 考点二 磁场对运动电荷的作用 ★★★★1.(2013年新课标全国卷Ⅰ,18,6分)如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0).质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为2R.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A.2qBR m B.qBR mC.32qBR mD.2qBRm解析:设粒子在磁场中做匀速圆周运动的轨道半径为r,粒子运动的轨迹及几何关系如图所示,由此可知r=R,由牛顿第二定律可得:qvB=m2v r ,得v=qBR m,选项B 正确. 答案:B点评: 本题考查带电粒子在有界磁场中的运动,处理此类问题的关键是作出带电粒子的轨迹示意图,找出相关量之间的几何关系.2.(2013年安徽理综,15,6分)图中a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A.向上B.向下C.向左D.向右解析:d 、b 导线在O 点产生的磁场的磁感应强度叠加后抵消,a 、c 导线在O 点产生的磁场的磁感应强度叠加后水平向左,再依据左手定则判断带正电的粒子所受洛伦兹力的方向向下,选项B 正确. 答案:B3.(2013年广东理综,21,6分)如图,两个初速度大小相同的同种离子a 和b,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上.不计重力.下列说法正确的有( )A.a 、b 均带正电B.a 在磁场中飞行的时间比b 的短C.a 在磁场中飞行的路程比b 的短D.a 在P 上的落点与O 点的距离比b 的近解析:根据题意可知,离子a 、b 会在磁场中沿顺时针方向做匀速圆周运动,由左手定则可知都带正电,选项A 正确;a 、b 为同种粒子,初速度大小也相同,根据洛伦兹力提供向心力知识得qvB=m 2v r,r=mvBq ,所以运动半径相同,据此作出它们运动的轨迹,如图所示,根据轨迹可以看出,b 将运动半个周期,而a 将超过半个周期,所以a 在磁场中运动的时间和路程都会比b 长,选项B 、C 错误;b 由于运动半周,落点距离O 为直径大小,明显比a 远,选项D 正确. 答案:AD4.(2013年新课标全国卷Ⅱ,17,6分)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面.一质量为m 、电荷量为q(q>0)的粒子以速率v 0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为( ) A.033mv qR B.0mv qR C.03mv qRD.03mv qR解析:带电粒子射入磁场其轨迹及各量的几何关系如图所示.粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即qv 0B=m 2v r,粒子在磁场中的轨道半径r=Rtan 60°=3R,则B=0mv qr =03mv ,选项A 正确. 答案:A点评: 在处理带电粒子在磁场中的运动问题时,画出运动轨迹,确定相关量间的几何关系是解题的关键.5.(2012年广东理综,15,4分)质量和电量都相等的带电粒子M 和N,以不同的速率经小孔S 垂直进入匀强磁场,运行的半圆轨迹如图中虚线所示,下列表述正确的是( )A.M 带负电,N 带正电B.M 的速率小于N 的速率C.洛伦兹力对M 、N 做正功D.M 的运行时间大于N 的运行时间解析:由左手定则可判定M 带负电,N 带正电,选项A 正确;由图知M 的半径大于N 的半径,根据r=mvqB可推得M 的速率大于N 的速率,选项B 错误;洛伦兹力永不做功,选项C 错误;t=12T=πmqB,可知M 和N 的运行时间相同,选项D 错误. 答案:A6.(2012年北京理综,16,6分)处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动.将该粒子的运动等效为环形电流,那么此电流值( ) A.与粒子电荷量成正比 B.与粒子速率成正比C.与粒子质量成正比D.与磁感应强度成正比解析:由t=T=2πm qB 和I=q t可得I=22πq B m ,电流值与q 2成正比,与B 成正比,与m 成反比,D 项正确.答案:D7.(2011年浙江理综,20,6分)利用如图所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L.一群质量为m 、电荷量为q,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场.对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( )A.粒子带正电B.射出粒子的最大速度为()32qB d L m+C.保持d 和L 不变,增大B,射出粒子的最大速度与最小速度之差增大D.保持d 和B 不变,增大L,射出粒子的最大速度与最小速度之差增大解析:由左手定则可知粒子带负电,所以选项A 错误;粒子速度越大,在磁场中运动的半径越大,则r max =32d L +,由牛顿第二定律得:qv max B=2max maxmv r ,由以上两式,得v max =()32qB d L m +,所以选项B 正确;粒子最小速度对应最小半径,此时r min =2L ,qv min B=2min minmv r ,由以上几式得v max -v min =32qBdm,所以选项C 正确,选项D 错误. 答案:BC8.(2013年北京理综,24(1),13分)对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质. 一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电量为e.该导线通有电流时,假设自由电子定向移动的速率均为v. (1)求导线中的电流I;(2)将该导线放在匀强磁场中,电流方向垂直于磁感应强度B,导线所受安培力大小为F 安,导线内自由电子所受洛伦兹力大小的总和为F,推导F 安=F.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 解析:(1)设t 时间内通过导线横截面的电荷量为q,由电流定义,有I=q t=neSvtt=neSv. (2)每个自由电子所受的洛伦兹力F 洛=evB, 设导线中共有N 个自由电子,则N=nSl 导线内自由电子所受洛伦兹力大小的总和 F=NF 洛=nSlevB由安培力公式,有F 安=IlB=neSvlB 得F 安=F.答案:(1)neSv (2)见解析9.(2013年大纲全国卷,26,20分)如图所示,虚线OL 与y 轴的夹角θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B.一质量为m 、电荷量为q(q>0)的粒子从左侧平行于x 轴射入磁场,入射点为M.粒子在磁场中运动的轨道半径为R.粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出)且OP =R.不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.解析:根据题意,带电粒子进入磁场后做匀速圆周运动,运动轨迹交虚线OL 于A 点,圆心为y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴于P 点,与x 轴的夹角为β,如图所示.有qvB=2mv R周期为T=2πRv过A 点作x 、y 轴的垂线,垂足分别为B 、D. 由图中几何关系得 AD =Rsin αOD =AD cot 60° BP =OD cot β OP =AD +BP α=β由以上各式和题给条件得sin α+3cos α=1 解得α=30°或α=90° 设M 点到O 点的距离为h h=R-OC根据几何关系OC =CD -OD =Rcos α-3AD 利用以上两式和AD =Rsin α得 h=R-3Rcos(α+30°) 解得h=31⎛⎫-⎪ ⎪⎝⎭R (α=30°) h=31+⎛⎫⎪ ⎪⎝⎭R (α=90°) 当α=30°时,粒子在磁场中运动的时间为t=12T=π6m qB 当α=90°时,粒子在磁场中运动的时间为t=4T =π2m qB. 答案: 31⎛⎫-⎪ ⎪⎝⎭R (α=30°)或31⎛⎫+ ⎪ ⎪⎝⎭R (α=90°) π6m qB (α=30°)或π2mqB(α=90°)10.(2010年广东理综,36,18分)如图(a)所示,左为某同学设想的粒子速度选择装置,由水平转轴及两个薄盘N 1、N 2构成,两盘面平行且与转轴垂直,相距为L,盘上各开一狭缝,两狭缝夹角θ可调(如图(b));右为水平放置的长为d 的感光板,板的正上方有一匀强磁场,方向垂直纸面向外,磁感应强度为B.一小束速度不同、带正电的粒子沿水平方向射入N 1,能通过N 2的粒子经O 点垂直进入磁场.O 到感光板的距离为2d,粒子电荷量为q,质量为m,不计重力.(1)若两狭缝平行且盘静止(如图(c)),某一粒子进入磁场后,竖直向下打在感光板中心点M 上,求该粒子在磁场中运动的时间t;(2)若两狭缝夹角为θ0,盘匀速转动,转动方向如图(b).要使穿过N 1、N 2的粒子均打到感光板P 1P 2连线上,试分析盘转动角速度ω的取值范围.(设通过N 1的所有粒子在盘旋转一圈的时间内都能到达N 2).解析:(1)带电粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力:qvB=m 2v R①匀速圆周运动的周期T=2πRv② 又因粒子过O 点和M 点,粒子运动了14圆周 即t=4T③ 联立①②③式解得t=π2mqB. (2)速度最小的带电粒子在磁场中做圆周运动,过P 1P 2连线的左边缘且与P 1P 2连线相切,则做圆周运动的半径 r 1=4d④ 洛伦兹力提供向心力,qv 1B=m 211v r ⑤带电粒子在N 1、N 2之间运动时有:L=v 1t 1⑥ θ0=ω1t 1⑦联立④⑤⑥⑦式得:ω1=4qBd mL. 速度最大的带电粒子在磁场中做圆周运动过P 1P 2连线的右边缘,由几何关系得: 22r =222d r ⎛⎫- ⎪⎝⎭+d 2⑧ 洛伦兹力提供向心力,qv 2B=m 222v r ⑨粒子在N 1、N 2之间运动时有:L=v 2t 2⑩ θ0=ω2t 2联立⑧⑨⑩式解得ω2=054qBd mLθ. 所以04qBd mL θ≤ω≤054qBd mLθ. 答案:(1)π2m qB (2)04qBd mL θ≤ω≤054qBd mLθ 点评: 本题主要考查带电粒子在磁场中的运动.解决此题需要有较强的数学运算能力.本题较难,解题的关键是确定粒子打在感光板边缘上的半径. 考点三 带电粒子在组合场中的运动 ★★★★1.(2013年浙江理综,20,6分)在半导体离子注入工艺中,初速度可忽略的磷离子P +和P 3+,经电压为U 的电场加速后,垂直进入磁感应强度大小为B 、方向垂直纸面向里,有一定宽度的匀强磁场区域,如图所示.已知离子P +在磁场中转过θ=30°后从磁场右边界射出.在电场和磁场中运动时,离子P +和P 3+( )A.在电场中的加速度之比为1∶1B.3∶1C.在磁场中转过的角度之比为1∶2D.离开电场区域时的动能之比为1∶3解析:磷离子P +与P 3+电荷量之比q 1∶q 2=1∶3,质量相等,在电场中加速度a=qEm,由此可知,a 1∶a 2=1∶3,选项A 错误;离子进入磁场中做圆周运动的半径r=mv qB ,又qU=12mv 2,故有12mU B q 即r 1∶r 231,选项B 正确;设离子P 3+在磁场中偏角为α,则sin α=2d r ,sinθ=1dr (d 为磁场宽度),故有sin θ∶sin α= 13,已知θ=30°,故α=60°,选项C 正确;全过程中只有电场力做功,W=qU,故离开电场区域时的动能之比即为电场力做功之比,所以E k1∶E k2=W 1∶W 2=1∶3,选项D 正确. 答案:BCD 点评: 本题综合考查带电粒子在电场和磁场中的运动规律,利用动能定理、圆周运动规律处理问题.难度中等.2.(2013年北京理综,22,16分)如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场.带电荷量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:(1)匀强电场场强E的大小;(2)粒子从电场射出时速度v的大小;(3)粒子在磁场中做匀速圆周运动的半径R.解析:(1)电场强度E=Ud.(2)根据动能定理,有qU=12mv2-0得v=2qUm.(3)粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,有qvB=m2vR,得R=12mUB q.答案:(1)Ud (2) 2qUm(3)12mUB q3.(2013年安徽理综,23,16分)如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y轴的匀强电场,方向沿y轴正方向;在第Ⅳ象限的正三角形abc区域内有匀强磁场,方向垂直于xOy平面向里,正三角形边长为L,且ab边与y轴平行.一质量为m、电荷量为q的粒子,从y 轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第Ⅳ象限,又经过磁场从y轴上的某点进入第Ⅲ象限,且速度与y轴负方向成45°角,不计粒子所受的重力.求:(1)电场强度E的大小;(2)粒子到达a点时速度的大小和方向;(3)abc区域内磁场的磁感应强度B的最小值.解析:(1)带电粒子从P到a的过程中做类平抛运动,设粒子在电场中运动的时间为t,则x方向:v0t=2h,y方向:h=12at2,又qE=ma联立以上各式可得E=202mv qh.(2)粒子到达a 点时沿y 轴负方向的分速度为v y =at, 解得v y =v 0.所以v=220y v v =2v 0,设速度方向与x 轴正方向的夹角为θ,则tan θ=y v v =1,θ=45°,即到a 点时速度方向指向第Ⅳ象限与x 轴正方向成45°角.(3)粒子在磁场中运动时,有qvB=m2v r ,r=mv qB ,从上式看出,r ∝1B,当r 最大时,B 最小.由题图可知,当粒子从b 点射出时,磁场的磁感应强度为最小值, 由几何关系得r max =2L,所以B min =02mv qL. 答案:(1)22mv qh(2)2v 0 指向第Ⅳ象限与x 轴正方向成45°角 (3)2mv qL4.(2013年山东理综,23,18分)如图所示,在坐标系xOy 的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy 平面向里;第四象限内有沿y 轴正方向的匀强电场,电场强度大小为E. 一带电荷量为+q 、质量为m 的粒子,自y 轴上的P 点沿x 轴正方向射入第四象限,经x 轴上的Q 点进入第一象限,随即撤去电场,以后仅保留磁场.已知OP=d,OQ=2d,不计粒子重力.(1)求粒子过Q 点时速度的大小和方向;(2)若磁感应强度的大小为一确定值B 0,粒子将以垂直y 轴的方向进入第二象限,求B 0; (3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q 点,且速度与第一次过Q 点时相同,求该粒子相邻两次经过Q 点所用的时间.解析:(1)设粒子在电场中运动的时间为t 0,加速度的大小为a,粒子的初速度为v 0,过Q 点时速度的大小为v,沿y 轴方向分速度的大小为v y ,速度与x 轴正方向间的夹角为θ,由牛顿第二定律得qE=ma ① 由运动学公式得 d=12a 20t ② 2d=v 0t 0③ v y =at 0④v=220y v v +⑤tan θ=y v v ⑥联立①②③④⑤⑥式得 v=2qEdm⑦ θ=45°.⑧(2)设粒子做圆周运动的半径为R 1,粒子在第一象限内的运动轨迹如图所示,O 1为圆心,由几何关系可知△O 1OQ 为等腰直角三角形,得R 1=22d ⑨ 由牛顿第二定律得qvB 0=m21v R ⑩ 联立⑦⑨⑩式得B 0=2mEqd. (3)设粒子做圆周运动的半径为R 2,由几何分析(粒子运动的轨迹如图所示,O 2、O 2′是粒子做圆周运动的圆心,Q 、F 、G 、H 是轨迹与两坐标轴的交点,连接O 2、O 2′,由几何关系知,O 2FGO 2′和O 2QHO 2′均为矩形,进而知FQ 、GH 均为直径,QFGH 也是矩形,又FH ⊥GQ,可知QFGH 是正方形,△QOF 为等腰直角三角形.)可知,粒子在第一、第三象限的轨迹均为半圆,得2R 2=22d 粒子在第二、第四象限的轨迹为长度相等的线段,得 FG=HQ=2R 2设粒子相邻两次经过Q 点所用的时间为t, 则有t=22πFG HQ R v++联立⑦式得t=(2+π)2mdqE. 答案:(1)2qEdm方向与x 轴正方向成45°角斜向上 (2)2mE qd(3)(2+π)2mdqE5.(2013年天津理综,11,18分)一圆筒的横截面如图所示,其圆心为O.筒内有垂直于纸面向里的匀强磁场,磁感应强度为B.圆筒下面有相距为d 的平行金属板M 、N,其中M 板带正电荷,N 板带等量负电荷.质量为m 、电荷量为q 的带正电粒子自M 板边缘的P 处由静止释放,经N 板的小孔S 以速度v 沿半径SO 方向射入磁场中.粒子与圆筒发生两次碰撞后仍从S 孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:(1)M 、N 间电场强度E 的大小; (2)圆筒的半径R;(3)保持M 、N 间电场强度E 不变,仅将M 板向上平移23d,粒子仍从M 板边缘的P 处由静止释放,粒子自进入圆筒至从S 孔射出期间,与圆筒的碰撞次数n. 解析:(1)设两板间的电压为U,由动能定理得 qU=12mv 2①由匀强电场中电势差与电场强度的关系得 U=Ed ②联立上式可得E=22mv qd.③(2)粒子进入磁场后做匀速圆周运动,设第一次碰撞点为A,由于粒子与圆筒发生两次碰撞又从S 孔射出,因此,SA 弧所对的圆心角∠AO ′S 等于π3.作出圆心O ′,设圆半径为r, 由几何关系得r=Rtan π3④ 粒子运动过程中洛伦兹力提供向心力,由牛顿第二定律,得qvB=m 2v r⑤联立④⑤式得R=33mvqB.⑥ (3)保持M 、N 间电场强度E 不变,M 板向上平移23d 后,设板间电压为U ′,则U ′=3Ed =3U⑦ 设粒子进入S 孔时的速度为v ′,由①式看出U U'=22v v '综合⑦式可得v ′=33v ⑧ 设粒子做圆周运动的半径为r ′,则r ′=33mvqB⑨ 设粒子从S 到第一次与圆筒碰撞期间的轨迹所对圆心角为θ,比较⑥⑨两式得到r ′=R,可见θ=π2⑩粒子需经过四个这样的圆弧才能从S 孔射出,故n=3. 答案:(1)22mv qd (2)3mv (3)36.(2012年新课标全国理综,25,18分)如图,一半径为R的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直.圆心O到直线的距离为35R.现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域.若磁感应强度大小为B,不计重力,求电场强度的大小.解析:粒子在磁场中做圆周运动.设圆周的半径为r,由牛顿第二定律和洛伦兹力公式得qvB=m2vr①式中v为粒子在a点的速度.过b点和O点作直线的垂线,分别与直线交于c和d点.由几何关系知,线段ac、bc和过a、b两点的圆弧轨迹的两条半径(未画出)围成一个正方形.因此ac=bc=r②设cd=x,由几何关系得ac=45R+x③bc=35R+22R x④联立②③④式得r=75R⑤再考虑粒子在电场中的运动.设电场强度的大小为E,粒子在电场中做类平抛运动.设其加速度大小为a,由牛顿第二定律和带电粒子在电场中的受力公式得qE=ma⑥粒子在电场方向和直线方向所走的距离均为r,由运动学公式得r=12at2⑦r=vt⑧式中t是粒子在电场中运动的时间,联立①⑤⑥⑦⑧式得E=2145qRBm.答案:2 145 qRBm7.(2012年山东理综,23,18分)如图(甲)所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图(乙)所示,正反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电量为-q(q>0)的粒子由S1静止释放,粒子在电场力的。

高考物理三轮冲刺 大题提分 大题精做 磁场对电流的作用.docx

高考物理三轮冲刺 大题提分 大题精做 磁场对电流的作用.docx

大题精做十磁场对电流的作用1.如图,一长为10 cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1 T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘。

金属棒通过开关与一电动势为12 V的电池相连,电路总电阻为2Ω。

已知开关断开时两弹簧的伸长量为0.5 cm;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 cm。

重力加速度大小取10m/s2。

判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。

【解析】依题意,开关闭合后,电流方向从b到a,由左手定则可知,金属棒所受的安培力方向竖直向下。

开关断开时,两弹簧各自相对于其原长伸长了Δl1=0.5 cm,由胡克定律和力的平衡条件得:2kΔl1=mg①式中,m为金属棒的质量,k是弹簧的劲度系数,g是重力加速度的大小。

开关闭合后,金属棒所受安培力的大小为F=BIL②式中,I是回路电流,L是金属棒的长度。

两弹簧各自再伸长了Δl2=0.3 cm,由胡克定律和力的平衡条件得2k(Δl1+Δl2)=mg+F③由欧姆定律有E=IR④式中,E是电池的电动势,R是电路总电阻。

联立①②③④式,并代入题给数据得m=0.01 kg。

⑤2.电磁缓速器是应用于车辆上以提高运行安全性的辅助制动装置,其工作原理是利用电磁阻尼作用减缓车辆的速度。

电磁阻尼作用可以借助如下模型讨论:如图所示,将形状相同的两根平行且足够长的铝条固定在光滑斜面上,斜面与水平方向夹角为θ。

一质量为m的条形磁铁滑入两铝条间,恰好匀速穿过,穿过时磁铁两端面与两铝条的间距始终保持恒定,其引起电磁感应的效果与磁铁不动、铝条相对磁铁运动相同。

磁铁端面是边长为d的正方形,由于磁铁距离铝条很近,磁铁端面正对两铝条区域的磁场均可视为匀强磁场,磁感应强度为B,铝条的高度大于d,电阻率为ρ。

为研究问题方便,铝条中只考虑与磁铁正对部分的电阻和磁场,其他部分电阻和磁场可忽略不计,假设磁铁进入铝条间以后,减少的机械能完全转化为铝条的内能,重力加速度为g。

高中物理磁场练习题及答案

高中物理磁场练习题及答案

Oxy V 0 a b《磁场》单元练习一.选择题:每小题给出的四个选项中,每小题有一个选项、或多个选项正确。

1、如图所示,两根垂直纸面、平行且固定放置的直导线M 和N ,通有同向等值电流;沿纸面与直导线M 、N 等距放置的另一根可自由移动的通电导线ab ,则通电导线ab 在安培力作用下运动的情况是 A.沿纸面逆时针转动 B.沿纸面顺时针转动C.a 端转向纸外,b 端转向纸里D.a 端转向纸里,b 端转向纸外2.两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC 的A 和B 处.如图所示,两通电导线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度是( )A.2BB.BC.0D.3B3、空间存在竖直向下的匀强电场和水平方向(垂直纸面向里)的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力共同作用下,从静止开始自A 点沿曲线ACB 运动,到达B点时速度为零,C 为运动的最低点.不计重力,则 A.该离子带负电B.A 、B 两点位于同一高度C.C 点时离子速度最大D.离子到达B 点后,将沿原曲线返回A 点4、一带电粒子以一定速度垂直射入匀强磁场中,则不受磁场影响的物理量是: A 、速度 B 、加速度 C 、动量 D 、动能5、MN 板两侧都是磁感强度为B 的匀强磁场,方向如图,带电粒子(不计重力)从a 位置以垂直B 方向的速度V 开始运动,依次通过小孔b 、c 、d ,已知ab = bc = cd ,粒子从a 运动到d 的时间为t ,则粒子的荷质比为: A 、tB π B 、tB 34π C 、π2tB D 、tBπ3 6、带电粒子(不计重力)以初速度V 0从a 点进入匀强磁场,MN a bc dVB B如图。

运动中经过b 点,oa=ob 。

若撤去磁场加一个与y 轴平行的匀强电场,仍以V 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感强度B 之比E/B 为: A 、V 0 B 、1 C 、2V 0 D 、2V 7、如图,MN 是匀强磁场中的一块薄金属板,带电粒子(不计重力)在匀强磁场中运动并穿过金属板,虚线表示其运动轨迹,由图知:A 、粒子带负电B 、粒子运动方向是abcdeC 、粒子运动方向是edcbaD 、粒子在上半周所用时间比下半周所用时间长8、带负电的小球用绝缘丝线悬挂于O 点在匀强磁场中摆动,当小球每次通过最低点A 时: A 、摆球受到的磁场力相同 B 、摆球的动能相同 C 、摆球的动量相同D 、向右摆动通过A 点时悬线的拉力大于向左摆动通过A 点时悬线的拉力9、如图,磁感强度为B 的匀强磁场,垂直穿过平面直角坐标系的第I 象限。

高考物理-选修3-1-磁场专题练习(含答案)(一)

高考物理-选修3-1-磁场专题练习(含答案)(一)一、单选题1.如图所示,平行边界MN、PQ之间有垂直纸面向里的匀强磁场,磁感应强度大小为B,两边界间距为d,边界MN上有一粒子源A,可沿纸面内各个方向向磁场中输入质量均为m,电荷量均为+q的粒子,粒子射入磁场的速度大小v= 不计粒子的重力,则粒子能从PQ 边界射出的区域长度与能从MN边界射出的区域长度之比为()A. 1:1B. 2:3C. :2D. :32.如图甲所示是回旋加速器的示意图,其核心部分是两个置于匀强磁场中的D形金属盒,两盒分别与高频电源相连.带电粒子在加速时,其动能E k随时间t的变化规律如图乙所示,忽略带电粒子在电场中的加速时间,则下列判断正确的是()A. 在E k﹣t图象中应有(t4﹣t3)<(t3﹣t2)<(t2﹣t1)B. 减小磁场的磁感应强度可增大带电粒子射出时的动能C. 要想粒子获得的最大动能增大,可增加D形盒的半径D. 加速电场的电压越大,则粒子获得的最大动能一定越大3.如图所示,用两根轻细金属丝将质量为m,长为l的金属棒ab悬挂在c.d两处,置于匀强磁场内.当棒中通以从a到b的电流I后,两悬线偏离竖直方向θ角处于平衡状态.为了使棒平衡在该位置上,所需的最小磁场的磁感应强度的大小.方向是()A. tanθ,竖直向上B. tanθ,竖直向下C. sinθ,平行悬线向下D. sinθ,平行悬线向上4.环型对撞机是研究高能粒子的重要装置。

正、负离子由静止经过电压U的直线加速度加速后,沿圆环切线方向注入对撞机的真空环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B。

两种带电粒子将被局限在环状空腔内,沿相反方向做半径相等的匀速圆周运动,从而在碰撞区迎面相撞。

为维持带电粒子在环状空腔中的匀速圆周运动,下列说法正确的是()A. 对于给定的加速电压,带电粒子的比荷越大,磁感应强度B越大B. 对于给定的加速电压,带电粒子的比荷越大,磁感应强度B越小C. 对于给定的带电粒子,加速电压U越大,粒子运动的周期越大D. 对于给定的带电粒子,不管加速电压U多大,粒子运动的周期都不变5.如图所示,带负电的小球用绝缘丝线悬挂于O点在匀强磁场中摆动,当小球每次通过最低点A时()A. 摆球受到的磁场力相同B. 摆球的动能相同C. 摆球受到的丝线的张力相同D. 向右摆动通过A点时悬线的拉力等于向左摆动通过A点时悬线的拉力6.在你身边,若有一束电子从上而下运动,在地磁场的作用下,它将()A. 向东偏转B. 向西偏转C. 向北偏转D. 向南偏转7.如图所示,OM的左侧存在范围足够大、磁感应强度大小为B的匀强磁场,磁场方向垂直纸面向里,ON(在纸面内)与磁场方向垂直且∠NOM=60°,ON上有一点P,OP=L.P点有一粒子源,可沿纸面内各个方向射出质量为m、电荷量为q的带正电的粒子(不计重力),速率为,则粒子在磁场中运动的最短时间为()A. B. C. D.8.钳型表的工作原理如图所示。

高三物理磁场专题题目与答案

1.下列说法中正确的是( )A.磁感线可以表示磁场的方向和强弱B.磁感线从磁体的N 极出发,终止于磁体的S 极C.磁铁能产生磁场,电流也能产生磁场D.放入通电螺线管内的小磁针,根据异名磁极相吸的原则,小磁针的N 极一定指向通电螺线管的S 极 2.关于磁感应强度,下列说法中错误的是( )A.由B =ILF可知,B 与F 成正比,与IL 成反比 B.由B=ILF可知,一小段通电导体在某处不受磁场力,说明此处一定无磁场 C.通电导线在磁场中受力越大,说明磁场越强 D.磁感应强度的方向就是该处电流受力方向 3.关于磁场和磁感线的描述,正确的说法是( )A 、磁感线从磁体的N 极出发,终止于S 极B 、磁场的方向就是通电导体在磁场中某点受磁场作用力的方向C 、沿磁感线方向,磁场逐渐减弱D 、在磁场强的地方同一通电导体受的安培力可能比在磁场弱的地方受的安培力小4.两根长直通电导线互相平行,电流方向相同.它们的截面处于一个等边三角形ABC 的A 和B 处.如图所示,两通电导线在C 处的磁场的磁感应强度的值都是B ,则C 处磁场的总磁感应强度是( )A.2BB.BC.0D.3B5.如图所示,两个半径相同,粗细相同互相垂直的圆形导线圈,可以绕通过公共的轴线xx′自由转动,分别通以相等的电流,设每个线圈中电流在圆心处产生磁感应强度为B ,当两线圈转动而达到平衡时,圆心O 处的磁感应强度大小是( )(A)B (B)2B (C)2B (D)01.关于垂直于磁场方向的通电直导线所受磁场作用力的方向,正确的说法是( )A.跟电流方向垂直,跟磁场方向平行B.跟磁场方向垂直,跟电流方向平行C.既跟磁场方向垂直,又跟电流方向垂直D.既不跟磁场方向垂直,又不跟电流方向垂直2.如图所示,直导线处于足够大的匀强磁场中,与磁感线成θ=30°角,导线中通过的电流为I,为了增大导线所受的磁场力,可采取下列四种办法,其中不正确的是( )A.增大电流IB.增加直导线的长度C.使导线在纸面内顺时针转30°D.使导线在纸面内逆时针转60°3.如图所示,在垂直于纸面的磁场B中,通有电流I的导线长为L,与水平方向夹角为α,则这根通电导线受到的安培力是______.4.在两个倾角均为α光滑斜面上,放有一个相同的金属棒,分别通有电流I1和I2,磁场的磁感强度大小相同,方向如图中所示,两金属棒均处于平衡状态,则两种情况下的电流强度之比I1:I2为5.如图所示,有一通电导线放在蹄形磁铁磁极的正上方,导线可以自由移动,当导线通过电流I时,从上往下看,导线的运动情况是( )A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升6.有两个相同的圆形线圈,通以大小不同但方向相同的电流,如图所示,两个线圈在光滑的绝缘杆上的运动情况是( )A.互相吸引,电流大的加速度较大B.互相排斥,电流大的加速度较大C.互相吸引,加速度相同D.以上说法都不正确7.如图所示,线圈abcd可以自由转动,线圈ABCD固定不动,两线圈平面垂直放置而且圆心重合,当两线圈中通入图示方向的电流时,线圈abcd的运动情况是()A、静止不动B、以aOc为轴,b向纸外,d向纸内转动C、向纸外平动D、以aOc为轴,d向纸外,b向纸内转动8.如图所示,水平放置的光滑的金属导轨M、N,平行地置于匀强磁场中,间距为d,磁场的磁感应强度大小为B,方向与导轨平面夹为 ,金属棒ab的质量为m,放在导轨上且与导轨垂直。

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐含答案)高中物理《磁场》典型题(经典推荐)一、单项选择题1.下列说法中正确的是:A。

在静电场中电场强度为零的位置,电势也一定为零。

B。

放在静电场中某点的检验电荷所带的电荷量 q 发生变化时,该检验电荷所受电场力 F 与其电荷量 q 的比值保持不变。

C。

在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零。

D。

磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定。

2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。

如关系式 U=IR,既反映了电压、电流和电阻之间的关系,也确定了 V(伏)与 A(安)和Ω(欧)的乘积等效。

现有物理量单位:m(米)、s(秒)、N(牛)、J (焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和 T(特),由他们组合成的单位都与电压单位 V(伏)等效的是:A。

J/C 和 N/CB。

C/F 和 T·m2/sC。

W/A 和 C·T·m/sD。

W·Ω 和 T·A·m3.如图所示,重力均为 G 的两条形磁铁分别用细线 A 和B 悬挂在水平的天花板上,静止时,A 线的张力为 F1,B 线的张力为 F2,则:A。

F1=2G,F2=GB。

F1=2G,F2>GC。

F1GD。

F1>2G,F2>G4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在 1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在 1s时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为:A。

1/2B。

1C。

2D。

45.如图所示,矩形 MNPQ 区域内有方向垂直于纸面的匀强磁场,有 5 个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中 a、b、c 处进入的粒子对应表中的编号分别为:A。

人教版高中物理选修31磁场专项练习和解析

选修3-1磁场专项练习2一.选择题(共7小题)1.(2019•上海)如图,通电导线MN及单匝矩形线圈abcd共面,位置靠近ab且相互绝缘.当MN中电流突然减小时,线圈所受安培力的合力方向()A.向左B.向右C.垂直纸面向外D.垂直纸面向里解:金属线框abcd放在导线MN上,导线中电流产生磁场,根据安培定则判断可知,线框abcd左右两侧磁场方向相反,线框左侧的磁通量小于线框右侧的磁通量,磁通量存在抵消的情况.若MN中电流突然减小时,穿过线框的磁通量将减小.根据楞次定律可知,感应电流的磁场要阻碍磁通量的变化,则线框abcd感应电流方向为顺时针,再由左手定则可知,左边受到的安培力水平向右,而左边的安培力方向也水平向右,故安培力的合力向右.故B正确,ACD错误.故选B 2.(2009•广东)表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B的匀强磁场中.质量为m、带电量为+Q的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是()A.滑块受到的摩擦力不变B.滑块到达地面时的动能及B的大小无关C.滑块受到的洛伦兹力方向垂直斜面向下D.B很大时,滑块可能静止于斜面上解答:解:小滑块受力如图所示;A、F洛=QVB,滑动摩擦力F=μFN=μ(mgcosθ+QvB),随速度增加而变大,A错误.B、若滑块滑到底端已达到匀速运动状态,摩擦力F=mgsinθ=μ(mgcos θ+QvB),则v=(﹣cosθ),可看v随B的增大而减小,B越大滑块动能越小;若在滑块滑到底端时还处于加速运动状态,则B越大时,滑动摩擦力F越大,滑块克服阻力做功越多,由动能定理可知,滑块到达斜面底端的速度越小,动能越小,B错误.C、滑块沿斜面向下运动,由左手定则可知,洛伦兹力垂直于斜面向下,故C正确;D、滑块之所以开始能动,是因为重力的沿斜面的分力大于摩擦力,B 很大时,一旦运动,不会停止,最终做匀速直线运动,故D错误.故选C.3.(2019•西城区模拟)如图所示,正确标明了通电导线所受安培力F方向的是( B )A.B.C.D.4.(2009•金山区二模)如图所示,矩形线框abcd,及条形磁铁的中轴线位于同一平面内,线框内通有电流I,则线框受磁场力的情况()A.ab和cd受力,其它二边不受力B.ab和cd受到的力大小相等方向相反C.ad和bc受到的力大小相等,方向相反D.以上说法都不对解:A、各边都处在磁场中,各边电流方向都及磁场方向不平行,都受到安培力的作用,故A错误;B、ab边所处位置磁感应强度大,cd 边所处位置磁感应强度小,而两边电流大小相等,由F=BILsinθ可知两边所受安培力不相等,故B错误;C、ad边及bc边关于条形磁铁对称,它们所处的磁场强度大小相等,两边长度及电流大小相等,由F=BILsinθ可知,两边所受安培力大小相等,由左手定则可知安培力的方向相同,故C错误;D、由上可知,故D正确,5.(2019•宿州一模)如图所示,两匀强磁场方向相同,以虚线MN为理想边界,磁感应强度分别为B1、B2.今有一个质量为m、电荷量为e的电子从MN上的P点沿垂直于磁场的方向射入匀强磁场B1中,其运动轨迹为如图虚线所示的“心”形图线.则以下说法正确的是()A.电子的运行轨迹为PDMCNEP B.电子运行一周回到P用时为T=C.B1=4B2 D.B1=2B2解:A、根据左手定则可知:电子从P点沿垂直于磁场的方向射入匀强磁场B1时,受到的洛伦兹力方向向上,所以电子的运行轨迹为PDMCNEP,故A正确;B、电子在整个过程中,在匀强磁场B1中运动两个半圆,即运动一个周期,在匀强磁场B2中运动半个周期,所以T=+,故B错误;C、由图象可知,电子在匀强磁场B1中运动半径是匀强磁场B2中运动半径的一半,根据r=可知,B1=2B2,故C错误,D正确.故选:AD.6.(2019•海南)空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力.下列说法正确的是()A.入射速度不同的粒子在磁场中的运动时间一定不同B.入射速度相同的粒子在磁场中的运动轨迹一定相同C.在磁场中运动时间相同的粒子,其运动轨迹一定相同D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大解:A、入射速度不同的粒子,若它们入射速度方向相同,则它们的运动也一定相同,虽然轨迹不一样,但圆心角却相同.故A错误;B、在磁场中半径,运动圆弧对应的半径及速率成正比,故B正确;C、在磁场中运动时间:(θ为转过圆心角),虽圆心角可能相同,但半径可能不同,所以运动轨迹也不同,故C错误;D、由于它们的周期相同的,在磁场中运动时间越长的粒子,其轨迹所对的圆心角也一定越大.故D正确;故选:BD二.解答题(共5小题)7.(2019•南充一模)如图所示,一根足够长的光滑绝缘杆MN,及水平面夹角为37°,固定在竖直平面内,垂直纸面向里的匀强磁场B充满杆所在的空间,杆及B垂直,质量为m的带电小环沿杆下滑到图中的P处时,对杆有垂直杆向上的拉力作用,拉力大小为0.4mg,已知小环的带电荷量为q,问(sin37°≈0.6;cos37°≈0.8)(1)小环带什么电?(2)小环滑到P处时的速度多大?解:(1)环所受洛伦兹力及杆垂直,只有洛伦兹力垂直于杆向上时,才能使环向上拉杆,由左手定则可知环带负电.(2)设杆拉住环的力为T,由题可知:T=0.4mg在垂直杆的方向上对环有:qvB=T+mgcos37°即qvB=0.4mg+0.8mg解得:答:(1)小环带负电;(2)小环滑到P处时的速度为:.8.(2019•西城区模拟)如图,一根绝缘细杆固定在磁感应强度为B 的水平匀强磁场中,杆和磁场垂直,及水平方向成θ角.杆上套一个质量为m、电量为+q的小球.小球及杆之间的动摩擦因数为μ.从A点开始由静止释放小球,使小球沿杆向下运动.设磁场区域很大,杆很长.已知重力加速度为g.求:(1)定性分析小球运动的加速度和速度的变化情况;(2)小球在运动过程中最大加速度的大小;(3)小球在运动过程中最大速度的大小.解:(1)由于洛伦兹力作用下,导致压力减小,则滑动摩擦力也减小,所以加速度增加,当洛伦兹力大于重力的垂直于杆的分力时,导致滑动摩擦力增大,从而出现加速度减小,直到处于受力平衡,达到匀速直线运动.因此小球先做加速度增大的加速运动,再做加速度减小的加速运动,最后做匀速直线运动.(2)当杆对小球的弹力为零时,小球加速度最大.小球受力如图1所示根据牛顿第二定律mgsinθ=ma解得:a=gsinθ(3)当小球所受合力为零时,速度最大,设最大速度为vm小球受力如图2所示根据平衡条件qvmB=N+mgcosθmgsinθ=f滑动摩擦力f=μN解得:答:(1)先做加速度增大的加速运动,再做加速度减小的加速运动,最后做匀速直线运动;(2)小球在运动过程中最大加速度的大小gsinθ;(3)小球在运动过程中最大速度的大小为.9.质量m=1.0×10﹣4kg的小物体,带有q=5×10﹣4C的电荷,放在倾角为37°绝缘光滑斜面上,整个斜面置于B=0.5T的匀强磁场中,磁场方向如图所示,物块由静止下滑,滑到某一位置时,开始离开斜面,斜面足够长,g=10m/s2,sin37°=0.6,cos37°=0.8求:(1)物块带何种电荷;(2)物块离开斜面时的速度;(3)物块在斜面上滑行的最大距离.解:(1)由题意可知:小滑块受到的安培力垂直斜面向上.根据左手定则可得:小滑块带负电.(2)当物体离开斜面时,弹力为零,因此有:Bqv=mgcosα,故.故物块离开斜面时的速度为3.2m/s.(3)由于斜面光滑,物体在离开斜面之前一直做匀加速直线运动,故有:v2=2al mgsinθ=ma所以代人数据解得:l≈0.85m.故物块在斜面上滑行的最大距离为:l≈0.85m.10.(2019•天津)在平面直角坐标系xOy中,第I象限存在沿y轴负方向的匀强电场,第IV象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m,电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点及x轴正方向成60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示.不计粒子重力,求(1)M、N两点间的电势差U MN;(2)粒子在磁场中运动的轨道半径r;(3)粒子从M点运动到P点的总时间t.解:(1)粒子在第一象限内做类平抛运动,进入第四象限做匀速圆周运动.设粒子过N点的速度为v,有得:v=2v0粒子从M点到N 点的过程,由动能定理有:解得:(2)粒子在磁场中以O′为圆心做匀速圆周运动(如图所示),半径为O′N,有:解得:(3)由几何关系得:ON=rsinθ设粒子在电场中运动的时间为t1,则有:ON=v0t1粒子在磁场中做匀速圆周运动的周期为:设粒子在磁场中运动的时间为t2,有:得:运动的总时间为:t=t1+t2即:11.(2019•资阳模拟)如图,xOy平面的第Ⅱ象限的某一区域有垂直于纸面的匀强磁场B1,磁场磁感应强度B1=1T,磁场区域的边界为矩形,其边分别平行于x、y轴.有一质量m=10﹣12kg、带正电q=10﹣7C 的a粒子从O点以速度v0=105m/s,沿及y轴正向成θ=30°的方向射入第Ⅱ象限,经磁场偏转后,从y轴上的P点垂直于y轴射入第Ⅰ象限,P点纵坐标为y P=3m,y轴右侧和垂直于x轴的虚线左侧间有平行于y轴的匀强电场,a粒子将从虚线及x轴交点Q进入第Ⅳ象限,Q 点横坐标x Q=6m,虚线右侧有垂直纸面向里的匀强磁场B2,其磁感应强度大小仍为1T.不计粒子的重力,求:(1)磁场B1的方向及a粒子在磁场B1的运动半径r1;(2)矩形磁场B1的最小面积S和电场强度大小E;(3)如在a粒子刚进入磁场B1的同时,有另一带电量为﹣q的b粒子,从y轴上的M点以速度v0垂直于y轴射入电场,a、b粒子将发生迎面正碰,求M点纵坐标y M以及相碰点N的横坐标x N.12(2009•天津)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴.一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M点进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开电场和磁场,MN之间的距离为L,小球过M点时的速度方向及x轴的方向夹角为θ.不计空气阻力,重力加速度为g,求(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h.解答:解:(1)小球在电场、磁场中恰能做匀速圆周运动,说明电场力和重力平衡,有qE=mg,得到E=重力的方向竖直向下,则电场力方向竖直向上,由于小球带正电,故场强度方向竖直向上.(2)小球做匀速圆周运动,设其设半径为r,由几何关系知 r==小球做匀速圆周运动的向心力由洛仑兹力提供,设小球做圆周运动的速为v,有qvB=m得v==由速度分解知v0=vcosθ代入得到 v0=(3)根据机械守恒定律,有mgh+= h=将v0,v代入得到h=答:(1)电场强度E的大小为,方向竖直向上;(2)小球从A点抛出时初速度v0=;(3)A点到x轴的高度h=.第 11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档