高等数学第一章课件-数 域

合集下载

《高等数学》 课件 高等数学第一章

《高等数学》 课件 高等数学第一章
2 函数的极限
高等数学 第一章. 第二节
第 22 页
定义1 给定一个数列xn ,如果当n无限增大时,xn 无限接近于某一
个确定常数A,则称当n趋于无穷时,数列xn 的极限为A,记作
lim
n∞
xn
A?或xn
A(n
∞).
此时也称数列xn 收敛.如果当n无限增大时,xn 无限接近的常数A不存在,
则称数列xn 发散,此时也称数列xn 的极限不存在.
称为中间变量.
1)复合函数的复合原则:前一个函数的定义域与后一个函数的值域
的交集非空,即中间变量有意义.
1 函数
高等数学 第一章. 第一节
第 16 页
例1 将y表示成x的复合函数.
(1)y eu,u sin v,v 3 x;(2)y ln u,u 2 v, 2 v sec x; (3)y arcsin u,u 2 x.2
四、基本初等函数
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数. 1.幂函数y x ( R)?
幂函数y x 的定义域和值域随的取值不同而不同,但是无论 取何值,幂
函数在x (0, ∞)内总有定义.常见的幂函数的图像如图所示.
1 函数
高等数学 第一章. 第一节
2.指数函数y a x (a 0,a 1)
指数函数y a( x a 0,a 1)的定义域 为(∞, ∞,) 值域为(0, ∞.) 指数函数的 图像如图所示.
第 11 页
1 函数
高等数学 第一章. 第一节
3.对数函数y loga x (a 0,a 1)
对数函数y loga x(a 0,a 1)的定义域为(0, ∞, ) 值域为(∞, ∞.) 对数函数y loga x是指数函数y ax的 反函数,其图像如图所示.

《高等数学》电子课件(同济第六版)01第一章第1节函数

《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数的实际应用
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。

《高等数学第一章》PPT课件

《高等数学第一章》PPT课件

若函数f ( x)在[ x0 , b)内有定义,且f ( x0 0) f ( x0 ),

称f
(
x
)在
点x
处右
0
连续.
定理 函数 f ( x)在 x0 处连续 是函数 f ( x)在 x0
处既左连续又右连续.
例2
讨论函数
f
(x)
x 2,

x

2,
x 0, x 0,
一、函数的连续性
1.函数的增量
设函数 f ( x)在U ( x0 )内有定义, x U ( x0 ), x x x0 , 称为自变量在点 x0的增量.
y f ( x) f ( x0 ),称为函数 f ( x)相应于x的增量.
y
y
y f (x)
y f (x)

f
(
x)

1, 1,
当x是有理数时, 当x是无理数时,
在定义域 R内每一点处都间断, 但其绝对值处 处连续.
判断下列间断点类型:
y
y f x
x1 o
x2
x3
x
例8 当a取何值时,
函数
f
(x)

cos a
x, x,
x 0, 在 x 0处连续. x 0,
解 f (0) a,
y
解 f (0 0) 0, f (0 0) ,
x 1为函数的第二类间断点.
o
x
这种情况称为无穷间 断点.
例7 讨论函数 f ( x) sin 1 在 x 0处的连续性. x
解 在x 0处没有定义,
且 lim sin 1 不存在. x0 x

高等数学第一章复习课ppt课件.ppt

高等数学第一章复习课ppt课件.ppt

3.极限的性质
定理 设 lim f ( x) A,lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g(x) B
推论1 如果lim f ( x)存在,而c为常数,则 lim[cf ( x)] c lim f ( x).
1 o 1
x
(5) 函数的周期性:
设函数 f(x) 的定义域为D,如果存在一个不为零的
数l,使得对于任一 x D,有 x l D .且 f(x+l)=f(x)
恒成立,则称f(x)为周期函数,l 称为 f(x) 的周期.(通
常说周期函数的周期是指其最小正周期).
T 1
y
y x [x]
1
o
1
x
3.反函数
由y f ( x)确定的y f 1( x)称为反函数.
y sinh x
4.隐函数
y f 1( x) ar sinh x
由方程F ( x, y) 0所确定的函数 y f ( x)称为隐函数.
5.反函数与直接函数之间的关系
设函数f ( x)是一一对应
函数, 则
y y f 1( x)
3.连续的充要条件
定理 函数f ( x)在 x0 处连续 是函数f ( x)在 x0 处 既左连续又右连续.
4.间断点的定义
函数f ( x)在点x0处连续必须满足的三个条件: (1) f ( x)在点x0处有定义;
(2) lim f ( x)存在; x x0
(3) lim x x0
f (x)
f ( x0 ).
2.函数的性质

高等数学第一章的总结-PPT

高等数学第一章的总结-PPT

n
1
lim
n
n2 n2
lim n1
1
n2
1
lim n
n
1
n2
n2
1
2
n2
1
n
1
例:
lim
1
1
(e n
2
en
n
en
)
n n
1
e
x
d
x
e 1
0
1
n
1
解:原式
lim
n
1 n
e
n
(1
e
1
n
)
(1
e) lim
n
n
1
1en
1en
1
(1 e) lim ln(1 u) (1 e) lim ln(1 u) u e 1.
)x
e
两个重要极限
(1) lim sin 1
0
(2) lim ( 1 1 ) e
1
或 lim(1 ) e
0
注: 代表相同的表达式
思考与练习
填空题 ( 1~4 )
1. lim sin x __0___ ;
x x
3. lim xsin 1 _0___ ;
x0
x
2. lim xsin 1 __1__ ;
从此时刻以后 0 x x0 0 x x0
f (x)
f (x) A
x x0
x x0 0
思考题
x
sin
1 x
,
试问函数 f ( x) 10,
5
x2,
x0 x 0在x 0处
x0
的左、右极限是否存在?当 x 0 时, f ( x) 的

中国地质大学(武汉)《高等数学A1》课件第1章 一元多项式

中国地质大学(武汉)《高等数学A1》课件第1章  一元多项式
二.教学目的 1.掌握最大公因式,互素的概念. 2.熟练掌握辗转相除法 . 3.会应用互素的性质证明整除问题.
三.重点,难点 辗转相除法求最大公因式, 证明整除问题.
25
定义 1 令和 个多项式

是P[x]的两个多项式,若是P [x]的一 同时整除 和 ,那么 叫做 的一个公因式.
定义 2 设 是多项式 与 的一个公因式.若是 能被 与 的每一个公因式整除,那么 叫做
f (x) = g (x)
10
1.2.3 多项式的次数
叫做多项式 的最高次项,非负整数n叫做多项式
的次数. 记作
注:系数全为零的多项式没有次数,这个多项式叫做
零多项式,记为 0 .
11
1.2.4 多项式的运算
多项式的加法
给定数域P上两个多项式
且m ≤ n, f (x) 和g (x) 的加法定义为
43
这样继续下去,最后f (x)在C [x]中完全分解成n个一 次因式的乘积,而在f (x) C中有n个根. 复数域C上任一n (n > 0)次多项式可以在C [x]里分 解为一次因式的乘积.复数域上任一次数大于1的多 项式都是可约的.
定理1.6.3 若实系数多项式 f (x)有一个非实的复数根 ,那么 的共轭数 也是f (x)的根, 并且 与 有同一重数. 换句话说,实系数多项式的非实复数根两两成对出 现.
二.教学目的 1.掌握本原多项式概念及高斯引理. 2.熟悉运用艾森斯坦差别法. 3.掌握求整系数多项式的有理根 .
三.重点、难点 艾森斯坦差别法及如何求整系数多项式有理根方法.
46
定义 若是一个整系数多项式f (x)的系数互素,那么f (x)叫 作一个本原多项式.
引理1.7.1 两个本原多项式的乘积仍是一个本原多项式.

高等数学第三版第一章课件(每页16张幻灯片)

第一章 函数与极限§1 函数 §2 初等函数 §3 数列的极限 §4 函数的极限 §5 无穷小与无穷大 §6 极限运算法则 §7 极限存在准则 两个重要极限 §8 无穷小的比较 §9 函数的连续性与间断 §10连续函数的运算与性质第一节 函数一、实数与区间 二、领域 三、函数的概念 四、函数的特性一、实数与区间1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素.2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.∀ a , b ∈ , 且a < b.a∈ M, a∉ M, A = { a1 , a 2 , , a n }有限集{ x a < x < b} 称为开区间, 记作 (a , b )o a x b { x a ≤ x ≤ b} 称为闭区间, 记作 [a , b] o aM = { x x所具有的特征 } 无限集数集分类: N----自然数集 Q----有理数集 数集间的关系: Z----整数集 R----实数集N ⊂ Z, Z ⊂ Q, Q ⊂ R.bx{ x a ≤ x < b} 称为半开区间, 记作 [a , b ) { x a < x ≤ b} 称为半开区间, 记作 (a , b] [a ,+∞ ) = { x a ≤ x } ( −∞ , b ) = { x x < b}o a o x x二、邻域有限区间常量与变量: 在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母 a, b, c 等表示常量, 用字母 x, y, t 等表示变量. 例三、函数的概念圆内接正多边形的周长设a与δ是两个实数 , 且δ > 0.数集{ x x − a < δ }称为点 a的δ邻域 ,点a叫做这邻域的中心 , δ 叫做这邻域的半径 .b ( −∞ , +∞ ) = { x −∞ < x < +∞ } =U δ (a ) = { x a − δ < x < a + δ }. δ δ无限区间区间长度的定义: 两端点间的距离(线段的长度)称为区间的长度.a a−δ a+δ o x 点a的去心δ 邻域 , 记作U δ0 (a ), 或 U (a , δ ).π S n = 2 nr sin n n = 3 ,4 ,5 ,S3S4S5圆内接正n 边形S6Oπ nr)Uδ (a ) = { x 0 < x − a < δ }.o定义:设 x 和 y 是两个变量, D 是给定的数集,如果对于每个数 x ∈ D , 变量 y 按照一定法则总函数的两要素: 定义域与对应法则.有唯一的数值和它对应,则称 y 是 x 的函数, 记作因变量x ((D对应法则fx0 )f ( x0 )y = f ( x)自变量数集D叫做这个函数的定义域 自变量Wy)因变量看右图: 如果自变量在定义域 内任取一个数值时,对应 的函数值总是只有一个, 这种函数叫做单值函数, 否则叫做多值函数.y分段函数:在自变量的不同变化范围中, 对应法则用不同的Wy⋅ ( x, y)x式子来表示的函数。

高等数学-第1章课件

x x0
三、函数极限的性质
第三节 极限的运算
一、极限的运算法则
法则1 法则2
x x0
lim[ f ( x) g ( x)] lim f ( x) lim g ( x) A B
x x0 x x0 x x0 x x0
x x0
lim[ f ( x ) g ( x )] lim f ( x ) lim g ( x ) A B
第 一 章 函 数 ︑ 极 限 与 连 续
目录
第一节 函数
第二节 极限
第三节 极限的运算 第四节 无穷小与无穷大 第五节 函数的间断性与连续点 第六节 初等函数的连续性
第一节 函数
一、集合、区间与邻域
1.集合
集合(简称集)是具有某种共同性质的事物的全 体,组成集合的单一事物称为该集合的元素。
有限集合 有限个元素构成 北京户籍人口
° a
• a •
a°Leabharlann a3.邻域设 x0, δ R, 其中δ > 0,以 x0为中心,以δ 为半径,长为 2δ的
开区间. 即
( x0 , x0 ) { x x x0 , 0}
称为点 x0 的 δ 邻域 , 记为U(x0 , δ ).
2
x0
x0
x0
集合的运算及关系
由所有属于集合A或属于集合B的元 并集 素所组成的集合,称为集合A与B的 并集 交集 差集 由属于集合A且属于集合B的所有元 素组成的集合,称为A与B的交集
由所有属于集合A 而不属于集合B 的 元素组成的集合
A∪B A∪B={x|x∈A,或 x∈B}
A∩B A-B
A∩B={x|x∈A,且 x∈B} A-B={x|x∈A,且 xB}

大学高数第一章 PPT课件

数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B) 例如 A {1,2},
C { x x2 3x 2 0}, 则 A C. 不含任何元素的集合称为空集. (记作 ) 例如, { x x R, x2 1 0}
2.有界不是绝对的,是相对于所给定的D而言的。 3.有界函数的界不唯一。
25
二 初等函数
基本初等函数
1.幂函数
y x (是常数)
y
y x
y x2
1
y x
(1,1)
y 1 x
o1
x
26
2.指数函数 y a x (a 0, a 1)
y ex
y (1)x a
(0,1)
x
6
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
7
3.常量与变量:
证明:
∵ f(x+2c)=f((x+c)+c)=-f(x+c)=f(x)
∴f(x)为周期为2c的函数.
2233
4.函数的有界性: 设D是f ( x)的定义域, 若M 0,x D,有 f ( x) M ,
则称函数f (x)在D上有界.否则称无界.
y M
y=f(x)
x
o
D
y M
x0
o

高等数学第一章-课件2.ppt

一 函数的连续性
1.函数在点x0的连续性
函数连续的概念源于对几何曲线的直观分析,粗略地 说,如果函数是连续的,那么它的图像是一条连绵不断的曲 线,当然我们不能满足于这种直观的认识,我们需要用数学 的语言给出它的精确定义。
第四节
考察如图1-21所示的函数图像。
图1-21
第四节
故函数f(x)在点 x=0处连续,如图 1-22所示。
图1-20
第二节 极
四 无穷小量与无穷大量
1.无穷小量
定义1-9 若函数f(x)在自变量的某一变化过程中 的极限为零,则称该函数为自变量在此变化过程中的无 穷小量,简称无穷小。通常函数极限有x→+∞,x→- ∞, x→∞,x→x0 + ,x→x0 -,x→x0这六种情形。因此,只简 单地说函数是无穷小量是不确切的,还必须指出x的趋近 方式。
fξ=0。 该推论表明方程fx=0在 a,b内有实根。其几何解释如 图1-26所示。
图1-26
Thank You!
第一章 函数、极限与连续
第一节 函数
第二节 极限
第三节
极限的运算
第四节
初等函数的连续性Leabharlann 第五节 闭区间上连续函数的性质
第一节 函数
一 函数
1.函数的概念
定义1-1 给定两个实数集D和E,若有一个对应法则f,使 得对每个x∈D,都有唯一确定的值y∈E与之对应,则称f是定义 在数集D上的函数,记作y=f(x) ,x∈D。其中,x称为自变量,y 称为因变量,D称为函数fx的定义域,全体函数值的集合E称为函 数的值域.如果在D中任取某一个数值x0,与之对应的y的数值y0, 称为函数f(x)在点x0处的函数值,记作y0=f(x)0 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1 数 域
一、数域的定义 定义1 设 P ⊆ ℂ, 若以下条件成立 (1) 0,1 ∈ P ; (2) ∀a , b ∈ P , 有
� � � �
a + b ∈ P; a − b ∈ P; a ⋅ b ∈ P;
当 b ≠ 0 时,则 a ∈ P ,
b
即数集P对加法、 减法、乘法、除法 (除数不为 0)运算 封闭。
则称 P 是一个数域。
例1 有理数域 ℚ ;实数域 ℝ ;复数域 ℂ。 例2 自然数集 ℕ ;整数集 ℤ ;偶数集 2ℤ 。 例3 ℚ( 2) = {a + b 2 | a, b ∈ ℚ}.
ℝ ( 2) = { a + 3; b 2 | a, b ∈ ℤ}.
(1)ℚ( −1) = { a + bi | a, b ∈ ℚ};
(2)G = { n 2 | n ∈ ℤ}.
2、设 P , K 是数域, (1)试证:P ∩ K是一个数域; (2)举例说明 P ∪ K 不一定是数域; (3)试证:P ∪ K 是一个数域 ⇔ P ⊆ K 或 P ⊇ K .
例4
G = {a 3 2 | a ∈ ℚ}.
二、数域的性质
性质1 任意数域 P 必包含有理数域 ℚ 。 即,有理数域是最小数域。
推论1 数域 P 必包含无穷多个数。
性质2 ℝ 和 ℂ 之间不存在其他的数域。
最小数域 ℚ 有无穷 多数域 如ℚ( n )
实数域 ℝ 没有其 他数域 复数域 ℂ
作业: 1、判断下列数集是否为数域,并说明理由
相关文档
最新文档