锂离子电池热冲击实验及失效原因分析
重点讲解锂离子电池热失控分析

锂离子电池热失控分析锂离子电池因其低成本、高性能、大功率、绿环境等诸多优势,现已成为新能源的典型代表,广泛应用于3C数码产品、移动电源以及电动汽车等领域。
随着锂离子电池的不断推广,锂离子电池的安全性越来越受到人们的关注,由于电池本身技术原因或是使用不当等问题都可能会造成锂离子电池爆炸,引起火灾等安全事故。
尤其近几年以电动汽车为主的电动交通工具市场对锂离子电池的需求不断加大,在发展大功率锂离子电池体系过程中,电池安全问题引起了广泛重视,存在的问题急需进一步解决。
锂离子电池热失控过程近几年出现的电池热失控引起的火灾的案例中,都是由于电池的生热速率远高于散热速率,且热量大量累积而未及时散发出去所引起的。
从本质上而言,“热失控”是一个能量正反馈循环过程:升高的温度会导致系统变热,系统变热后温度升高,又反过来让系统变得更热。
锂离子电池热失控过程图第1阶段:电池内部热失控阶段电池在80~90℃时是安全的,温度升高到90~120℃之间时 SEI 膜开始分解,释放热量,温度升高。
但是当温度达到120~130℃时保护层SEI膜遭到破坏,负极与溶剂、粘结剂反应,温度升高,隔膜融化关闭。
温度继续升高至150℃之上后,内部电解质开始进行分解,继续释放热量,进一步加热电池。
第2阶段:电池鼓包阶段电池温度达到200℃之上时,正极材料分解,释放出大量热和气体,持续升温。
250-350℃嵌锂态负极开始与电解液发生反应。
第3阶段:电池热失控,爆炸失效阶段在反应发生过程中,电解液与正极反应产生的氧气剧烈反应并进一步使电池发生热失控。
锂离子电池热失控成因其实一般电池内短路在电子产品中出现的概率是千万分之一,也就是说平时生活中用到的单个电池安全性相对较高。
但是在电动汽车中,一辆电动汽车的电池组需要几千个电池组成,这样发生热失控的概率就由千万分之一上升到千分之一。
而且电动汽车的电池一旦发生危险,后果将非常严重,研究电池热失控的成因变得尤为重要。
储能锂离子电池失效机理研究与分析

储能锂离子电池失效机理研究与分析储能锂离子电池失效机理研究与分析储能锂离子电池是一种常用于电动汽车和可再生能源储存系统中的重要能量储存装置。
然而,随着使用时间的增加,电池的性能会逐渐下降,最终导致电池失效。
储能锂离子电池失效机制的研究和分析对于提高电池的寿命和性能至关重要。
首先,储能锂离子电池的失效机制可以分为两个主要方面:电池内部化学失效和电池外部物理失效。
在电池内部,电化学反应会引起电池中的锂离子在正负极之间来回迁移。
然而,随着时间的推移,电极材料会发生结构变化,导致电极容量的损失。
同时,锂离子的迁移也会导致电池中的电解质和电极之间的界面问题,如电解液分解、电极极化等。
这些内部化学失效会使电池容量减小、内阻增加,最终导致电池失效。
其次,电池外部物理失效也是导致储能锂离子电池失效的重要因素。
电池在使用过程中会受到温度变化、机械应力、振动等外部环境的影响。
这些因素会导致电池内部材料的膨胀和收缩,进而引起电极材料的剥落、粉化和电解质破裂等问题。
此外,外部物理失效还可能导致电池的短路和过充等安全问题,进一步加速电池的失效。
针对储能锂离子电池失效机制的研究和分析,科学家们采取了多种方法。
首先,他们通过对失效电池进行物理和化学分析,可以观察到电极材料的结构和形貌变化,电解液中的降解产物等,从而确定电池失效的原因。
其次,科学家们通过对电池内部的电化学特性进行测试和分析,如循环伏安测试、电化学阻抗谱等,可以评估电化学性能的衰退情况,从而深入了解电池的失效机制。
此外,他们还通过模拟和仿真等方法,研究电池在不同工作条件下的性能和寿命,以预测电池的失效过程。
综上所述,储能锂离子电池失效机制的研究和分析是提高电池寿命和性能的关键。
通过深入理解电池内部的化学和物理变化,我们可以寻找适当的措施来减少电池失效的发生,如改进电极材料、优化电解液组成、改善电池设计等。
此外,对失效机制的研究还有助于制定更好的电池管理策略,以延长电池的使用寿命并提高其能量储存效率。
(完整)锂离子电池失效模式分析

功能要求潜在的失效模式
潜在的失效后果
极片漏箔
容量低厚度偏厚
电芯直径偏大,难入壳制程水分控制差
极片掉料,低电压导电剂用量少
内阻大,循环性能差,平台低面密度偏大
正负极容量不匹配,循环性能差压实密度大
极片断裂,容量低,低电压极片长
电芯直径偏大,难入壳,负极包不住正极极片短
容量低极片漏箔
存在严重安全隐患厚度偏厚
电芯直径偏大,难入壳制程水分控制差
极片掉料,严重影响循环性能导电剂用量少
内阻大,循环性能差,平台低面密度偏大
造成电解液量相对偏少,影响循环性能面密度偏小
正负极容量不匹配,循环及安全性能差压实密度大
容量低极片长
电芯直径偏大,难入壳极片短
负极包不住正极,存在严重安全隐患负极与正极片错位
负极包不住正极,存在严重安全隐患横向收缩率大
安全可靠性差,热冲击测试爆炸纵向收缩率大
安全可靠性差,热冲击测试爆炸厚度偏厚电芯偏厚,难入壳宽度偏窄
短路爆炸孔隙率偏小
内阻大水含量高
化成时电池内压大,盖帽反转,电池报废;循环型性能差电导率小于9ms/cm 内阻大,平台低过充性能差
过充4.8V 爆炸用量偏少
内阻大,平台低,成品电池循环衰减快滚槽及封口后钢壳变形正负极短路致电池爆炸封口尺寸不到位
密封差钢壳表面残留电解液及水分钢壳生锈
封口处残存电解液
爬液致封口处钢壳严重生锈温度高于25℃
分容容量偏高温度低于25℃分容容量偏低锂离子电池失效模式分析表
外壳用于保护极组,容纳极组和电解液分容负极片匹配正极容量隔膜把正负极搁开,只让锂离子通过
电解液用于承载锂离子,起导电作用正极片保证电池容量。
怎样探究锂离子电池失效的原因

怎样探究锂离子电池失效的原因锂离子电池的应用越来越广泛,要求广大锂离子电池生产企业的生产工艺不仅要能保证锂离子电池具有良好的电性能和安全性能,同时也要有较好的机械性能,从而使锂离子电池更好地适用于各种日常的环境。
有些锂电池会出现失效的状况,如何找到出现这些状况的原因?锂离子电池18650锂电池1取四块电池样品进行实验,通过实验我们得知,导致电池在振动试验后电压降为0V,低于标准规定值,暂时性失效或永久性失效的原因主要有以下几点。
2电池暂时性失效的原因样品1的电池在与检测系统通讯的状态下进行充放电时,会通过一定的频率接收数据信息。
而振动实验中所使用的频率就可能会对电池接收数据信息产生频率干涉,使得内部芯片组内的数据出错,特别是在BMU内部温度和关联的Table(表)受到温度异常的影响时,引起保护线路动作。
目前已有相关报道证实了这一点。
在此种温度值已经发生异常的情况下,可以通过修复相关参数恢复电池的充放电功能。
样品2是由于电池在振动试验中,电池的IC进入睡眠模式,使得电池无法正常输出电压。
之后,通过对电池施加一个适当的外源激活IC,电池又能恢复正常的充放电功能。
3电池的永久性失效的原因样品3和样品4的失效电池无法通过数据修复或外源激活的方法恢复其正常的充放电功能,因此将其拆解后作了进一步研究。
通过拆解样品3的失效电池,发现该电池在组装过程中存在点胶不牢固或虚焊问题,造成内部组件在振动或冲击试验中发生松动,使得电池内部通讯中断,无法正常向外输出电压,导致电池永久性损坏。
4后来企业通过改进工艺,重新送样检测,通过了锂离子电池航空运输条件UN38.3的测试。
通过拆解样品4的失效电池,发现电池在经受比较高频率振动的过程中,电池内部的防电池干扰的垫材会分散移动,使其导电性显著降低,从而产生比较大的静电使得电池保险丝熔断,导致电池无法向外正常输出电压。
5因为导电颗粒的防止静电效果的好坏取决于颗粒的形状和表面结构,不规则和表面粗糙的颗粒的抗静电能力强,在比较高的频率振动的过程中颗粒间若能保持良好的接触,相互导电起到抗静电作用。
锂电失效分析报告

锂电失效分析报告概述本文档对锂电池失效的原因和分析方法进行了详细描述,并提供了一些解决方案和预防措施,帮助读者更好地理解和应对锂电池失效问题。
1. 引言随着移动设备的普及和电动车的广泛应用,锂电池已成为一种主要的电源解决方案。
然而,由于各种因素的影响,锂电池的失效问题频繁出现。
本报告旨在通过分析锂电池的失效原因,并提供一些解决方案和预防措施,以帮助读者更好地了解和解决锂电池失效问题。
2. 锂电池失效的原因锂电池失效可能由多种因素造成,下面是一些常见的原因:2.1 过充或过放锂电池在充电或放电过程中,如果超过其设计容量的限制,就会出现过充或过放现象。
过充或过放会导致电池内部材料结构破坏或电化学反应过程异常,从而引起电池失效。
2.2 温度过高高温是锂电池失效的常见原因之一。
高温环境会造成电池内部材料迅速老化、电解液蒸发、电化学反应加剧等问题,最终导致电池容量下降甚至损坏。
2.3 短路短路是指电池正负极之间或正负极与外部导体之间出现低阻的连接。
短路会导致大电流通过电池,引起电池内部材料热失控,甚至引起电池爆炸。
2.4 机械损伤抗震性能较差或容易受到外界物理力的锂电池容易发生机械损伤,如挤压、撞击、弯曲等。
机械损伤会导致电池内部材料断裂、电极短路等问题,使电池失效。
3. 锂电池失效的分析方法如何分析锂电池失效的原因是解决问题的关键。
以下是常见的锂电池失效分析方法:3.1 观察外观通过观察锂电池外观,可以判断是否存在机械损伤、变形、渗漏等问题。
3.2 电性能测试通过对锂电池的电性能参数进行测试,如容量、内阻、充放电效率等,可以判断锂电池的健康状况和是否存在失效问题。
3.3 微观结构分析通过对失效锂电池的微观结构进行分析,如扫描电子显微镜、能谱分析等,可以判断失效原因是否为内部材料破坏、电解液异常等。
3.4 热分析通过热分析仪器对失效锂电池进行热分析,如热失控温度、热失控速率等参数,可以判断是否存在过充、过放、温度过高等问题。
锂离子电池的热失控及安全性分析

锂离子电池的热失控及安全性分析一、锂离子电池的介绍锂离子电池是一种主要应用于便携式电子设备、电动汽车等领域的电池,因其高能量密度、长使用寿命、重量轻等优点,使得其被广泛应用。
锂离子电池是指以锂离子为正极电极材料的电池,其正负极由不同材料组成,通过电极间的离子交换来储存和释放能量。
二、锂离子电池的热失控锂离子电池的热失控是指在异常情况下电池内部发生自身反应,不可逆的产生大量热量和气体,最终导致电池爆炸和火灾的现象。
热失控的原因主要有以下几个方面:1.设计和制造缺陷。
电池在设计和制造时存在缺陷,比如电池内部正负极隔膜的损坏或者不存在,正极物质的含量过高等,这些因素都会加剧热失控的风险。
2.过充和过放。
电池充放电过程中,如果充电过度或者放电过度,就会发生热失控的现象。
3.温度过高。
在高温环境下,锂离子电池的热失控风险会大大增加。
三、锂离子电池的安全措施针对锂离子电池的热失控现象,目前已经有了一系列的安全措施,包括:1.电池设计和制造中的安全措施。
电池设计和制造中,需要考虑到电池的热失控因素,采取相应的措施来控制风险。
例如,在电池内部加装隔膜来避免正负极的直接接触。
2.电池的充放电和使用过程中的安全措施。
电池在充放电过程中,需要通过充放电管理系统来控制电池的电量,并及时停止充电或者放电,避免造成热失控。
同时在使用过程中,需要注意不要让电池过度受热或者受力。
3.热失控事件处理措施。
如果发生了锂离子电池的热失控事件,需要及时采取应对措施,如用泡沫灭火器将火源扑灭,以及尽量远离火灾现场,避免被火灾伤害。
四、结语锂离子电池是一种广泛应用的电池,但是其热失控问题也一直是人们所关注的领域。
对于热失控现象,需要从电池的设计和制造、使用以及应对方面做好相应的安全措施,从而有效地减少热失控事件的发生。
锂离子电池热冲击实验及失效原因分析

锂离子电池热冲击实验及失效原因分析截止今天,锂离子电池的应用已经取得了巨大的成功,特别是其广泛应用在了在移动电子产品。
但不能忽视的是,自从锂离子电池大规模商业化推广以来,与其相关的安全事故就几乎没有停止过。
锂离子电池的安全性已经成为制约其进一步发展的关键因素。
鉴于电池材料体系、制造过程一致性等原因,对锂离子电池进行安全性检测将非常的重要。
目前针对锂离子电池的安全检测标准在不断的更新中,但其基本安全检测模式已经成型,各种常见的检测项目也已被广泛接纳和采用。
在安全检测项目中,每个检测项目都模拟了一种用户在使用过程中可能会发生的误(滥)用情况。
如过充电测试模拟的是保护电路板失效的情况。
由于模拟的情况不同,锂离子电池各个安全测试项目的难度显然是不同的。
根据摩尔实验室(MORLAB)的以往检测经验,过充电、150℃热冲击、针刺、挤压、高温短路、重物冲击等是经常发生失效(Fail)的项目。
由于内容设计面较多,因此我们将分期介绍并分析各种锂电池测试项目的相关程序、标准要求、失效原因以及对应的解决方案。
本期我们主要讲一下锂电池的热冲击测试项目。
热冲击:以CTIA 关于符合IEEE1725标准的认证程序为例,其中与热冲击有关的条款:Section 4.2:Test Procedure: 5 cells at 80% +/- 5%SOC to be placed in oven at ambienttemperature. The oven temperature shall be ramped at 5 ± 2°Cper minute to 150 ± 2°C. After 10 minutes at 150 ± 2°C, the test iscomplete.Compliance: No fire, smoke, explosion or breaching of the cell is allowed within the first 10 minutes. Venting is permitted.Section 4.50:Test Procedure: 5 fully charged cells (per cell manufacture's specifications) shallbe suspended (no heat transfer allowed to non-integral cellcomponents) in a gravity convection or circulating air oven atambient temperature. The oven temperature shall be ramped at5 ± 2°C per minute to 130 ± 2°C. After 1 hour at 130 ± 2°C, thetest is ended.Compliance: Cells shall not flame or explode when exposed to 130°C for 1h.热冲击项目分析:目前标准中热冲击项目要求不尽相同,最常见的是热冲击到130°C并保持1小时。
锂离子电池热失控与安全问题研究

锂离子电池热失控与安全问题研究近年来,随着电动汽车和移动设备等技术的普及,锂离子电池成为了人们生活中的重要组成部分。
锂离子电池具有高能量密度、轻量化、环保等优点,因而越来越受到广大消费者的喜爱。
而随着锂离子电池使用的普及,其热失控和安全问题也在引起越来越多的关注。
一、锂离子电池热失控现象锂离子电池中,电极材料与电解质间的化学反应是产生电流的主要机理。
这里所产生的热量需要通过电解质中的离子传输来散发到环境中,从而维持电池的热平衡状态。
然而,在某些情况下,锂离子电池的热失控现象会导致电池内部的温度升高,电极材料发生反应积聚大量热能,从而引起爆炸。
锂离子电池热失控的原因可以有很多,例如过充、过放、过温、机械损伤等。
当电池内部受到某种因素的刺激,就会出现温度升高的现象。
此时,电解质中的离子会逐渐失活,导致电池内部的电阻增大,从而加剧了热失控行为。
如果逃脱不及时,电极材料就会热化至点燃温度,最终发生爆炸,造成严重的人员伤亡和财物损失。
二、锂离子电池安全问题锂离子电池存在的安全问题主要包括热失控、燃烧爆炸等。
尤其是在电动汽车、移动设备等高能量密度应用领域中,锂离子电池安全问题更加紧迫。
在电动汽车领域,电池的安全直接关系到人们的生命安全,一旦发生火灾或爆炸,后果不堪设想。
锂离子电池的安全问题主要来自于以下几个方面:1、结构上存在设计缺陷;2、电芯质量不稳定,生产工艺不严谨;3、管理系统或保护系统不完善;4、使用环境过度恶劣等。
另外,锂离子电池内部的电极材料是通过化学反应得到释放能量的。
这种释放能量的过程就意味着锂离子电池内部会存在一定的化学安全风险,如电解液泄漏、放电热失控等,容易引起发展成其他更严重的安全问题。
三、研究现状及措施为了解决锂离子电池安全问题,国内外学者们进行了广泛的研究。
但目前来看,锂离子电池的安全仍然是一个不完全解决的问题,其关注点主要集中在以下两个方面:1、热失控机制研究。
针对锂离子电池的热失控机制,学者们进行了大量的实验研究,但对于其热失控的本质机制仍然存在诸多争议。