导热高分子材料的研究与应用

合集下载

高分子材料导热性能的影响因素及应用

高分子材料导热性能的影响因素及应用

高分子材料导热性能的影响因素及应用摘要:高分子材料的导热性能对于电子设备、汽车电池、光电器件的热管理非常重要,因为高分子材料被广泛应用于以上器件的散热装置中。

通过提高高分子材料的导热性能,可将电子设备、汽车电池和光电器件工作过程中产生的热量迅速传递到散热器和环境中,有效地降低设备温度,提高设备系统稳定性和长期应用可靠性。

本文主要介绍了高分子材料导热性能应用及影响因素,希望为相关研究提供参考。

关键词:高分子材料;导热性能;影响因素引言在一些具有高热负荷工作环境的应用中,如LED照明、电动汽车电池等,高分子材料可作为热界面材料填充热源和散热器之间的间隙,从而有效降低热源温度。

高分子材料的导热性能越好,可以更加迅速地将热量从源头传递到周围环境,防止热量积累导致器件损坏或性能下降。

因此,在电子元器件的热管理领域,提升高分子材料的导热性能是非常重要的研究课题。

高导热性能的高分子材料被广泛应用于电子元件的热管理中,具体地可以用作导热垫片、导热胶、导热胶布等材料,用于提高热量在不同界面间的传导效率,降低器件间的热阻,提高散热效率。

一、高分子材料导热性能影响因素(一)分子结构高分子材料的导热性能受到其分子结构的影响。

分子链的长度、分支度、取向和聚合度等因素会对分子间的相互作用和热传导路径产生影响,进而影响导热性能。

一般而言,长链高分子材料的导热性能较低,这是因为长链导致分子之间的相互作用较弱,热传导路径不连续。

相反,具有较高取向度或晶体结构的高分子材料通常具有较高的导热性能。

这是因为取向度高或晶体结构能够提供较为有序和连续的分子排列,从而形成较好的热传导通路。

需要注意的是,导热性能受分子结构影响的具体机制仍然是一个复杂而活跃的研究领域,其中涉及到诸多细节和相互作用,如分子之间的键长、键角、非共价相互作用等。

因此,在设计和开发高导热性高分子材料时,需要综合考虑分子结构的各个方面,并进行合理的调控,以实现所需的导热性能。

浅谈导热高分子材料的研究与应用

浅谈导热高分子材料的研究与应用

浅谈导热高分子材料的研究与应用导热高分子材料是一类具有优异导热性能的高分子材料,其导热性能可以媲美金属材料。

如今,导热高分子材料在电子器件、照明设备、汽车等领域的热管理中得到广泛应用。

本文将从导热高分子材料的研究和应用两个方面进行探讨。

在导热高分子材料的研究方面,其中一个关键问题是提高材料的导热性能。

导热高分子材料的导热性能主要受到热阻的影响,因此研究人员采取了多种策略来降低热阻。

其中一种方法是通过加入导热填料来增加材料的导热性能。

常见的导热填料有导热颗粒、导热纤维等,它们可以有效地提高材料的导热性能。

另一种方法是通过在高分子材料中引入导热通道来增强导热性能。

这可以通过在高分子链上引入导热基团、构筑导热三维网络结构等方式来实现。

石墨烯和碳纳米管等纳米材料因其独特的导热性能,在导热高分子材料中被广泛研究和应用。

导热高分子材料的界面热阻也是一个需要解决的问题。

界面热阻是导热性能的一个重要因素,特别是在多相复杂体系中更为明显。

研究人员通过改变界面结构、引入界面改性剂等方式来降低界面热阻,从而提高导热性能。

在导热高分子材料的应用方面,其在电子器件中的应用最为广泛。

热管理是电子器件设计和工程中非常重要的一部分,导热高分子材料能够有效地提高热传导效率,降低器件的温度。

这对于提高器件的稳定性、延长使用寿命具有重要意义。

在照明设备领域,导热高分子材料也发挥着重要作用。

高功率LED照明设备通常会产生大量的热量,如果不能有效地将其传导出去,将导致光效下降、寿命缩短。

导热高分子材料可以提供良好的导热路径,提高照明设备的热管理效果。

导热高分子材料还被应用于汽车领域。

随着电动汽车的发展,高能量密度的电池和电子系统正逐渐取代传统的燃油系统。

导热高分子材料可以有效地解决高功率电池和电子系统产生的热管理问题,提高整车的性能和安全性。

导热高分子材料的研究与应用领域广泛,这些材料不仅在电子器件、照明设备、汽车等领域的热管理中发挥着重要作用,也对于提高材料的导热性能具有重要的意义。

浅谈导热高分子材料的研究与应用

浅谈导热高分子材料的研究与应用

浅谈导热高分子材料的研究与应用导热高分子材料是一类具有优异导热性能的高分子材料,其研究与应用已经成为材料科学领域的热点之一。

本文将从导热高分子材料的定义、研究方法、应用领域以及存在的问题等方面进行探讨和分析。

导热高分子材料是一类具有较高导热系数的高分子材料。

传统的高分子材料具有导热性能较差的特点,很难满足一些特定领域的需求,如电子器件的散热要求、节能建筑材料的热传导等。

而导热高分子材料通过添加导热填料、改性处理或设计合适的分子结构,能够大大提高材料的导热性能,从而满足一些特定领域的应用需求。

导热高分子材料的研究方法主要包括两个方面,一是研究导热填料/导热剂对高分子材料导热性能的影响,二是设计合适的分子结构来提高高分子材料的导热性能。

在研究导热填料/导热剂对高分子材料导热性能的影响方面,研究者通常通过添加导热填料(如金属粉末、二维纳米材料等)或导热剂(如纳米碳管、纳米石墨烯等)来提高材料的导热性能。

在研究设计分子结构方面,研究者通过改变高分子材料的化学结构、分子取向等来提高材料的导热性能。

导热高分子材料的应用领域非常广泛。

一方面,导热高分子材料可以应用于电子器件的散热领域。

如电子芯片、集成电路等器件在工作过程中会产生大量热量,导致器件温度升高,从而影响器件的性能和寿命。

而导热高分子材料的应用可以有效地提高器件的散热性能,降低器件的温度。

导热高分子材料还可以应用于节能建筑材料的热传导领域。

传统的绝缘材料在热传导方面表现较差,而导热高分子材料在保持绝缘性能的还具备较好的导热性能,可以在建筑材料中应用,提高建筑的节能效率。

导热高分子材料在实际应用中还存在一些问题。

导热高分子材料的导热性能与材料的机械性能之间存在一定的矛盾关系。

为了提高材料的导热性能,研究者通常需要添加大量的导热填料或导热剂,但这些填料或剂的添加会降低材料的机械性能,从而影响材料的应用性能。

导热高分子材料的导热机制还不够清晰。

虽然目前已经有很多关于导热高分子材料导热机制的研究,但对于某些具有特殊结构的高分子材料来说,导热机制仍然存在一定的争议。

浅谈导热高分子材料的研究与应用

浅谈导热高分子材料的研究与应用

浅谈导热高分子材料的研究与应用导热高分子材料是一种具有良好导热性能的高分子材料,通常用于传导热量或者散热。

随着科技的不断进步,导热高分子材料的研究与应用越来越受到人们的重视。

本文将对导热高分子材料的研究现状和应用前景进行浅谈。

导热高分子材料的研究现状。

导热高分子材料通常以聚合物为基础,通过填充导热填料或者改性提高其导热性能。

目前,国内外许多研究机构和企业都在进行导热高分子材料的研究工作,不断探索新的材料和方法,以提高导热高分子材料的导热性能。

在导热填料的选择上,碳纳米管、石墨烯等高导热材料被广泛应用,有效提高了高分子材料的导热性能。

而在改性方面,化学改性、物理改性、结构设计等方法也在不断被尝试和探索,以期望获得更好的导热性能。

导热高分子材料的应用前景。

导热高分子材料因其良好的导热性能,在电子、汽车、航空航天、光伏等领域有着广泛的应用前景。

在电子领域,高导热的材料可以有效提高电子器件的散热性能,进而提高电子器件的工作效率和寿命。

在汽车领域,导热高分子材料可以用于汽车散热系统的材料,提高汽车发动机和电池的散热效果。

在航空航天领域,导热高分子材料可以用于航空航天器件的散热和隔热材料,提高器件的工作效率和安全性。

在光伏领域,导热高分子材料可以用于光伏材料和组件的散热,提高光伏系统的能量转化效率。

可以看出,导热高分子材料在各个领域都有着重要的应用前景,可以为社会和产业发展带来持续的推动力。

导热高分子材料的研究和应用具有非常重要的价值,不仅可以提高材料的导热性能,还可以为各个领域带来更好的散热和传热解决方案。

未来,导热高分子材料的研究方向应该更加注重材料的稳定性、耐用性、成本等方面,以满足不同领域对导热高分子材料的需求。

希望在不久的将来,导热高分子材料能够得到更广泛的应用,并为社会发展做出更大的贡献。

高分子材料的表征和导热性能研究

高分子材料的表征和导热性能研究

高分子材料的表征和导热性能研究高分子材料是一种重要的材料种类,具有广泛的应用领域。

如何对高分子材料进行表征和研究其导热性能,是当前高分子材料研究的一个热点问题。

一、高分子材料的表征高分子材料通常具有分子量大、化学结构复杂的特点,因此需要采用多种手段进行表征。

1. 分子量的测定高分子材料的分子量一般采用凝胶渗透色谱、粘度法等实验手段进行测定。

其中,凝胶渗透色谱具有分离精度高、灵敏度好等优点,可以处理多种分子量范围的高分子材料。

2. 凝聚态的表征对于固态高分子材料,需要采用X射线衍射、热分析等技术手段进行表征,以了解高分子材料的晶体结构、热性能等特征。

3. 动态热力学性能的表征高分子材料在使用过程中还需要考虑其时间依赖性、疲劳性、耐热性等方面的性能。

这就需要采用热分析、动态力学测试等技术手段进行表征。

二、高分子材料的导热性能研究导热性能是高分子材料的一个关键性能指标,对于高分子材料的设计、制备、应用都具有重要意义。

导热性能研究的主要方法有以下几个:1. 热导率的测试热导率是导热性能的基本指标之一,一般采用稳态热流方法进行测试。

稳态热流方法包括热阻率法、热板法等,能够准确测定材料在稳态下的导热性能。

2. 动态热导率的测试高分子材料在使用过程中很少处于稳态状态,因此需要考虑其动态导热性能。

动态热导率的测试方法包括脉冲法、频率扫描法等,能够模拟高分子材料在实际使用过程中的导热性能。

3. 热膨胀系数的测试高分子材料在受热过程中往往会产生热膨胀现象,对于导热性能的影响较大。

因此,需要采用膨胀测试仪等设备对高分子材料的热膨胀系数进行测定。

4. 界面热阻的测试高分子材料在应用过程中往往需要与其他材料进行接触,因此涉及到界面热阻的问题。

界面热阻的测试方法包括接触热阻法、热反射法等。

三、导热性能的改进高分子材料的导热性能往往不如金属等传统材料,因此需要采取一些措施进行改进。

导热性能的改进方法主要有以下几个:1. 添加导热填料通过向高分子材料中添加导热填料,如石墨、纳米银粉等,可以显著提高高分子材料的导热性能。

浅谈导热高分子材料的研究与应用

浅谈导热高分子材料的研究与应用

浅谈导热高分子材料的研究与应用导热高分子材料是一种具有良好导热性能的高分子材料,具有导热系数高、耐高温、耐腐蚀、绝缘性好等特点,被广泛应用于电子器件散热、光电器件散热、汽车零部件、航空航天等领域。

在当前发展迅速的高科技行业中,导热高分子材料的研究和应用愈发重要。

在导热高分子材料的研究领域中,主要集中在两个方面:一是材料的制备和改性,二是材料的应用和性能测试。

在材料的制备和改性方面,研究人员主要关注如何提高高分子材料的导热系数,以及如何提高材料的稳定性和可加工性。

目前,常见的方法包括添加导热填料、合成具有高导热性能的共聚物、采用纳米技术等。

在应用和性能测试方面,研究人员主要关注材料在实际工程中的应用效果,以及材料在不同环境下的稳定性和可靠性。

导热高分子材料的研究和应用主要有以下几个方面:1. 电子器件散热领域随着电子设备的不断发展,其散热问题变得愈发突出。

传统的金属散热材料虽然导热性能好,但重量大、成本高。

而导热高分子材料以其轻质、低成本、导热系数高等优点,被广泛应用于电子器件的散热领域。

其在手机、平板电脑、笔记本电脑等电子产品中的应用越来越普遍。

2. 光电器件散热领域在光电器件中,由于其工作时产生的热量较多,若不能及时散热,会导致器件寿命缩短甚至损坏。

使用导热高分子材料能够有效提高器件的散热性能,延长器件的使用寿命,提高器件的工作稳定性。

3. 汽车零部件领域汽车是导热高分子材料的另一个重要应用领域。

由于汽车零部件工作环境的苛刻性,要求散热材料具有耐高温、耐腐蚀等性能。

而导热高分子材料正具备这些特点,因此在汽车零部件领域得到了广泛应用。

4. 航空航天领域航空航天领域对材料的要求非常严格,导热高分子材料以其轻质、高强度、导热性能好等特点,成为航空航天领域不可或缺的材料。

它被广泛应用于航空航天器件的制造和维护中。

除了以上几个主要应用领域,导热高分子材料还可以应用于电器电缆、建筑材料、食品包装等领域,具有广阔的市场前景和发展空间。

导热高分子材料

导热高分子材料

导热高分子材料
导热高分子材料是一种具有优异导热性能的材料,广泛应用于电子、航空航天、汽车等领域。

它能够有效地传导热量,提高设备的散热效果,保证设备的稳定运行。

导热高分子材料的研究和应用对于提升材料的性能和设备的效率具有重要意义。

首先,导热高分子材料具有优异的导热性能。

相比于传统的聚合物材料,导热
高分子材料能够更快速、更有效地传导热量。

这使得它在电子器件、光电子器件等领域得到了广泛的应用,能够有效地提高设备的散热效果,保证设备的稳定运行。

其次,导热高分子材料具有良好的耐高温性能。

在高温环境下,传统的聚合物
材料容易发生软化、变形等问题,而导热高分子材料能够保持良好的稳定性,不易受到高温的影响。

这使得它在航空航天、汽车等领域得到了广泛的应用,能够有效地提高设备的工作效率和安全性。

另外,导热高分子材料具有较好的加工性能。

它可以通过注塑、挤出、压延等
加工工艺制备成各种形状的制品,满足不同领域的需求。

这使得它在工程塑料、导热胶等领域得到了广泛的应用,能够有效地提高制品的性能和品质。

总的来说,导热高分子材料是一种具有优异导热性能、良好耐高温性能和较好
加工性能的材料,广泛应用于电子、航空航天、汽车等领域。

它的研究和应用对于提升材料的性能和设备的效率具有重要意义,值得进一步深入研究和推广应用。

《2024年高导热绝缘高分子复合材料研究》范文

《2024年高导热绝缘高分子复合材料研究》范文

《高导热绝缘高分子复合材料研究》篇一一、引言随着电子设备的快速发展和微型化,对高导热绝缘材料的性能要求越来越高。

为了满足这些需求,研究者们开始探索高导热绝缘高分子复合材料。

这种材料具有优异的导热性能和绝缘性能,同时具备轻质、低成本、易加工等优点,因此具有广泛的应用前景。

本文旨在研究高导热绝缘高分子复合材料的制备方法、性能及其应用。

二、高导热绝缘高分子复合材料的制备方法1. 材料选择高导热绝缘高分子复合材料的制备主要涉及基体材料、导热填料和添加剂的选择。

基体材料通常为高分子聚合物,如聚酰亚胺、聚四氟乙烯等。

导热填料可选择金属氧化物、碳材料等。

添加剂则用于改善材料的性能,如增强导热性能、提高绝缘性能等。

2. 制备方法高导热绝缘高分子复合材料的制备方法主要包括溶液共混法、熔融共混法和原位聚合法等。

其中,溶液共混法是将基体材料与导热填料在溶液中混合,然后通过干燥、热压等工艺制备成复合材料。

熔融共混法则是将基体材料与导热填料在高温下熔融混合,然后冷却固化。

原位聚合法则是将填料与单体混合,通过原位聚合反应制备复合材料。

三、高导热绝缘高分子复合材料的性能研究1. 导热性能高导热绝缘高分子复合材料的导热性能是其最重要的性能之一。

研究表明,通过调整导热填料的种类、含量和分布,可以显著提高复合材料的导热性能。

此外,基体材料的性质、填料的形状和尺寸等因素也会影响材料的导热性能。

2. 绝缘性能高导热绝缘高分子复合材料还具有良好的绝缘性能。

这主要归因于基体材料的绝缘性能以及填料与基体之间的界面效应。

在实际应用中,该材料能够有效地防止电流泄漏和电磁干扰。

3. 其他性能除了导热性能和绝缘性能外,高导热绝缘高分子复合材料还具有优异的机械性能、化学稳定性和耐候性等。

这些性能使得该材料在各种恶劣环境下都能保持良好的性能。

四、高导热绝缘高分子复合材料的应用高导热绝缘高分子复合材料在电子设备、航空航天、新能源等领域具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导热高分子材料的研究与应用范晨皓化学工程与工艺三班20060300305摘要:总结了影响高分子材料导热性能的因素; 阐述和分析了导热性填料种类、温度、结晶度、分子链取向、密度和湿度对导热性高分子材料热导率的影响。

介绍了金属材料、非金属材料、高分子材料的导热机理, 以及导热填料搀杂高分子材料的导热理论模型。

综述了各种高导热填料的研究进展和它们在导热高分子材料中的应用情况。

最后提出了导热高分子材料的研究方向。

关键词:高分子材料; 热导率; 影响因素; 填料; 温度; 结晶度;应用Abstract: Summed up the impact of polymer material properties ofthermal conductivity of the factors; and analysis on the thermal conductivity of the type of filler, temperature and crystallinity, molecular chain orientation, density and humidity on the thermal conductivity polymer thermal conductivity. Introduced metal materials, non-metallic materials, the thermal conductivity of the polymer mechanism of polymer mixed with filler and the thermal conductivity of the material model. A variety of high thermal conductivity Summary of the research and fill them in the thermal conductivity of the polymer application. Finally, the thermal conductivity of the polymer research.Key word:Polymer; thermal conductivity; factors; filler; temperature; crystallinity; Application近些年来,随着工业生产和科学技术的发展,人们对导热材料提出了新的要求,希望其具有优良的综合性能,如用于化工生产和废水处理的热交换器既需要具有导热能力,又要求耐化学腐蚀、耐高温;在电气电子领域由于集成技术和组装技术的迅速发展,电子元件、逻辑电路的体积成千成万倍地缩小则需要高导热性的绝缘材料。

传统的导热材料多为导热性较好的金属材料,但金属材料不耐腐蚀,使其在某些领域的应用受到限制。

目前采用的合金技术和防腐涂层技术虽然提高了金属的抗腐蚀能力,却大大降低了其导热性。

高分子材料具有优良的耐腐蚀性能和力学性能,因而人们逐渐用其来代替传统金属材料,但纯的高分子材料一般是不能胜任的,因为高分子材料大多是热的不良导体(见表1) [1 ,2 ] 。

表1 几种塑料的热导率Tab. 1 Thermal conductivity of some kinds of plasticsW·(m·K) - 1材料PE2LD PE2HD PVC PP PS PTFE PMMA Nylon热导率0. 33 0. 44 0. 16 0. 24 0. 08 0. 27 0. 75~0. 25 0. 25制造具有优良综合性能的导热材料一般有两种途径[3 ] :第一,合成具有高热导率的结构聚合物;第二,在聚合物中填充高导热性的填料,制备导热复合材料。

其中第二种方法比较常见,一般都是用高导热性的金属或无机填料对高分子材料进行填充。

这样得到的导热材料价格低廉、易加工成型,经过适当的工艺处理或配方调整可以应用于某些特殊领域。

如化工生产中的酸化抽水过程,因冷凝的蒸汽中有酸性介质,若用钛冷凝器,使用2 a 后就开始漏水,若改用石墨填充改性PP冷凝器,其价格仅为钛冷凝器的36 % ,而且使用寿命超过钛冷凝器[4 ] 。

1. 1 导热机理各种材料的导热机理是不同的。

晶体的导热机理是排列整齐的晶粒的热振动, 通常用声子的概念来描述。

对于金属晶体, 自由电子的运动对导热起主要作用, 声子所作的贡献大多情况下可以忽略不计。

非晶体的导热机理是依靠无规律排列的分子或原子, 围绕一固定的位置的热振动, 将能量依次传给相邻的分子或原子。

由于非晶体可看作晶粒极细的体, 因此也可用声子的概念来分析其导热。

有些晶体和非晶体, 如具有较好的透射性的玻璃和单晶体, 在一定温度下光子对导热起明显的作用。

由上述可知,固体内部的导热载体分为3 种: 电子、声子、光子。

由于金属中存在大量的自由电子, 其热导率比非金属大得多。

晶体中由于微粒的远程有序性, 声子起主要作用。

在非金属材料中晶体热导率比非晶体大得多。

一般高分子材料本身的导热性较差, 是热的不良导体, 只有通过填充高导热性的填料增加材料的导热性能。

但填料的加入往往降低了材料的强度性能。

填料自身的导热性能及其在基体中的分布形式决定了整体材料的导热性能[ 4 ]。

1.2高分子材料热导率影响因素分析要控制或提高高分子材料的热导率, 必须知道影响热导率大小的各种因素, 即这些因素对热导率的贡献。

本文全面总结了影响高分子材料热导率的因素,阐述和分析了导热填料种类、温度、结晶度、分子链取向、密度和湿度对导热高分子材料热导率的影响。

1 填料种类对高分子材料导热性能的影响虽然有聚乙炔、聚亚苯基硫醚、聚噻吩等本征型导电、导热高分子材料, 但绝大多数高分子材料本身属于绝热材料。

赋予其优异的导热性的主要途径是通过共混(如机械共混、熔体共混或溶液共混等) 的方法在高分子材料中填充导热性能好的填料, 从而得到导热性能优良、价格低廉、易加工成型的导热高分子材料。

表1 是一些材料的热导率[1 ,2 ] 。

理想的导热填料需要具备几个条件: 首先, 能够发挥导热能力, 这种能力发挥的优劣取决于填料最终的颗粒形状、颗粒尺寸比、表面特征、本身导热性、环境因素等。

其次, 填料具有良好的可填充性, 为获得热导率高的材料, 往往需要向基体中添加足够量的填料。

试验证明[3 ] , 使用一系列粒径不同的导热填料, 让填料间形成最大的堆砌度, 可获得导热性较高的材料。

王亮亮等[4 ]用热导率较高的铝粉对聚丙烯(PP进行填充。

当铝粉体积分数小于15 %时, 材料的热导率随铝粉体积分数的增加而线性增加, 但增加幅度不是很大; 而铝粉体积分数超过15 %后, 材料的热导率随铝粉体积分数的提高大幅度增加。

原因是当铝粉用量较少时, 随铝粉用量的增加, 填料颗粒粘接面的树脂层厚度减薄, 而不能使树脂粘接面网络密度下降, 故材料热导率变化小; 当铝粉体积分数大于15 %后, 随铝粉用量的增加, 树脂粘接面的网络密度减小, 铝粉与铝粉间的接触面积增大, 铝粉彼此之间形成导热链, 故材料的热导率大幅度增加。

当铝粉体积分数接近30 %时, 该复合材料的热导率达到3158W/ (m·K) 。

将实验结果与Agari Y公式[5 ]进行比较发现, 在体积分数较低(0~15 %) 时, 计算值与实验值较为接近; 而体积分数较高( > 15 %) 时, 计算值与实际值偏差较大。

2 温度对高分子材料导热性能的影响高聚物的热导率对温度的依赖关系比较复杂。

总的说来, 随温度的升高, 高聚物热导率增大, 但结晶聚合物和非结晶聚合物的热导率随温度的变化规律有所不同。

各种非晶聚合物的热导率对于温度的依赖性类似。

研究证明[18 ] , 在高于100 K 的温度区域, 热导率随温度的升高缓慢增大, 直至玻璃化转变温度T g ,此时热导率与热容成正比; 温度超过T g后, 热导率随温度升高而下降。

聚甲基丙烯酸甲酯(PMMA) 的热导率在T > 100 K时随温度变化符合上述规律; 而在T < 100 K时则表现出不同的变化规律。

即在0~5K时, 热导率近似地与T2 成正比; 但在5~15 K时出现一个平台区, 此时热导率几乎与温度无关; 在稍高的温度, 热导率随温度缓慢增大。

结晶聚合物的热导率与温度的关系截然不同于非晶聚合物。

在低温区, 结晶聚合物的热导率不出现平台, 并对结晶度的变化十分敏感; 即使有相同的结晶度, 不同聚合物的热导率也因晶型不同而出现截然不同的依赖关系。

对于高结晶度聚合物(结晶度大于70 %) , 其热导率随温度升高先增后降; 伴随着结晶度的增大, 最大值移向低温区。

对低结晶度的聚合物(结晶度小于40 %) , 其热导率主要取决于结晶相的热导率, 随温度升高缓慢增大, 直至玻璃化转变温度附近才出现极大值, 随后发生逆转。

这一点与非晶聚合物类似。

但在低于10 K的温度区域, 热导率随结晶度的增加而降低。

如115 K 时, 非晶聚对苯二甲酸乙二醇酯( PET) 的热导率是50 %结晶度PET 的10倍。

因为热导率更依赖于温度的变化, 所以高结晶度聚合物的热导率对温度的变化更敏感。

如结晶度为50 %的PET , 115 K 和10 K 时的热导率分别为10 - 3W/ (M·K) 和3 ×10 - 2 W/ (M·K) 。

1.3导热高分子材料的应用1石墨导热材料换热器是化工、制药、食品、能源等工业部门广泛应用的通用设备。

碳钢和不锈钢导热性很好, 然而在特定的情况下, 特别是有腐蚀性化学物质时, 则不能适应要求。

高分子材料虽然化学稳定性优异, 但热导率较低。

用石墨作为导热填料以改性酚醛树脂为粘结剂制成酚醛ö石墨导热塑料, 既保留了塑料优异的耐腐蚀性能, 又有与金属相近的导热性能[ 23 ]。

Fig. 6Effect of graphite content on thermal conductiv ity ofmater ialF ig. 6 显示出石墨含量对热导率的影响, 所用石墨的热导率为134Wö(mõK) , 而改性酚醛树脂的热导率仅为0. 13~0. 14Wö(mõK) , 因此在传热过程中, 材料的热阻主要来自热导率较小的树脂。

当石墨含量为50%~60% 时, 树脂含量较多, 此时随石墨含量的增加, 只能使石墨颗粒粘接面的树脂层厚度减薄, 而不能使树脂粘接面网络的密度下降, 故材料的热导率变化较小; 当石墨含量增至60%~80%时, 导致树脂粘接面网络密度减小, 石墨与石墨接触面增大, 故而使材料导热率大幅度提高, 当石墨含量超过80% 时, 一方面树脂粘接面网络受到进一步破坏而使材料热导率上升, 另一方面一部分石墨间隙被空气填充使热导率下降, 综合这两个因素的影响,故材料的热导率又趋平缓。

相关文档
最新文档