Dispersive liquid–liquid microextraction combined with high-performance liquid chromatography-UV
超声分散液相微萃取-气相色谱法同时测定食品中11种防腐剂

超声分散液相微萃取-气相色谱法同时测定食品中11种防腐剂杨金玲;江阳;薛勇;孙成均【摘要】目的:建立食品中11种防腐剂的超声分散液相微萃取-气相色谱法。
方法样品经9∶1二氯甲烷‐乙酸乙酯超声分散液相微萃取,FFAP毛细管色谱柱分离、FID 检测器检测。
结果方法线性范围为0.068~400μg/m l ,相关系数为0.9990~0.9999,回收率为84%~122%,相对标准偏差为3.11%~5.83%,方法检出限为0.026~0.23μg/m l。
结论该法简便、高效、经济、环境友好,适于不同食品中11种防腐剂同时快速测定。
%Objective To establish a method for simultaneous determination of eleven preservatives in foods by gas chromatography after ultrasound‐assisted dispersive liquid-liquid microextraction .Methods The target pre‐servat ives in food samples were ultrasound‐assisted dispersive liquid-liquid microextracted ,and then they were separated with FFAP capillary column and detected with FIDdetector .Results Linear ranges of the method were between 0 .068 and 400μg/mL with correla tion coefficients varying from 0 .9990 to0 .9999 .Recoveries and rela‐tive standard deviations (RSDs)were in the range from 84% to 122% and from 3 .11% to 5 .83% ,respectively . The limitation of detection was in the range form 0 .026μg/ml to 0 .23μg/ml with enrichment factors ranging from 57 to 225 for all targetcompounds .Conclusion The method is simple ,efficient ,cheap ,eco‐friendly and is suitable for simultaneous determination of 11 preservatives in different foods .【期刊名称】《济宁医学院学报》【年(卷),期】2015(000)001【总页数】5页(P47-50,56)【关键词】超声分散液相微萃取;气相色谱法;食品;防腐剂【作者】杨金玲;江阳;薛勇;孙成均【作者单位】济宁医学院法医学与医学检验学院,山东济宁 272067; 四川大学华西公共卫生学院,四川成都 610041;四川大学华西公共卫生学院,四川成都610041;四川大学华西公共卫生学院,四川成都 610041;四川大学华西公共卫生学院,四川成都 610041【正文语种】中文【中图分类】R155.5苯甲酸、山梨酸、脱氢乙酸、对羟基苯甲酸酯类等防腐剂在食品行业应用十分广泛,但有的企业滥用防腐剂,对消费者健康带来潜在危害,所以,我国对食品防腐剂的使用进行了严格规定[1-3]。
反吹-气相色谱法快速检测啤酒中的主要风味物质

反吹-气相色谱法快速检测啤酒中的主要风味物质杨珍; 贺立东【期刊名称】《《中国酿造》》【年(卷),期】2019(038)010【总页数】4页(P171-174)【关键词】反吹; 气相色谱; 啤酒风味物质; 直接进样【作者】杨珍; 贺立东【作者单位】镇江市高等专科学校医药与化材学院江苏镇江212028; 镇江市功能化学重点实验室江苏镇江212028; 华润雪花啤酒(中国)有限公司技术中心天津300400【正文语种】中文【中图分类】TS261.7啤酒是人们日常生活中不可或缺的饮品之一。
啤酒的口感与醇香主要由风味物质保持,尽管风味物质的浓度很低,但成分非常复杂,已检出的就有上百种,包括醇类、酯类、酸类、醛类、酮类、硫化物、酚类化合物等[1-5]。
其中风味阈值低、含量较高的乙醛、二甲基硫、乙酸乙酯、乙酸异丁酯、正丙醇、异丁醇、乙酸异戊酯、异戊醇、己酸乙酯和辛酸乙酯等化合物对啤酒风味影响最大。
LI H M等[6-8]对啤酒酿造过程及原料中的风味化合物和异味组分进行了分析研究,以气相色谱(gas chromatography,GC)法为主,在此基础上发展了气相色谱-气味检测技术(gas chromatographyodor detection technology,GCO)[9]、电子自旋技术[1,10]、核磁共振技术[11]以及气质联用(gas chromatograph-mass spectrometer,GC-MS)技术等[12-18]。
众所周知,气相色谱法中采用直接进样简便,无制备损失与污染,苗延林等[19]就尝试过直接进样法,但是啤酒本身的黏度较大,其中不挥发组分会使色谱柱污染,所以在采用气相色谱法分析或是各种联用技术时,很少采用直接进样的方式,一般都要进行预处理。
常用的预处理方法有溶剂萃取法[5,14]、顶空(headspace,HS)分析法[6,11]、固相微萃取法(solid-phase microextraction,SPME)等[16,20]。
基于低共熔溶剂的液液微萃取技术测定食用油中的新烟碱类杀虫剂

基于低共熔溶剂的液液微萃取技术测定食用油中的新烟碱类杀虫剂王素利,郭振福,庚丽丽(河北北方学院河北省农产品食品质量安全分析重点实验室,河北张家口075000)摘 要:利用合成的低共熔溶剂(deep eutectic solvent,DES)作为液液微萃取技术中的萃取剂,利用超声波辅助分散,建立高效液相色谱测定食用油中4 种新烟碱类杀虫剂(噻虫嗪、吡虫啉、啶虫脒、噻虫啉)的方法。
首先将合成的DES加入到含有目标分析物的食用油(正己烷稀释)中,进行超声辅助分散加速提取,然后离心,吸出上层液体,再用微量注射器吸取DES富集相(下层)进行液相色谱分析。
根据单一变量法,对影响萃取效率的一些因素进行优化,如DES的种类和体积、超声萃取时间、离心时间等。
在最佳条件下,回收率在81.9%~98.0%之间,相对标准偏差为5.5%~8.3%(n=5),检出限范围为3.2~5.3 μg/L,定量限范围为10.8~17.7μg/L。
并且应用所建立的基于DES超声辅助分散液液微萃取方法检测食用油实际样品大豆油、葵花籽油、亚麻籽油中的新烟碱类农药。
此方法提取和浓缩一步完成,避免了毒性较大的有机溶剂的使用,具有快速、简单、有效等显著优点。
关键词:低共熔溶剂;液液微萃取;新烟碱类杀虫剂;食用油Liquid Phase Microextraction with Deep Eutectic Solvent Combined with High Performance Liquid Chromatography for Determination of New Neonicotinoid Insecticide Residues in Edible OilWANG Suli, GUO Zhenfu, GENG Lili(Hebei Key Laboratory of Quality and Safety Analysis-testing for Agro-products and Food,Hebei North University, Zhangjiakou 075000, China)Abstract: In this study, a method for the determination of residues of four new neonicotinoid insecticides (thiamethoxam, imidacloprid, acetamiprid, and thiacloprid) in edible oil was developed using ultrasound-assisted liquid-liquid microextraction with deep eutectic solvent (UA-DES-LLME) followed by high performance liquid chromatography (HPLC).Samples were diluted with n-hexane and added with deep eutectic solvent (DES) before being subjected to ultrasonic-assisted dispersive liquid-liquid microextraction (UALLME). Then, the extract was centrifuged. The lower DES-rich phase was collected and injected into the HPLC system for analysis. Several important parameters influencing the extraction efficiency, such as the type and volume of DES, ultrasonication time, and centrifugation time, were investigated. Under the optimized conditions, the recoveries of the analytes were between 81.9% and 98.0%, with relative standard deviations (RSD, n = 5) of 5.5%–8.3%. The limits of detection (LODs) and limits of quantitation (LOQs) were3.2‒5.3 μg/L and10.8‒17.7 μg/L respectively. The method was successfully applied to real samples of soybean oil, sunflower seed oil and linseed oil.This method combined extraction and concentration in one step without the use of poisonous organic solvents.This method proved to be simple, rapid and efficient.Keywords: deep eutectic solvent; liquid-liquid microextraction; new neonicotinoid insecticides; edible oilDOI:10.7506/spkx1002-6630-20200423-294中图分类号:TS207.3 文献标志码:A 文章编号:1002-6630(2021)08-0277-06引文格式:王素利, 郭振福, 庚丽丽. 基于低共熔溶剂的液液微萃取技术测定食用油中的新烟碱类杀虫剂[J]. 食品科学, 2021, 42(8): 277-282. DOI:10.7506/spkx1002-6630-20200423-294. 收稿日期:2020-04-23基金项目:河北省自然科学基金项目(B2017405049);河北省高等学校科学重点研究项目(ZD2016139)第一作者简介:王素利(1968—)(ORCID: 0000-0002-8800-393X),女,教授,博士,研究方向为农产品安全。
没食子中没食子酸提取及抑菌效力比较

〔1〕SobarzoCM,LustigL,PonzioR,etal Effectsofdi(2 ethylhexyl)phthalateongapandtightjunctionproteinexpressioninthetestisofprepubertalrats〔J〕 MicroscResTech,2009,72(1):868 877 〔2〕ChauvuneF,MenuetA,LesenL,etal Time anddoserelatedeffectsofdi (2 ethylhexyl)phthalateanditsmainmetabolitesonthefunctionoftheratfetaltestisinvitro〔J〕 EnvironHealthPerspect,2009,117(4):515 521〔3〕LtiniG ThepotentialhazardsofexposuretoDi (2 ethyl hexyl)phthalateinbabies〔J〕 BiologyofNeonate,2000,78(4):269 276 〔4〕LiJH,KoYC PlasticizerincidentanditshealtheffectsinTaiwan〔J〕 TheKaohsiungJournalofMedicalSciences,2012,28(7):17 21〔5〕ChenYH,FuSH,HuangJK,etal AReviewontheResponseandManagementofthePlasticizer taintedFoodIncidentinTaiwan〔J〕 JournalofFoodandDrugAnalysis,2013,21(3):242 246〔6〕ZareanM,KeikhaM,PoursafaP,etal Asystematicreviewontheadversehealtheffectsofdi 2 ethylhexylphthalate〔J〕 EnvironSciPollutR,2016,23(24):24642 24693〔7〕杨晓冬 PVC医疗器械中塑化剂DEHP的安全性评价〔J〕 中国医疗器械杂志,2012,36(2):118 120〔8〕GB/14232 1 2004,Plasticscollapsiblecontainersforhumanbloodandbloodcomponents part1:conventionalcontainers〔S〕〔9〕GB/15593 1995,Plasticizedpolyvinylchloridecompoundsfortransfusion(infusion)equipment〔S〕〔10〕于洋,刘宝林,房克慧 一次性使用连接器塑化剂TOTM的风险评估〔J〕 医疗装备,2014,27(4):157 160〔11〕FlaminioLM,DeAngelisL,FerazzaM,etal Leachabilityofanewplasticizertri (2 ethylhexyl) trimellitatefromhaemodialysistubing〔J〕 TheInternationaljournalofartificialorgans,1988,11(6):435 439〔12〕PereiraGR,HeroldR,ZieglerM,etal Sustainedflexibilityininfantfeedingtubescontainingnonmigratingplasticizer〔J〕 JournalofPar enteralandEnteralNutrition,1982,6(1):64 67 〔13〕ZhaoXB,CourtneyJM Bloodresponsetoplasticizedpoly(vinylchloride):dependenceoffibrinogenadsorptiononplasticizerselectionandsurfaceplasticizerlevel〔J〕 Journalofmaterialsscience:materi alsinmedicine,2003,14(10):905 912〔14〕操敏,杨沁晨,王悦,等 HPLC法测定PVC输液器中TOTM在脂肪乳注射液中的溶出量〔J〕 海峡药学,2016,28(1):43 45 〔15〕RieI,MiuraN,IquchiH,etal DeterminationoftrioctyltrimellitatereleasefromPVCtubebyLC MS/MS〔J〕 InternationalJournalofPharmaceutics,2008,360(1 2):91 95〔16〕丁存刚,张毅兰,周臻,等 PVC输液器中偏苯三酸三辛酯向肠内营养乳剂迁移量的LC MS/MS法测定〔J〕 中国医药工业杂志,2012,43(7):588 591〔17〕NagarajuD,HuangSD Determinationoftriazineherbicidesinaqueoussamplesbydispersiveliquid liquidmicroextractionwithgaschromatography iontrapmassspectrometry〔J〕 JChromatogrA,2007,1161(1 3):89 97〔18〕MohammadiA,YaminiY,AlizadehN Dodecylsulfate dopedpolypyrrolefilmpreparedbyelectrochemicalfibercoatingtechniqueforheadspacesolid phasemicroextractionofpolycyclicaromatichydro carbons〔J〕 J ChromatogrA,2005,1063(1/2):1 8没食子中没食子酸提取及抑菌效力比较张小莉(咸阳市食品药品检验检测中心,陕西咸阳712000)摘要:目的 建立没食子中没食子酸最佳提取方法。
分散液液微萃取-气相色谱-质谱联用法测定饮料中4种对羟基苯甲酸酯类防腐剂

分散液液微萃取(Dispersive liquid.1iquid microextraction,DLLME)是近年来发展起来的一种样品 前处理技术,具有简单、快速、环境友好等特点,广泛用于环境、食品、生物样品中痕量有机污染物 的萃取与富集。本研究采用DLLME样品前处理技术萃取和富集饮料样品中的4种对羟基苯甲酸酯类 防腐剂(对羟基苯甲酸甲酯、对羟基苯甲酸乙酯、对羟基苯甲酸丙酯和对羟基苯甲酸丁酯),并结合气 相色谱一质谱联用(GC.MS)技术测定其含量。
bcvea'age sm甲lcB;Aj
sa唧Ics;阳b:1.m汕ylpanb叫2.甜脚a曲叫3.脚啊lpa蜘;重blI嘲pmbm
References
1 2
DReazrabereeIPVDl,.H删aYrHvoesysPeWi』niAMMp,pALghToaxeiecE01,.a,K2,0n08a,d(i2F8),:B舐561j~im57s8.ZChrtm以togrA,2006,(1116):1-9
实验方法:在5 mL水样中迅速注入0.5 mL丙酮(分散剂)和13吐氯苯(萃取剂)混合物,轻 轻振摇后,形成浑浊态,以3000 r/min离心5 mm后,分析物被萃取并富集到下层沉淀相中,用气相进 样针取l吐沉淀相注入GC.MS(Shimadzu QP2010 Plus)分离测定。实验优化了分散剂类型和体积、 萃取剂类犁和体积、萃取时I.日J和盐效应等参数。
本文读者也读过(3条) 1. 汪隽.范必威.许淑霞.WANG Jun.FAN Bi-wei.XU Shu-xia 固相萃取-液质联用法测定乳制品中对羟基苯甲酸酯 [期刊论文]-食品科学2008,29(7) 2. 韩熠.刘欣丽.贾晓宇.段太成.陈杭亭 分散液液微萃取-气相色谱-质谱联用法测定饮料中4种对羟基苯甲酸酯类 防腐剂[期刊论文]-分析化学2009,37(z1) 3. 王勍.WANG Qing ASE及GPC技术在测定对羟基苯甲酸酯类防腐剂中的应用[期刊论文]-福建农业学报2010,25(1)
参考文献——精选推荐

参考⽂献[1] Meng W., Wei J., Luo X., et al. Separation of β-agonists in pork on a weak cation exchange column by HPLC with fluorescence detection. Analytical Methods,2012, 4(4): 1163.[2] 聂建荣, 朱铭⽴, 连槿, 等. ⾼效液相⾊谱-串联质谱法检测动物尿液中的15 种β-受体激动剂. ⾊谱,2010, 28(8): 759-764.[3] Traynor I., Crooks S., Bowers J., et al. Detection of multi-β-agonist residues in liver matrix by use of a surface plasma resonance biosensor. Analytica Chimica Acta,2003, 483(1): 187-191. [4] Kuiper H., Noordam M., van Dooren-Flipsen M., et al. Illegal use of beta-adrenergic agonists: European Community. Journal of Animal Science,1998, 76(1): 195-207.[5] Watkins L., Jones D., Mowrey D., et al. The effect of various levels of ractopamine hydrochloride on the performance and carcass characteristics of finishing swine. Journal of Animal Science,1990, 68(11): 3588-3595.[6] Parr M. K., Opfermann G., Sch?nzer W. Analytical methods for the detection of clenbuterol. Bioanalysis,2009, 1(2): 437-450.[7] López-Mu?oz F., Alamo C., Rubio G., et al. Half a century since the clinical introduction of chlorpromazine and the birth of modern psychopharmacology. Prog Neuropsychopharmacol Biol Psychiatry,2004, 28(1): 205-208.[8] Goodman L., Gilman A. The pharmacological basis of therapeutics, 7th edn Macmillan. New York,1980: 1054-1105.[9] 王春燕. ⽑细管电泳—电化学发光检测吩噻嗪类药物的研究. 长春理⼯⼤学, 2006.[10] 孙雷, 张骊, 徐倩, et al. 超⾼效液相⾊谱-串联质谱法检测猪⾁和猪肾中残留的10 种镇静剂类药物. ⾊谱,2010, 28(1): 38-42.[11] 顾华兵, 谢洁, 彭涛, et al. 鸡⾁组织中氯丙嗪残留的HPLC-MS/MS 检测⽅法的建⽴. 中国家禽,2014, 36(15): 33-36.[12] Mitchell G., Dunnavan G. Illegal use of beta-adrenergic agonists in the United States. Journal of Animal Science,1998, 76(1): 208-211.[13] Directive C. Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions89/187/EEC and 91/664/EEC. Official Journal L125,1996, 23(5): 10-32.[14] 农业部, 卫⽣部. 禁⽌在饲料和动物饮⽤⽔中使⽤的药物品种⽬录[Z] 农业部公告[2002] 176 号. 2002.[15] Damasceno L., Ventura R., Cardoso J., et al. Diagnostic evidence for the presence of β-agonists using two consecutive derivatization procedures and gas chromatography–mass spectrometric analysis. Journal of Chromatography B,2002,780(1): 61-71.[16] 王培龙. β-受体激动剂及其检测技术研究. 农产品质量与安全,2014, 1): 44-52.[17] Wang L.-Q., Zeng Z.-L., Su Y.-J., et al. Matrix effects in analysis of β-agonists with LC-MS/MS: influence of analyte concentration, sample source, and SPE type. Journal of Agricultural and Food Chemistry,2012, 60(25): 6359-6363.[18] Shao B., Jia X., Zhang J., et al. Multi-residual analysis of 16 β-agonists in pig liver, kidney and muscle by ultra performance liquid chromatography tandem mass spectrometry. Food Chemistry,2009, 114(3): 1115-1121.[19] Josefsson M., Sabanovic A. Sample preparation on polymeric solid phase extraction sorbents for liquid chromatographic-tandem mass spectrometric analysis of human whole blood--a study on a number of beta-agonists and beta-antagonists. Journal of Chromatography A 2006, 1120(1-2):1-12.[20] Zhang Z., Yan H., Cui F., et al. Analysis of Multiple β-Agonist and β-Blocker Residues in Porcine Muscle Using Improved QuEChERS Method and UHPLC-LTQ Orbitrap Mass Spectrometry. Food Analytical Methods,2015: 1-10. [21] Wang P., Liu X., Su X., et al. Sensitive detection of β-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection. Food chemistry,2015, 184(72-79.[22] Li T., Cao J., Li Z., et al. Broad screening and identification of beta-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search. Food Chem,2016, 192(188-196.[23] Xiong L., Gao Y.-Q., Li W.-H., et al. A method for multiple identification of four β2-Agonists in goat muscle and beefmuscle meats using LC-MS/MS based on deproteinization by adjusting pH and SPE for sample cleanup. Food Science and Biotechnology,2015, 24(5): 1629-1635.[24] Zhang Y., Zhang Z., Sun Y., et al. Development of an Analytical Method for the Determination of β2-Agonist Residues in Animal Tissues by High-Performance Liquid Chromatography with On-line Electrogenerated [Cu (HIO6) 2] 5--Luminol Chemiluminescence Detection. Journal of Agricultural and Food chemistry,2007, 55(13): 4949-4956.[25] Liu W., Zhang L., Wei Z., et al. Analysis of beta-agonists and beta-blockers in urine using hollow fibre-protected liquid-phase microextraction with in situ derivatization followed by gas chromatography/mass spectrometry. Journal of Chromatography A 2009, 1216(28): 5340-5346. [26] Caban M., Mioduszewska K., Stepnowski P., et al. Dimethyl(3,3,3-trifluoropropyl)silyldiethylamine--a new silylating agent for the derivatization of beta-blockers and beta-agonists in environmental samples. Analytica Chimica Acta,2013, 782(75-88.[27] Caban M., Stepnowski P., Kwiatkowski M., et al. Comparison of the Usefulness of SPE Cartridges for the Determination of β-Blockers and β-Agonists (Basic Drugs) in Environmental Aqueous Samples. Journal of Chemistry,2015, 2015([28] Zhang Y., Wang F., Fang L., et al. Rapid determination of ractopamine residues in edible animal products by enzyme-linked immunosorbent assay: development and investigation of matrix effects. J Biomed Biotechnol,2009, 2009(579175.[29] Roda A., Manetta A. C., Piazza F., et al. A rapid and sensitive 384-microtiter wells format chemiluminescent enzyme immunoassay for clenbuterol. Talanta,2000, 52(2): 311-318.[30] Bacigalupo M., Meroni G., Secundo F., et al. Antibodies conjugated with new highly luminescent Eu 3+ and Tb 3+ chelates as markers for time resolved immunoassays. Application to simultaneous determination of clenbuterol and free cortisol in horse urine. Talanta,2009, 80(2): 954-958.[31] He Y., Li X., Tong P., et al. An online field-amplification sample stacking method for the determination of β 2-agonists in human urine by CE-ESI/MS. Talanta,2013, 104(97-102.[32] Li Y., Niu W., Lu J. Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flow injection chemiluminescence method using luminol–KMnO 4 system. Talanta,2007, 71(3): 1124-1129.[33] Saar E., Beyer J., Gerostamoulos D., et al. The analysis of antipsychotic drugs in humanmatrices using LC‐MS (/MS). Drug testing and analysis,2012, 4(6): 376-394.[34] Mallet E., Bounoure F., Skiba M., et al. Pharmacokinetic study of metopimazine by oral route in children. Pharmacol Res Perspect,2015, 3(3): e00130.[35] Thakkar R., Saravaia H., Shah A. Determination of Antipsychotic Drugs Known for Narcotic Action by Ultra Performance Liquid Chromatography. Analytical Chemistry Letters,2015, 5(1): 1-11.[36] Kumazawa T., Hasegawa C., Uchigasaki S., et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography–mass spectrometry. Journal of Chromatography A,2011, 1218(18): 2521-2527.[37] Flieger J., Swieboda R. Application of chaotropic effect in reversed-phase liquid chromatography of structurally related phenothiazine and thioxanthene derivatives. J Chromatogr A,2008, 1192(2): 218-224.[38] Tu Y. Y., Hsieh M. M., Chang S. Y. Sensitive detection of piperazinyl phenothiazine drugs by field‐amplified sample stacking in capillary electrophoresis with dispersive liquid–liquid microextraction. Electrophoresis,2015, 36(21-22): 2828-2836.[39] Geiser L., Veuthey J. L. Nonaqueous capillary electrophoresis in pharmaceutical analysis. Electrophoresis,2007, 28(1‐2): 45-57.[40] Lara F. J., García‐Campa?a A. M., Gámiz‐Gracia L., et al. Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis,2006,27(12): 2348-2359.[41] Lee H. B., Sarafin K., Peart T. E. Determination of beta-blockers and beta2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A,2007, 1148(2): 158-167.[42] Meng W., Wei J., Luo X., et al. Separation of β-agonists in pork on a weak cation exchange column by HPLC with fluorescence detection. Analytical Methods,2012, 4(4): 1163-1167. [43] Yang F., Liu Z., Lin Y., et al. Development an UHPLC-MS/MS Method for Detection of β-Agonist Residues in Milk. Food Analytical Methods,2011, 5(1): 138-147.[44] Quintana M., Blanco M., Lacal J., et al. Analysis of promazines in bovine livers by high performance liquid chromatography with ultraviolet and fluorimetric detection. Talanta,2003, 59(2): 417-422.[45] Tanaka E., Nakamura T., Terada M., et al. Simple and simultaneous determination for 12 phenothiazines in human serum by reversed-phase high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci,2007, 854(1-2): 116-120.[46] Kumazawa T., Hasegawa C., Uchigasaki S., et al. Quantitative determination of phenothiazine derivatives in human plasma using monolithic silica solid-phase extraction tips and gas chromatography-mass spectrometry. J ChromatogrA,2011, 1218(18): 2521-2527.[47] Qian J. X., Chen Z. G. A novel electromagnetic induction detector with a coaxial coil for capillary electrophoresis. Chinese Chemical Letters,2012, 23(2): 201-204.[48] Baciu T., Botello I., Borrull F., et al. Capillary electrophoresis and related techniques in the determination of drugs of abuse and their metabolites. TrAC Trends in Analytical Chemistry,2015, 74(89-108.[49] Sirichai S., Khanatharana P. Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol in pharmaceuticals and human urine by capillary electrophoresis. Talanta,2008, 76(5):1194-1198.[50] Toussaint B., Palmer M., Chiap P., et al. On‐line coupling of partial filling‐capillary zone electrophoresis with mass spectrometry for the separation of clenbuterol enantiomers. Electrophoresis,2001, 22(7): 1363-1372.[51] Redman E. A., Mellors J. S., Starkey J. A., et al. Characterization of Intact Antibody Drug Conjugate Variants using Microfluidic CE-MS. Analytical chemistry,2016.[52] Ji X., He Z., Ai X., et al. Determination of clenbuterol by capillary electrophoresis immunoassay with chemiluminescence detection. Talanta,2006, 70(2): 353-357.[53] Li L., Du H., Yu H., et al. Application of ionic liquid as additive in determination of three beta-agonists by capillary electrophoresis with amperometric detection. Electrophoresis,2013, 34(2): 277-283.[54] 张维冰. ⽑细管电⾊谱理论基础. 北京:科学出版社,2006.[55] Anurukvorakun O., Suntornsuk W., Suntornsuk L. Factorial design applied to a non-aqueous capillary electrophoresis method for the separation of beta-agonists. J Chromatogr A,2006, 1134(1-2): 326-332.[56] Shi Y., Huang Y., Duan J., et al. Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis. J Chromatogr A,2006, 1125(1): 124-128.[57] Chevolleau S., Tulliez J. Optimization of the separation of β-agonists by capillary electrophoresis on untreated and C 18 bonded silica capillaries. Journal of Chromatography A,1995, 715(2): 345-354.[58] Wang W., Zhang Y., Wang J., et al. Determination of beta-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Sci,2010, 85(2): 302-305.[59] Lin C. E., Liao W. S., Chen K. H., et al. Influence of pH on electrophoretic behavior of phenothiazines and determination of pKa values by capillary zone electrophoresis. Electrophoresis,2003, 24(18): 3154-3159.[60] Muijselaar P., Claessens H., Cramers C. Determination of structurally related phenothiazines by capillary zone electrophoresis and micellar electrokinetic chromatography. Journal of Chromatography A,1996, 735(1): 395-402.[61] Wang R., Lu X., Xin H., et al. Separation of phenothiazines in aqueous and non-aqueous capillary electrophoresis. Chromatographia,2000, 51(1-2): 29-36.[62] Chen K.-H., Lin C.-E., Liao W.-S., et al. Separation and migration behavior of structurally related phenothiazines in cyclodextrin-modified capillary zone electrophoresis. Journal of Chromatography A,2002, 979(1): 399-408.[63] Lara F. J., Garcia-Campana A. M., Ales-Barrero F., et al. Development and validation of a capillary electrophoresis method for the determination of phenothiazines in human urine in the low nanogram per milliliter concentration range using field-amplified sample injection. Electrophoresis,2005, 26(12): 2418-2429.[64] Lara F. J., Garcia-Campana A. M., Gamiz-Gracia L., et al. Determination of phenothiazines in pharmaceutical formulations and human urine using capillary electrophoresis with chemiluminescence detection. Electrophoresis,2006,27(12): 2348-2359.[65] Yu P. L., Tu Y. Y., Hsieh M. M. Combination of poly(diallyldimethylammonium chloride) and hydroxypropyl-gamma-cyclodextrin for high-speed enantioseparation of phenothiazines bycapillary electrophoresis. Talanta,2015, 131(330-334.[66] Kakiuchi T. Mutual solubility of hydrophobic ionic liquids and water in liquid-liquid two-phase systems for analytical chemistry. Analytical Sciences,2008, 24(10): 1221-1230.[67] 陈志涛. 基于离⼦液体相互作⽤⽑细管电泳新⽅法. 万⽅数据资源系统, 2011.[68] Liu J.-f., Jiang G.-b., J?nsson J. ?. Application of ionic liquids in analytical chemistry. TrAC Trends in Analytical Chemistry,2005, 24(1): 20-27.[69] YauáLi S. F. Electrophoresis of DNA in ionic liquid coated capillary. Analyst,2003, 128(1): 37-41.[70] Kaljurand M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002, 23(426-430.[71] Xu Y., Gao Y., Li T., et al. Highly Efficient Electrochemiluminescence of Functionalized Tris (2, 2′‐bipyridyl) ruthenium (II) and Selective Concentration Enrichment of Its Coreactants. Advanced Functional Materials,2007, 17(6): 1003-1009.[72] Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta,2006, 556(1): 38-45.[73] Koel M. Ionic Liquids in Chemical Analysis. Critical Reviews in Analytical Chemistry,2005, 35(3): 177-192.[74] Yanes E. G., Gratz S. R., Baldwin M. J., et al. Capillary electrophoretic application of 1-alkyl-3-methylimidazolium-based ionic liquids. Analytical chemistry,2001, 73(16): 3838-3844.[75] Qi S., Cui S., Chen X., et al. Rapid and sensitive determination of anthraquinones in Chinese herb using 1-butyl-3-methylimidazolium-based ionic liquid with β-cyclodextrin as modifier in capillary zone electrophoresis. Journal of Chromatography A,2004, 1059(1-2): 191-198.[76] Jiang T.-F., Gu Y.-L., Liang B., et al. Dynamically coating the capillary with 1-alkyl-3-methylimidazolium-based ionic liquids for separation of basic proteins by capillary electrophoresis. Analytica Chimica Acta,2003, 479(2): 249-254.[77] Jiang T. F., Wang Y. H., Lv Z. H. Dynamic coating of a capillary with room-temperature ionic liquids for the separation of amino acids and acid drugs by capillary electrophoresis. Journal of Analytical Chemistry,2006, 61(11): 1108-1112.[78] Qi S., Cui S., Cheng Y., et al. Rapid separation and determination of aconitine alkaloids in traditional Chinese herbs by capillary electrophoresis using 1-butyl-3-methylimidazoium-based ionic liquid as running electrolyte. Biomed Chromatogr,2006, 20(3): 294-300.[79] Wu X., Wei W., Su Q., et al. Simultaneous separation of basic and acidic proteins using 1-butyl-3-methylimidazolium-based ion liquid as dynamic coating and background electrolyte in capillary electrophoresis. Electrophoresis,2008, 29(11): 2356-2362.[80] Guo X. F., Chen H. Y., Zhou X. H., et al. N-methyl-2-pyrrolidonium methyl sulfonate acidic ionic liquid as a new dynamic coating for separation of basic proteins by capillary electrophoresis. Electrophoresis,2013, 34(24): 3287-3292.[81] Mo H., Zhu L., Xu W. Use of 1-alkyl-3-methylimidazolium-based ionic liquids as background electrolytes in capillary electrophoresis for the analysis of inorganic anions. J Sep Sci,2008, 31(13): 2470-2475.[82] Yu L., Qin W., Li S. F. Y. Ionic liquids as additives for separation of benzoic acid and chlorophenoxy acid herbicides by capillary electrophoresis. Analytica Chimica Acta,2005, 547(2): 165-171.[83] Marszall M. P., Markuszewski M. J., Kaliszan R. Separation of nicotinic acid and itsstructural isomers using 1-ethyl-3-methylimidazolium ionic liquid as a buffer additive by capillary electrophoresis. J Pharm Biomed Anal,2006, 41(1): 329-332.[84] Gao Y., Xu Y., Han B., et al. Sensitive determination of verticine and verticinone in Bulbus Fritillariae by ionic liquid assisted capillary electrophoresis-electrochemiluminescence system. Talanta,2009, 80(2): 448-453.[85] Li J., Han H., Wang Q., et al. Polymeric ionic liquid as a dynamic coating additive for separation of basic proteins by capillary electrophoresis. Anal Chim Acta,2010, 674(2): 243-248.[86] Su H. L., Kao W. C., Lin K. W., et al. 1-Butyl-3-methylimidazolium-based ionic liquids and an anionic surfactant: excellentbackground electrolyte modifiers for the analysis of benzodiazepines through capillary electrophoresis. J ChromatogrA,2010, 1217(17): 2973-2979.[87] Huang L., Lin J. M., Yu L., et al. Improved simultaneous enantioseparation of beta-agonists in CE using beta-CD and ionic liquids. Electrophoresis,2009, 30(6): 1030-1036.[88] Laamanen P. L., Busi S., Lahtinen M., et al. A new ionic liquid dimethyldinonylammonium bromide as a flow modifier for the simultaneous determination of eight carboxylates by capillary electrophoresis. J Chromatogr A,2005, 1095(1-2): 164-171.[89] Yue M.-E., Shi Y.-P. Application of 1-alkyl-3-methylimidazolium-based ionic liquids in separation of bioactive flavonoids by capillary zone electrophoresis. Journal of Separation Science,2006, 29(2): 272-276.[90] Liu C.-Y., Ho Y.-W., Pai Y.-F. Preparation and evaluation of an imidazole-coated capillary column for the electrophoretic separation of aromatic acids. Journal of Chromatography A,2000, 897(1): 383-392.[91] Qin W., Li S. F. An ionic liquid coating for determination of sildenafil and UK‐103,320 in human serum by capillary zone electrophoresis‐ion trap mass spectrometry. Electrophoresis,2002, 23(24): 4110-4116.[92] Qin W., Li S. F. Y. Determination of ammonium and metal ions by capillary electrophoresis–potential gradient detection using ionic liquid as background electrolyte and covalent coating reagent. Journal of Chromatography A,2004, 1048(2): 253-256.[93] Borissova M., Vaher M., Koel M., et al. Capillary zone electrophoresis on chemically bonded imidazolium based salts. J Chromatogr A,2007, 1160(1-2): 320-325.[94] Vaher M., Koel M., Kaljurand M. Non-aqueous capillary electrophoresis in acetonitrile using lonic-liquid buffer electrolytes. Chromatographia,2000, 53(1): S302-S306.[95] Vaher M., Koel M., Kaljurand M. Ionic liquids as electrolytes for nonaqueous capillary electrophoresis. Electrophoresis,2002, 23(3): 426.[96] Vaher M., Koel M. Separation of polyphenolic compounds extracted from plant matrices using capillary electrophoresis. Journal of Chromatography A,2003, 990(1-2): 225-230.[97] Francois Y., Varenne A., Juillerat E., et al. Nonaqueous capillary electrophoretic behavior of 2-aryl propionic acids in the presence of an achiral ionic liquid. A chemometric approach. J Chromatogr A,2007, 1138(1-2): 268-275.[98] Lamoree M., Reinhoud N., Tjaden U., et al. On‐capillary isotachophoresis for loadability enhancement in capillary zone electrophoresis/mass spectrometry of β‐agonists. Biological mass spectrometry,1994, 23(6): 339-345.[99] Huang P., Jin X., Chen Y., et al. Use of a mixed-mode packing and voltage tuning for peptide mixture separation in pressurized capillary electrochromatography with an ion trap storage/reflectron time-of-flight mass spectrometer detector. Analytical chemistry,1999, 71(9):1786-1791.[100] Le D. C., Morin C. J., Beljean M., et al. Electrophoretic separations of twelve phenothiazines and N-demethyl derivatives by using capillary zone electrophoresis and micellar electrokinetic chromatography with non ionic surfactant. Journal of Chromatography A,2005, 1063(1-2): 235-240.。
分析化学英文词汇
absorbance吸光度acetonitrile 乙腈affinity chromatography亲和色谱法aliquot 等份(试液)aluminum foil 铝箔analytical chemistry 分析化学American Chemical Society (缩写ACS) 美国化学会beaker 烧杯bibliography 参考书目blender 混合器,搅拌机buffer solution 缓冲溶液burette 滴定管centrifugation 离心Chemical Abstracts (缩写CA) 化学文摘chemical analysis 化学分析chromatograph 色谱仪chromatogram色谱图cloud point extraction(缩写CPE)浊点萃取confidence level 置信水平conical flask 锥形瓶daughter ion 子离子Diode array detector (缩写DAD)二极管阵列检测器disperser solvent 分散剂dispersive liquid–liquid microextraction 分散液液微萃取distilled water 蒸馏水dropping pipet 滴管electrochemical analysis电化学分析electrode 电极electrolyte 电解质electromagnetic spectrum 电磁波谱electrospray ionization (缩写ESI ) 电喷雾离子化Eluate 洗出液Encyclopedia of analytical chemistry 分析化学百科全书The Engineering Index (缩写EI )工程索引enrichment factor 富集因子Evaporative Light Scattering Detector (缩写ELSD) 蒸发光散射检测器extraction efficiency 萃取效率fluorescence荧光fluorometry荧光分析法funnel 漏斗gas chromatography–mass spectrometry (缩写GC–MS) 气相色谱-质谱gas chromatography coupled to tandem mass spectrometry (缩写GC–MS/MS)气相色谱-串联质谱gel filtration chromatography凝胶过滤色谱法gel permeation chromatography凝胶渗透色谱法graduated cylinder 量筒high performance liquid chromatography (缩写HPLC) 高效液相色谱homogenize 使均质,将……打成匀浆hydrophobic 疏水的identification 鉴定Impact Factor影响因子incubation time 温育时间Index to Scientific Technical Proceedings (缩写ISTP)科技会议录索引indicator 指示剂instrumental analysis 仪器分析interference 干扰ion exchange chromatography离子交换色谱法ion source 离子源limit of detection (缩写LOD)检出限limit of quantitation (缩写LOQ)定量限linear regression equation 线性回归方程liquid chromatography tandem mass spectrometry (缩写LC-MS/MS)液相色谱串联质谱liquid chromatography with electrospray ionization tandem mass spectrometry (缩写LC-ESI-MS/MS)液相色谱电喷雾串联质谱liquid-liquid partition chromatography 液液分配色谱法liquid-solid adsorption chromatography 液固吸附色谱法mass analyzer 质量分析器Mass Spectrometer 质谱仪mass spectrum 质谱图mass-to-charge ratio 质荷比matrix effect 基质效应maximum absorption 最大吸收maximum value 最大值measuring pipet 吸量管micelle 胶束minimum value 最小值mobile phase 流动相molarity 摩尔浓度monograph专著normal phase liquid chromatography正相液相色谱法nominal concentration 标示浓度offprint抽印本optimization 优化outlier 离群值parent ion 母离子pipette 移液管potentiometry电位法preconcentration 预浓缩primary literature一次文献qualitative Analysis 定性分析Quality assurance and quality control (缩写QA/QC)质量保证和质量控制quantitative analysis 定量分析recovery 回收率refractive index detector 折光指数检测器,示差折光检测器relative abundance 相对丰度relative standard deviation (缩写RSD)相对标准偏差reproducibility 重现性reversed phase liquid chromatography(缩写RPLC)反相液相色谱法Royal Society of Chemistry(缩写RSC)英国皇家化学会Science Citation Index (缩写SCI )科学引文索引Science Citation Index Expanded (缩写SCIE) 科学引文索引扩展版Scientific notation 科学计数法signal to noise ratio (缩写S/N)信噪比size exclusion chromatography尺寸排除色谱法secondary literature二次文献solid-phase extraction (缩写SPE)固相萃取solid-phase microextraction (缩写SPME)固相微萃取spike 添加(v.)standard solution标准溶液stationary phase 固定相stoichiometric point化学计量点surfactant 表面活性剂supernatant 上清液syringe 注射器tap water 自来水titrant 滴定剂titration滴定Ultraviolet/Visible Spectrophotometry 紫外/可见分光光度法volumetric flask 容量瓶volumetric analysis容量分析法voltammetry 伏安法Accuracy 准确度 A measure of the agreement betweenan experimental result and its expected value. Analysis 分析A process that provides chemical or physicalinformation about the constituents in the sampleor the sample itselfAnalyte 被测物,被分析物The constituent of interest in asampleCalibration curve 校准曲线The result of a standardizationshowing graphically how a method’s signalchanges with respect to the amount of analyte. Calibration method 校准方法The basis of quantitative analysis:magnitude of measured property is proportional toconcentration of analyteChromophore 生色团 A functional group which absorbs acharacteristic ultraviolet or visible wavelength Gradient elution 梯度洗脱The process of changing the mobilephase’s solvent strength to enhance the separationof both early and late eluting solutes. Gravimetric analysis重量分析 A type of quantitative analysis in whichthe amount of a species in a material is determinedby converting the species into a product that can beisolated and weighed.Isocratic elution 等度洗脱the use of a mobile phase whosecomposition remains constant throughout theseparation.Matrix 基质All other constituents in a sample except forthe analytesMethod blank 方法空白A sample that contains all componentsof the matrix except the analyte.Outlier 离群值Data point whose value is much larger orsmaller than the remaining data.Precision 精密度An indication of the reproducibility of ameasurement or resultQuantitative analysis 定量分析The determination of the amount of asubstance or species present in a material. Quantitative transfer 定量转移The process of moving a sample fromone container to another in a manner that ensures allmaterial is transferred.Selectivity 选择性 A measure of a method’s freedom frominterferences as defined by the method’s selectivitycoefficient.Significant figures 有效数字The digits in a measured quantity,including all digits known exactly and one digit (thelast) whose quantity is uncertain. Spectrophotometry 分光光度法. An analytical method that involveshow light interacts with a substanceStock solution 储备液 A solution of known concentrationfrom which other solutions are prepared. Titration curve 滴定曲线 A graph showing the progress of atitration as a function of the volume of titrant added. V alidation (方法)确证,验证The process of verifying thata procedure yields acceptable results.titration error 滴定误差The determinate error in a titration due tothe difference between the end point and theequivalence point.1.Some key journals in Analytical Chemistry:Analytical ChemistryTrends in Analytical ChemistryJournal of Chromatography AJournal of Chromatography BAnalystAnalytica Chimica ActaTALANTACritical Reviews in Analytical ChemistryAnalytical and Bioanalytical ChemistryELECTROPHORESIS2. Types of articles published in scientific journals:Full Length Research PapersRapid CommunicationsReviewsShort CommunicationsDiscussions or Letters to the Editor(Some journals publish all types of articles, while others are devoted to only a single type.)3. The structure of a scientific paper:•Title•Authors (with affiliations and addresses)• Abstract (summary)• Key words•Introduction•Experimental•Results and discussion•Conclusion•Acknowledgement•References4. How to Read a Scientific Paper:Five Helpful Questions•1) WHY did they do this set of experiments?•2) HOW were the experiments actually done?•3) WHA T are the results?•4) WHA T can be concluded from the results?•5) Did they do everything correctly?5. Five-step analyzing process1) Identify and define the problem.2) Design the experimental procedure.3) Conduct an experiment and gather data.4) Analyze the experimental data.5) Report and suggestion.。
多环芳烃样品液
多环芳烃样品液簇拥液-液微萃取法(Dispersive liquid-liquid microextraction, DLLME)是2006年Assadi等首次提出的一种简便、迅速且集萃取和预浓缩于一体的微萃取新办法。
该技术基于三组分溶剂系统,主要包含2个步骤:①将适当比例混合的萃取剂和簇拥剂混合液通过气密型注射器迅速注入装有水样的锥形离心管中,此时萃取剂以极细微的液滴形式簇拥于水体中,水中待测组分被萃取到液滴中。
②高速离心形成的微乳液,密度大于1的萃取相沉积于锥形离心管的底部,移出沉积相,举行随后的仪器分析。
因为萃取剂以极小液滴形式存在水样中,和水体接触表面乐观大,可迅速达到传质平衡,因而快速完成萃取过程。
DLLME的突出优势是简便迅速、成本低和富集倍数高。
张建华等讨论了簇拥液-液微萃取富集水样中的多环芳烃,15种PAHs的回收率为67.4%~103.2%,检出限(S/N=3)在0.000 3~0.002 ug/L之间,萃取过程如下,移取5.0 ml水试样于10 ml带旋帽的锥形离心管中,用气密型注射器迅速注入1.00 ml(含10ul),形成乳状液,轻轻摇摆并离心5 min (6 000 r/min ),萃取剂形成极小的液滴并沉积于离心管底部,用10ul微量注射器吸取沉积相并确定体积。
取5ul沉积相举行HPLC分析。
祝本琼等开发了以密度小于水的轻质溶剂作为萃取剂,无需离心的簇拥液一液微萃取法,胜利用于水中多环芳烃的分析,加标回收率为80.2%~115.1%。
净化办法普通饮用水、地下水和饮用水水源地水样等的萃取液可不用净化,转换并浓缩萃取溶液至0.5 ml挺直举行HPLC分析。
而较脏的地表水和污水必需经过净化,否则无法举行正常色谱分析。
频繁的净化办法(HJ 478-2009):用1g硅胶柱或弗罗里硅土柱作为净化柱,将其固定在液液萃取净扮装置上。
先用4 ml淋洗液冲洗净化柱,再用10 ml平衡净化柱(当2 ml正己烷加入并流过净化柱后,关闭活塞,使正己烷在柱中停歇5 min)。
离子液体分散液相萃取
(R.-S. Zhao, L. L. Zhang, et. al. Anal Bioanal Chem, 2011, 399:1287–1293)
2.1.2 IL-DLPME-HPLC-UV分析环境水样中的DDT及其代谢产物
实际环境水样的色谱图
(R.-S. Zhao, L. L. Zhang, et. al. Anal Bioanal Chem, 2011, 399:1287–1293)
80 60 40 20 0 0 5 10 15 20 25 Centrifuging time (min) 30
(Ru-Song Zhao, Xia Wang, et al. Chin Chem Lett, 2011, 22, 97-100 )
2.2.2 温控离子液体DLPME-HPLC-MS-MS分析水样中HBCDs LOD: 0.1ng/mL; 线性范围:1-100ng/mL (HBCDs总浓度
2.3.2 IL/IL-DLPME-HPLC-ESI-UV分析环境水样中的菊酯类农药
(Ru-Song Zhao, Xia Wang, et al. J. Sep.Sci., 2011, 34, 830–836)
2.3.2 IL/IL-DLPME-HPLC-ESI-UV分析环境水样中的菊酯类农药
(Ru-Song Zhao, Xia Wang, et al. J. Sep.Sci., 2011, 34, 830–836)
实际样品分析
样品图
(Ru-Song Zhao, Xia Wang, et al. J. Sep. Sci., 2010, 33, 1842-1848)
2.2.2温控离子液体DLPME-HPLC-MS-MS分析水样中HBCDs
中药材成分有机溶剂与离子液体分散液相微萃取方法的比较及其机理探讨
中药材成分有机溶剂与离子液体分散液相微萃取方法的比较及其机理探讨田杰;陈璇;白小红【摘要】研究了离子液体分散液相微萃取(ILDLPME)机理;比较了ILDLPME和有机溶剂分散液相微萃取(OSDLPME)在测定蒽醌类化合物中的异同;建立了分散液相微萃取-高效液相色谱法测定药材中6种游离蒽醌类化合物(芦荟大黄素、大黄酸、丹蒽醌、大黄素、大黄酚和大黄素甲醚)含量的方法.在优化的实验条件下,OSDLPME和ILDLPME对 6种分析物的富集倍数分别为101~230和76~181;6种分析物的检出限分别在20~200 ng/L和40~400 ng/L之间;精密度(RSD)分别在3.1%~10.0%和1.3%~7.0%之间;4种中药材中分析物的回收率在81.7%~110.7%和81.9%~110.8%之间.离子液体在水中分散的同时进行有序排列,形成分子有序组合体,对分析物进行萃取.ILDLPME达平衡时间更快,精密度更高,方法更简便;OSDLPME浓缩倍数更高,检出限更低;两种方法对中药样品中游离蒽醌类化合物含量测定结果无显著性差异.【期刊名称】《分析化学》【年(卷),期】2010(038)011【总页数】6页(P1593-1598)【关键词】分散液相微萃取;离子液体;游离蒽醌类化合物;分子有序组合体【作者】田杰;陈璇;白小红【作者单位】山西医科大学药学院,太原,030001;山西医科大学药学院,太原,030001;山西医科大学药学院,太原,030001【正文语种】中文常见的大黄素型蒽醌类化合物包括芦荟大黄素、大黄酸、大黄素、大黄酚、大黄素甲醚等成分。
蒽醌类化合物分布广泛,具有抗菌消炎、保肝利胆、泻下通便、活血化瘀等功能。
中药材中测定蒽醌类化学成分的前处理方法有回流提取[1]、超声提取[2]、微波辅助提取[3]、液相微萃取[4]和超临界流体萃取[5]等。
这些方法有的手工操作繁冗,劳动强度大,时间周期长,甚至需要使用大量有机溶剂,不但对操作人员的健康有一定的影响,而且还会造成资源浪费及环境污染;有的需要特殊仪器,价格较贵,操作复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Chromatography A,1216(2009)1511–1514Contents lists available at ScienceDirectJournal of ChromatographyAj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c h r o maShort communicationDispersive liquid–liquid microextraction combined with high-performance liquid chromatography-UV detection as a very simple,rapid and sensitive method for the determination of bisphenol A in water samplesMohammad Rezaee a ,Yadollah Yamini a ,∗,Shahab Shariati b ,Ali Esrafili a ,Mojtaba Shamsipur caDepartment of Chemistry,Tarbiat Modares University,P.O.Box 14115-175,Tehran,Iran bDepartment of Chemistry,Islamic Azad University,Rasht Branch,Rasht,Iran cDepartment of Chemistry,Faculty of Sciences,Razi University,Kermanshah,Irana r t i c l e i n f o Article history:Received 11November 2008Received in revised form 23December 2008Accepted 31December 2008Available online 8January 2009Keywords:Dispersive liquid–liquid microextraction Preconcentration Bisphenol A Water samples HPLCa b s t r a c tDispersive liquid–liquid microextraction (DLLME)coupled with high-performance liquid chromatogra-phy (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA)in water samples.An appropriate mixture of acetone (disperser solvent)and chloroform (extraction solvent)was injected rapidly into a water sample containing BPA.After extraction,sedimented phase was analyzed by HPLC-UV.Under the optimum conditions (extractant solvent:142L of chloroform,disperser sol-vent:2.0mL of acetone,and without salt addition),the calibration graph was linear in the range of 0.5–100g L −1with the detection limit of 0.07g L −1for BPA.The relative standard deviation (RSD,n =5)for the extraction and determination of 100g L −1of BPA in the aqueous samples was 6.0%.The results showed that DLLME is a very simple,rapid,sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.©2009Elsevier B.V.All rights reserved.1.IntroductionBisphenol A (BPA)is a chemical used in polycarbonate plastics,epoxy resins and also in various industrial products.In 1993,Krish-nan et al.reported that BPA exhibited estrogenic activity and is released from polycarbonate flasks during autoclaving [1].In addi-tion,the estrogenic activity of BPA has been extensively evaluated by a variety of assays [2–3].Although many studies have been done for detection of BPA in environmental samples [4–7],the effect of BPA on environmental samples still remains a controversial issue.Highly reliable methods are required for the detection of trace compounds with estro-genic activity.Some sample preparation techniques as liquid–liquid extraction (LLE)[8],solid-phase extraction (SPE)[9–11]and molec-ularly imprinted solid-phase extraction (MISPE)[12,13]have been developed for the extraction of BPA from various matrices.Recently,solventless and solvent minimized polymer sorption techniques such as solid-phase microextraction (SPME)[14]and stir bar sorp-tive extraction (SBSE)[15]have been successfully applied for the extraction of BPA from water samples.Liquid-phase microextrac-tion (LPME),that use only a single droplet of a solvent has been∗Corresponding author.Tel.:+982182883417;fax:+982188006544.E-mail address:yyamini@modares.ac.ir (Y.Yamini).developed for the extraction of different analytes from water sam-ples [16].Also,LPME has been applied successfully to the extraction of BPA in water samples [17].A novel microextraction technique,termed dispersive liquid–liquid microextraction (DLLME)as a powerful percon-centration technique was demonstrated by Rezaee et al.[18].The performance of DLLME was illustrated by extraction of different organic and inorganic compounds [18–25]from water samples.In the present study,the applicability of the DLLME combined with HPLC-UV for the extraction and determination of BPA in water samples was investigated.2.Experimental2.1.Chemicals and reagentsBisphenol A was purchased from Merck (Darmstadt,Germany).HPLC-grade solvents were used throughout of the experiments and were obtained from Merck.The ultra-pure water used was purified on a model Aqua Max-Ultra Youngling Ultra-Pure water purifica-tion system (Dongan-gu,South Korea).Proper amounts of BPA were dissolved in methanol to obtain stock solution of the analyte with a concentration of 250mg L −1.Working standard solutions were freshly prepared by diluting the standard solution of the analyte with ultra-pure water to the required concentration.0021-9673/$–see front matter ©2009Elsevier B.V.All rights reserved.doi:10.1016/j.chroma.2008.12.0911512M.Rezaee et al./J.Chromatogr.A1216(2009)1511–1514 2.2.HPLC systemChromatographic separations were carried out on a Varian HPLCequipped with a9012HPLC pump(Mulgrave,Australia),a9010autosampler(having a20L sample loop)and a Varian9050UV–vis detector.Separations were carried out on a Zorbax ExtendC18column(15cm×4.6mm,with3L particle size)from Agilent(Wilmington,DE,USA).A mixture of water and acetonitrile(55:44)at aflow rate of1mL min−1was used as a mobile phase in isocraticelution mode.The injection volume was20L for all the solutionsand the detection was performed at the wavelength of224nm.2.3.Dispersive liquid–liquid microextraction procedureA10.0mL of ultra-pure water was placed in a40mL glass tubewith conical bottom and spiked at the level of100g L−1of BPA.Acetone(2.0mL),as disperser solvent,(containing142L chloro-form)was injected rapidly into the sample solution using a5.0mLgastight Hamilton syringe(Bonaduz,Switzerland).The producedcloudy solution was centrifuged for5min at6000rpm by apply-ing the model2010D Centurion Scientific Centrifuge(West Sussex,UK).After centrifuging,the sedimented phase(about30±2L)wascompletely transferred into another test tube and after evaporationof the solvent in a water bath;the residue was dissolved in30Lof HPLC-grade methanol and injected into the HPLC.All the experi-ments were performed in triplicates and means of the results werecalculated and reported.3.Results and discussionPreconcentration factor(PF)and percent extraction recovery(ER%)as analytical responses were calculated based on the follow-ing equations:PF=C sedC0(1)ER%=C sed×V sed/C0×V aq×100(2) where C sed and C0are concentration of the analyte in the sed-imented phase and initial concentration of the analyte in the aqueous sample,respectively.V sed and V aq are the volume of the sedimented phase and volume of the aqueous sample,respectively.C sed is calculated from a calibration curve which was obtained by direct injection of BPA with the concentrations in the range of 5–25mg L−1.On the other hand the relative recovery(RR)was obtained from the following equation:RR%=C found−C realC added×100(3)where C found,C real and C added are the concentrations of analyte after addition of known amount of standard in the real sample,the con-centration of analyte in real sample and the concentration of known amount of standard which was spiked to the real sample,respec-tively.3.1.Selection of extractant solventIn the present study,chlorobenzene(density,1.11g mL−1),car-bon tetrachloride(density,1.59g mL−1)and chloroform(density, 1.48g mL−1)were selected as extractant solvents.The study was performed by using2.0mL of acetone containing different vol-umes of the extractant solvent to produce about30L of the sedimented phase.Thereby,71,76and142L of chlorobenzene, carbon tetrachloride and chloroform were used,respectively.ER% using chlorobenzene,carbon tetrachloride and chloroform were 33.9%,28.3%and45.2%,respectively.The results revealed that chlo-roform has the highest extraction recovery in comparison with the other tested solvents.It is probably because of higher solubility of BPA in chloroform in comparison with chlorobenzene and carbon tetrachloride.Also,evaporation of chloroform is easier than the other tested solvents.Therefore,chloroform was selected as the extraction solvent.3.2.Selection of disperser solventAcetone,acetonitrile and methanol,which are miscible with water and the extactant solvents,were selected as disperser solvents.A series of sample solutions were prepared by the injection of2.0mL of each disperser solvent containing142L chloroform(as extractant solvent)into the sample solution.Con-sidering the sedimented phase volume,it was found that with combination of chloroform–acetonitrile,the sedimented phase vol-ume was very higher than30L and the cloudy state was not formed well,whereas in the case of chloroform–methanol,and chloroform–acetone,the sedimented volume was about30L. Therefore,acetone and methanol could be selected as disperser solvents for further studies.Further experiments revealed that the ER%in the presence of acetone and methanol were46.5%and36.7%, respectively.According to the results,acetone has the higher per-cent recovery,lower toxicity and lower cost in comparison with methanol.Therefore,acetone was selected for further studies.3.3.Effect of extractant solvent volumeTo examine the effect of extractant solvent volume on the ER%, solutions containing different volumes of chloroform(122,132,142, 152and162L)andfixed volume of acetone(2.0mL)were used for DLLME procedures.By increasing the volume of chloroform from 122to162L,the volume of the sedimented phase increases from 10to56L.Also,according to Fig.1,by increasing the volume of chloroform,the ER%of analyte increases.On the other hand, preconcentration factor decreases by increasing the volume of chlo-roform(Fig.1)due to increase in the sedimented phase volume.The volume of extractant solvent has to be selected to obtain high PF and ER%.In the following studies,142L of chloroform was selected as an optimal volume of the extractant solvent.3.4.Effect of disperser solvent volume and extraction timeVariation of the volume of acetone causes changes in the volume of sedimented phase.To obtain a constant volume of sedimented phase,the volumes of acetone and chloroform were changed,simul-taneously.The experimental conditions werefixed and included the use of different volumes of acetone(0.50,1.0,2.0and4.0mL)con-taining100,120,142and158L of chloroform,respectively.The obtained results showed that ER%of BPA increases by increasing of the volume of acetone and then decreases by further increasingofFig.1.Effect of the extractant solvent(CHCl3)volume on the PF( )and ER%( )of BPA.Extraction conditions:water sample volume,10.0mL;disperser solvent(ace-tone)volume,2.0mL;concentration of BPA,100g L−1.M.Rezaee et al./J.Chromatogr.A 1216(2009)1511–15141513Table 1Determination of BPA in river and tap water samples.Sample Concentration of BPA (g L −1)Added BPA (g L −1)Found BPA (g L −1)(±RSD%d )(n =3)Relative recovery (%)River water a n.d.c 1.000.95(±8.40)95.35.00 4.83(±7.60)96.6Tap water bn.d.c1.000.98(±9.10)98.25.004.67(±6.80)93.4a Kolakchal river water (Tehran,Iran).b The water was taken from Tarbiat Modares University (Tehran,Iran).c Not detected.dStandard deviation.the volume of acetone.It seems that,in the lower volumes of ace-tone,a cloudy state is not formed well,thereby,the recovery is low.In higher volumes of acetone,solubility of BPA in aqueous solutions increases.Therefore,the extraction efficiency decreases due to the decrease of distribution coefficient.A 2.0mL of acetone was chosen as optimum volume.According to the other reports [18–25],time has no influence on the extraction efficiency,because in DLLME,the surface area between the extractant solvent and the aqueous phase is infinitely large.In the present method,centrifuging of the sample solution is time determining step,which is about 3min.3.5.Salt additionThe effect of salt addition on the extraction recovery of BPA was evaluated by adding NaCl (0–8%,w/v)into the aqueous solution containing 100g L −1of BPA and applying the DLLME procedure.By increasing of NaCl%,the volume of sedimented phase increases (from 30to 50L),because of the decrease in solubility of the extractant solvent in the presence of salt.Fig.2shows that PF decreases in the presence of salt;because of increasing in the vol-ume of the sedimented phase.No significant effect on ER%was observed when different amounts of sodium chloride were added into the sample solution (Fig.2).3.6.Quantitative analysisCalibration curves were obtained under the optimized condi-tions with linear dynamic range of 0.5–100g L −1and correlation of determination (r 2)of 0.997.The PF and ER%of the method were 150and 45.2%,respectively,at the concentration level of100g L −1of BPA and the sample volume of 10.0mL.The relative standard deviation (RSD,n =5)at the concentration level of 100g L −1was 6.0%.The limit of detection (LOD)based on signal-to-noise ratio (S/N)of 3was 0.07g L −1.3.7.Real water analysisRiver and tap water samples were collected from Kolakchal River and Tarbiat Modares University (Tehran,Iran),respectively,Fig.2.Effect of salt addition on the PF ( )and ER%( )of BPA.Extraction condi-tions:water sample volume,10.0mL;disperser solvent (acetone)volume,2.0mL;extractant solvent (CHCl 3)volume,142L;concentration of BPA,100g L −1.and analyzed by the DLLME combined with HPLC-UV.The results showed that both samples were free from BPA contamination.Thus,they were spiked with BPA standards to assess matrix effects.Fig.3shows the chromatograms obtained for the river water samples before and after spiking with two different concentrations of BPA (1and 5g L −1).Also,the results of relative recoveries of the river and tap water samples are tabulated in Table1.The data in Table 1show that the relative recoveries of BPA were in the ranges of 93.4%–98.2%,demonstrating that the river and tap waters matrices had little effect on the DLLME.parison of DLLME with LPME,SPME and SBSETable 2compares LODs,LRs,RSDs%,extraction times,and sample volumes for LPME [26],SBSE [25],SPME [27,14]and DLLME method for the extraction and determination of BPA in water samples.TheFig.3.HPLC chromatograms of BPA in river water before spiking (A)and after spiking with 1g L −1(B)and 5g L −1(C)using DLLME method combined with HPLC-UV under optimum conditions.1514M.Rezaee et al./J.Chromatogr.A1216(2009)1511–1514Table2Comparison of DLLME–HPLC-UV with other similar methods.Methods LOD(g L−1)LR(g L−1)RSD(%)Extraction time(min)Sample volume(mL)ReferenceLPME without derivatization-GC–MS0.21–1000 3.2–8.99010LPME with in situ derivatization-GC–MS0.0020.01–10 3.2–8.99010[26]SBSE without derivatization-GC–MS0.52–100<10452[15]SBSE with in situ derivatization-GC–MS0.0050.02–10<10452[15]SPME-GC–MS0.04–10.027–195106010[14]SPME-HPLC0.910–500222010DLLME-HPLC0.070.5–100 6.0<3(equilibrium)1010the present methodresults show that the extraction time in DLLME is very short and less than3min.While,extraction time for SPME,LPME and SBSE ranged from20to90min,without equilibrium in most cases.The RSDs for the DLLME is low and approximately the same as SPME, LPME and SBSE.DLLME has acceptable LOD(0.07g L−1)and good liner range(0.5–100g L−1)without using derivatization reagents and applying very sensitive determination methods like GC–MS and HPLC-MS.It is worthy to note that the derivatization process needs to spend more time and consume chemical reagent that complicated the extraction process.The volume of sample solu-tion required for DLLME is about10mL,which is similar to that of SPME,LPME and SBSE method.In contrast to SPME,LPME and SBSE, the stirring speed has no influence in DLLME efficiency.In addition to other advantages of DLLME,it is very simple,rapid,inexpensive and easy to use.4.ConclusionThis paper describes the application of the DLLME method com-bined with HPLC-UV,for determination of trace amounts of BPA in water samples.The relative recoveries for BPA in the ranges of 93.4%–98.2%and demonstrated that the river and tap waters matri-ces had little effect on the DLLME.Comparing to the other methods,in DLLME,consumption of toxic organic solvents is minimum.Also the proposed method has lowered LOD and much shorter extraction time.AcknowledgementThis work was supported by a grant from the Iran National Sci-ence Foundation,INSF(grant no.86023/06).References[1]A.V.Krishnan,P.Stathis,S.F.Petmath,L.Tokes,D.Feldman,Endocrinology132(1993)2279.[2]C.Sonnenschein,A.M.Soto,J.Steroid Biochem.Mol.Biol.65(1998)143.[3]S.C.Nagel,F.S.Vomsaal,K.A.Thayer,M.G.Dhar,M.Boechler,W.V.Welshons,Environ.Health Perspect.105(1997)70.[4]O.P.Heemken,H.Reincke,B.Stachel,N.Theobald,Chemosphere45(2001)245.[5]R.A.Rudel,S.J.Melly,P.W.Geno,G.Sun,J.G.Brody,Environ.Sci.Technol.32(1998)861.[6]H.M.Kuch,K.Ballschmiter,Environ.Sci.Technol.35(2001)3201.[7]P.Paseiro Losada,P.Lopez Mahia,L.Vazquez Oderiz,J.Simal Lozano,J.SimalGandara,J.AOAC Int.74(1991)925.[8]J.L.Vilchez,A.Zafra,A.Gonzalez-Casado,E.Hontoria,M.del Olmo,Anal.Chim.Acta431(2001)31.[9]U.Bolz,W.Korner,H.Hagenmaier,Chemosphere40(2000)929.[10]S.N.Pedersen,C.Lindholst,J.Chromatogr.A864(1999)17.[11]H.G.J.Mol,S.Sunarto,O.M.Steijger,J.Chromatogr.A879(2000)97.[12]M.Kawaguchi,Y.Hayatsu,H.Nakata,Y.Ishii,R.Ito,K.Saito,H.Nakazawa,Anal.Chim.Acta539(2005)83.[13]B.San Vicente,F.Navarro Villoslada,M.C.Moreno-Bondi,Anal.Bioanal.Chem.380(2004)115.[14]P.Braun,M.Moeder,S.Schrader,P.Popp,P.Kuschk,W.Engewald,J.Chromatogr.A988(2003)41.[15]M.Kawaguchi,K.Inoue,M.Yoshimura,R.Ito,N.Sakui,N.Okanouchi,H.Nakazawa,J.Chromatogr.B805(2004)41.[16]M.A.Jeannot,F.F.Cantwell,Anal.Chem.68(1996)2236.[17]C.Basheer,H.K.Lee,J.Chromatogr.A1057(2004)163.[18]M.Rezaee,Y.Assadi,ani Hosseini,E.Aghaee,F.Ahmadi,S.Berijani,J.Chromatogr.A1116(2006)1.[19]H.Jiang,Y.Qin,B.Hu,Talanta74(2008)1160.[20]P.Liang,J.Xu,Q.Li,Anal.Chim.Acta609(2008)53.[21]M.Shamsipur,M.Ramezani,Talanta75(2008)294.[22]M.G.Lopez,I.Rodriguez,R.Cela,J.Chromatogr.A1166(2007)9.[23]D.Nagaraju,S.D.Huang,J.Chromatogr.A1161(2007)89.[24]L.Farina,E.Boido,F.Carrau,E.Dellacassa,J.Chromatogr.A1157(2007)46.[25]M.A.Farajzadeh,M.Bahram,J.A.Jonsson,Anal.Chim.Acta591(2007)69.[26]M.Kawaguchi,R.Ito,N.Endo,N.Okanouchi,N.Sakui,K.Saito,H.Nakazawa,J.Chromatogr.A1110(2006)1.[27]C.Nerin,M.R.Philo,J.Salafranca,L.Castle,J.Chromatogr.A963(2002)375.。