2013年普通高等学校夏季招生全国统一考试数学理工类(北京卷)

合集下载

2013年高考数学-北京理

2013年高考数学-北京理

绝密★启封前 XX ★使用完毕前2021年普通高等学校招生全国统一考试数学〔理〕〔卷〕本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一局部〔选择题共40分〕一、选择题共8小题,每题5分,共40分。

在每题列出的四个选项中,选出符合题目要求的一项。

〔1〕集合{}1,0,1A =-,{}|11B x x =-≤<,那么AB =〔A 〕{}0〔B 〕{}1,0-〔C 〕{}0,1 〔D 〕{}1,0,1- 〔2〕在复平面内,复数()22i -对应的点位于 〔A 〕第一象限〔B 〕第二象限〔C 〕第三象限 〔D 〕第四象限〔3〕“ϕπ=〞是“曲线()sin 2y x ϕ=+过坐标原点〞的 〔A 〕充分而不必要条件〔B 〕必要而不充分条件〔C 〕充分必要条件〔D 〕既不充分也不必要条件〔4〕执行如下图的程序框图,输出的S 值为 〔A 〕1〔B 〕23〔C 〕1321〔D 〕610987〔5〕函数()f x 的图象向右平移1个单位长度,所得图象与曲 线x y e =关于y 轴对称,那么()f x = 〔A 〕1x e +〔B 〕1x e -〔C 〕1x e -+〔D 〕1x e --〔6〕假设双曲线22221x y a b -=那么其渐近线方程为 〔A 〕2y x =±〔B〕y =〔C 〕12y x =±〔D〕y = 〔7〕直线l 过抛物线2:4C x y =的焦点且与y 轴垂直,那么l 与C所围成的图形的面积等于〔A 〕43〔B 〕2〔C 〕83〔D〔8〕设关于x ,y 的不等式组21000x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点()00,P x y ,满足0022x y -=,求得m 的取值范围是〔A 〕4,3⎛⎫-∞ ⎪⎝⎭〔B 〕1,3⎛⎫-∞ ⎪⎝⎭〔C 〕2,3⎛⎫-∞- ⎪⎝⎭ 〔D 〕5,3⎛⎫-∞- ⎪⎝⎭第二局部〔非选择题共110分〕二、填空题共6小题,每题5分,共30分。

2013年普通高等学校招生全国统一考试新课标卷I(数学理)缺答案

2013年普通高等学校招生全国统一考试新课标卷I(数学理)缺答案

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N= ()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+ (C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c (9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) (B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形 (C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减x ≥1, x+y ≤3,y ≥a(x-3). {(D)若xn是f(x)的极值点,则f1(xα)=0(11)设抛物线y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5若以MF为直径的园过点(0,3),则C 的方程为(A)y2=4x或y2=8x (B)y2=2x或y2=8x(C)y2=4x或y2=16x (D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年普通高等学校招生全国统一模拟考试(四)

2013年普通高等学校招生全国统一模拟考试(四)

侧视图俯视图2013年普通高等学校招生全国统一模拟考试(四)数学(理工农医类)北京卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至9页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|21}xA x =>,{|1}B x x =<,则A B = ( )A. {|1}x x >B. {|0}x x >C. {|01}x x <<D. {|1}x x < 2.已知命题 :p x ∀∈R ,2x ≥,那么下列结论正确的是( )A. 命题:2p x x ⌝∀∈R ≤, B .命题:2p x x ⌝∃∈<R , C .命题:2p x x ⌝∀∈-R ≤, D .命题:2p x x ⌝∃∈<-R , 3.圆22(2)1x y +-=的圆心到直线3,2x t y t=+⎧⎨=--⎩(t 为参数)的距离为( )A.2D.4.设0,0x y x y +≥⎧⎨-≥⎩与抛物线24y x =-的准线围成的三角形区域(包含边界)为D ,),(y x P 为D 内的一个动点,则目标函数2z x y =-的最大值为( )A. 1-B. 0C. 2D. 35.在区间[]0,π上随机取一个数x ,则事件“1tan cos 2x x ≥g ”发生的概率为( )A. 13B. 12C.23D. 36.已知四棱锥P ABCD -的三视图如图所示,则此四棱锥的四个侧面的面积中最大的是( A .B .C .6D .8EDCB A 7.如图,在边长为2的菱形ABCD 中,60BAD ∠= ,E 为CD 的中点,则AE BD ⋅的值为( )A .1BC D8.设等比数列}{n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论:① 01q <<; ② 9910110a a ⋅->;③ 100T 的值是n T 中最大的;④ 使1n T >成立的最大自然数n 等于198. 其中正确的结论是( )A. ①③B. ①④C. ②③D. ②④第Ⅱ卷(共110分)注意事项:1.用钢笔或圆珠笔将答案直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题5分,共309.二项式51(2)x x+的展开式中3x 的系数为10.双曲线2221(0)y x b b-=>的一条渐近线方程为y =则b = .11.如图,AB 切圆O 于点A ,AC 为圆O 的直径, BC 交圆O 于点D ,E 为CD 的中点,且5,6,BD AC ==则CD =__________;AE =__________.12.执行如图所示的程序框图,若①是6i <时,输出的S 值为 ; 若①是2013i <时,输出的S 值为 .13.已知函数241,(4)()log ,(04)x f x x x x ⎧+≥⎪=⎨⎪<<⎩若关于x 的方程()f x k =有两个不同的实根,则实数的取值范围是 .图114.曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数()20k k >的点的轨迹.给出下列四个结论: ①曲线C 过点(1,1)-;②曲线C 关于点(1,1)-对称;③若点P 在曲线C 上,点,A B 分别在直线12,l l 上,则PA PB +不小于2.k④设0P 为曲线C 上任意一点,则点0P 关于直线1x =-、点(1,1)-及直线1y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k .其中,所有正确结论的序号是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数2()sin(2),R f x x x x π=-+∈. (Ⅰ)求()6f π;(Ⅱ)求)(x f 的最小正周期及单调递增区间.P FEDCBA16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且2PA PD AD ==, E 、F 分别为PC 、BD 的中点. (Ⅰ) 求证:EF //平面PAD ; (Ⅱ) 求证:面PAB ⊥平面PDC ;(Ⅲ) 在线段AB 上是否存在点,G 使得 二面角C PD G --的余弦值为13?说明理由.17.(本小题满分13分)某市为了提升市民素质和城市文明程度,促进经济发展有大的提速,对市民进行了“生活满意”度的调查.现随机抽取40位市民,对他们的生活满意指数进行统计分析,得到如下分布表:(I )求这40位市民满意指数的平均值;(II )以这40人为样本的满意指数来估计全市市民的总体满意指数,若从全市市民(人数很多)中任选3人,记ξ表示抽到满意级别为“非常满意或满意”的市民人数.求ξ的分布列;(III )从这40位市民中,先随机选一个人,记他的满意指数为m ,然后再随机选另一个人,记他的满意指数为n ,求60n m ≥+的概率.18.(本小题满分13分)已知函数21()ln (0).2f x x a x a =-> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值;(III )若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围.19.(本小题满分13分)如图,已知椭圆22221(0)x y a b a b+=>>的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率e =,F 为椭圆的左焦点,且1AF BF =g (I )求此椭圆的方程;(II )设P 是此椭圆上异于,A B 的任意一点,PH x ⊥轴,H 为垂足,延长HP 到点Q 使得HP PQ =. 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.20.(本小题满分14分)设数列{}n a 对任意*N n ∈都有112()()2()n n kn b a a p a a a +++=++ (其中k 、b 、p 是常数) .(I )当0k =,3b =,4p =-时,求123n a a a a ++++ ;(II )当1k =,0b =,0p =时,若33a =,915a =,求数列{}n a 的通项公式; (III )若数列{}n a 中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.当1k =,0b =,0p =时,设n S 是数列{}n a 的前n 项和,212a a -=,试问:是否存在这样的“封闭数列”{}n a ,使得对任意*N n ∈,都有0n S ≠,且12311111111218n S S S S <++++< .若存在,求数列{}n a 的首项1a 的所有取值;若不存在,说明理由.。

#2013全国各地高考理科数学试题及详解汇编(一)

#2013全国各地高考理科数学试题及详解汇编(一)

2013全国各地高考数学试题及详解汇编(理科●一)目 录1.新课标卷1 (2)2.新课标Ⅱ卷 (10)3. 大纲卷 (21)4.北京卷 (27)5.山东卷 (37)6.陕西卷 (41)7.湖北卷 (49)8.天津卷 (61)9.重庆卷 (71)2013年高考理科数学试题分析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至4页。

全卷满分150分。

测试时间120分钟。

注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷3至5页。

2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。

3. 全部答案在答题卡上完成,答在本试题上无效。

4. 测试结束,将本试题和答题卡一并交回。

第Ⅰ卷一、 选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题.【分析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B.2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( )A 、-4 (B )-45 (C )4 (D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【分析】由题知z =|43|34i i +-=4)(34)(34)i i i +-+=3455i +,故z 的虚部为45,故选D. 3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )A 、简单随机抽样B 、按性别分层抽样C 、按学段分层抽样D 、系统抽样【命题意图】本题主要考查分层抽样方法,是容易题.【分析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b-=(0,0a b >>C 的渐近线方程为 A .14y x =± B .13y x =± C .12y x =± D .y x =± 【命题意图】本题主要考查双曲线的几何性质,是简单题.【分析】由题知,2c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C . 5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5] 【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【分析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3 C 、1372π3cm 3 D 、2048π3cm 3 【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题.【分析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A.7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( )A 、3B 、4C 、5D 、6【命题意图】本题主要考查等差数列的前n 项和公式及通项公式,考查方程思想,是容易题.【分析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8、某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【分析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A 、5B 、6C 、7D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题.【分析】由题知a =2m m C ,b =121m m C ++,∴132m m C =7121m m C ++,即13(2)!!!m m m ⨯=7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学理科

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学理科

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z=()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,l β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l (5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1 (6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A)1+ + +…+(B)1+ + +…+(C)1+ + +…+(D)1+ + +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C)(D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c (9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A)(B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16x(12)已知点A (-1,0);B (1,0);C (0,1),直线y=ax+b(a>0)将△ABC 分割为面积相等的两部分,则b 的取值范围是(A )(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年普通高等学校招生全国统一考试(新课标Ⅱ)理科数学

2013年普通高等学校招生全国统一考试(新课标Ⅱ)理科数学

2013年普通高等学校招生全国统一考试(新课标Ⅱ)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:样本数据12,,,n x x x 的标准差s =其中x 为样本平均数 柱体体积公式VSh =其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|(1)4,M x x x R =-<∈,{}1,0,1,2,3N =-,则M N =A .{}0,1,2B .{}1,0,1,2-C .{}1,0,2,3-D .{}0,1,2,32.设复数z 满足(1)2i z i -=,则z =A .1i -+B .1i --C .1i +D .1i -3.等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =A .13B .13-C .19D .19-4.已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则A .α∥β且l ∥αB .αβ⊥且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =A .-4B .-3C .-2D .-16.执行右面的程序框图,如果输入的10N =,那么输出的S =A .11112310++++B .11112!3!10!++++ C .11112311++++D .11112!3!11!++++7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为A .B .C .D .8.设3log 6a =,5log 10b =,7log 14c =,则A .c b a >>B .b c a >>C .a c b >>D .a b c >>9.已知0a >,,x y 满足约束条件1,3,(3),x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩若2z x y =+的最小值为1,则a =A .14B .12C .1D .210.已知函数32()f x x ax bx c =+++,下列结论中错误的是A .0x R ∃∈,0()0f x =B .函数()y f x =的图像是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '=11.设抛物线2:3(0)C y px p =>的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的圆过点(0,3),则C 的方程为A .24y x =或28y x = B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =12.已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是A .()0,1 B.112⎛⎫⎪ ⎪⎝⎭ C.113⎛⎫⎪ ⎪⎝⎭D .11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅= .14.从n 个正整数1,2,,n 中任意取出两个不同的数,若取出的数两数之和等于15的概率为114,则n = . 15.设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+= . 16.等差数列{}n a 的前n 项和为n S ,已知100S =,1525S =,则n nS 的最小值为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求△ABC 面积的最大值.18.(本小题满分12分)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB的中点,1AA AC CB AB ===. (1)证明:1BC ∥平面1ACD ; ACA 1DE B 1 C 1(2)求二面角1D AC E --的正弦值.19.(本小题满分12分)经销商经销某种产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直立图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率; (3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的概率作为需求量取该区间中点值的概率(例如:若[)100,110X ∈,则取105X =,且105X =的概率等于需求量落入[)100,110的T 的数学期望.20.(本小题满分12分)平面直角坐标系xOy 中,过椭圆2222:1(0)x y M a b a b+=>>右焦点的直线0x y +=交M 于A 、B 两点,P 为AB 的中点,且OP 的斜率为12. (1)求M 的方程;(2),C D 为M 上的两点,若四边形ACBD 的对角线CD AB ⊥,求四边形ACBD 的面积的最大值.21.(本小题满分12分)已知函数()ln()xf x e x m =-+. (1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (2)当2m ≤时,证明()0f x >.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.(本小题满分10分)【选修4-1:几何选讲】 如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E 、C 分别为弦AB 与弦AC 上的点,且BC AE DC AF ⋅=⋅,B 、E 、F 、C 四点共圆.求量C DF(1)证明:CA 是△ABC 外接圆的直径;(2)若DB BE EA ==,求过B 、E 、F 、C 四点的圆的面积与△ABC 外接圆面积的比值.23.(本小题满分10分)【选修4-4:坐标系与参数方程】 已知动点P 、Q 都在曲线2cos ,:2sin ,x t C y t =⎧⎨=⎩(t 为参数)上,对应参数分别为t α=与2t α=(02απ<<),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 24.(本小题满分10分)【选修4-5:不等式选讲】 设a 、b 、c 均为正数,且1a b c ++=,证明: (1)13ab bc ac ++≤; (2)2221a b c b c a++≥2013年普通高等学校招生全国统一考试(新课标Ⅱ)理科数学参考答案一、选择题,本题考查基础知识,基本概念和基本运算能力13. 14. 15. 16.三、解答题 17.。

2013年全国各地高考数学试题及解答分类汇编大全(07 数系的扩充与复数的引入)

2013年全国各地高考数学试题及解答分类汇编大全(07数系的扩充与复数的引入)一、选择题:1.(2013安徽文)设i 是虚数单位,若复数10()3a a R i-∈-是纯虚数,则a 的值为( ) (A )-3(B )-1(C )1(D )3【答案】D 【解析】i a i a i a i i a i i i a i a --=+-=+-=-+-=+-+-=--)3()3(10)3(109)3(10)3)(3()3(103102,所以a =3,故选择D【考点定位】考查纯虚数的概念,及复数的运算,属于简单题.2.(2013安徽理)设i 是虚数单位,_z 是复数z 的共轭复数,若z*i+2=2 z ,则z =( )(A )1+i (B )1i - (C )1+i - (D )1-i -【答案】A 【解析】设2bi 2a 2)i b (a 2bi)i -a (bi)+a (22z bi.z -a =z .bi,+a =z 22+=++=+⋅⇒=+⋅z i 则i z b a a+=⇒⎩⎨⎧==⇒⎩⎨⎧==+⇒111222b b a 22所以选A3.(2013北京理)在复平面内,复数(2-i)2对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 D解析 (2-i)2=4-4i +i 2=3-4i ,∴对应点坐标(3,-4),位于第四象限.4.(2013北京文)在复平面内,复数i(2-i)对应的点位于( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 A解析 i(2-i)=2i +1对应点(1,2)在第一象限.5.(2013福建文) 复数i z 21--=(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】本题考查的知识点是复数的几何意义.由几何意义可知复数在第三象限.6.(2013福建理) 已知复数z 的共轭复数12z i =+(i 为虚数单位),则z 在复平面内对应的点位于( )A . 第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】z 的共轭复数12z i =+,则12z i =-,对应点的坐标为(1,2)-,故答案为D .7.(2013广东文) 若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是A .2B .3C .4D .5 【解析】:复数的运算、复数相等,目测4,3x y ==-,模为5,选D .8.(2013广东理) 若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( ) A . ()2,4 B .()2,4-C .()4,2-D .()4,2【解析】C ;2442iz i i+==-对应的点的坐标是()4,2-,故选C .9、(2013湖北理) 在复平面内,复数21iz i=+(i 为虚数单位)的共轭复数对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【解析与答案】211iz i i==++,1z i ∴=-。

2013年普通高等学校招生全国统一考试数学文试题(北京卷)

绝密★启用并使用完毕2013年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上答无效。

考试结束后,将本卷和答题卡一并交回。

第一部分 (选择题 共40分)一、 选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

(1)已知集合A={-1,0,1},B={x|-1≤x<1},则A ∩B= ( )(A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1}(2)设a,b,c ∈R,且a<b,则 ( )(A )ac>bc (B )1a <1b (C )a 2>b 2 (D )a 3>b 3(3)下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是(A )y= 1x(B)y=e -3 (C )y=x 2+1 (D)y=lg ∣x ∣(4)在复平面内,复数i (2-i )对应的点位于(A )第一象限(B )第二象限 (C )第三象限 (D )第四象限(5)在△ABC 中,a=3,b=5,sinA= 13,则sinB(A ) 15(B ) 59 (C )√53 (D )1(6)执行如图所示的程序框图,输出的S 值为(A )1(B )23(C )321 (D )610987 (7)双曲线x ²-y²m =1的离心率大于√2的充分必要条件是(A )m >12 (B )m ≥1 (C )m 大于1 (D )m >2(8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有(A )3个 (B )4个(C )5个 (D )6个第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分。

(9)若抛物线y 2=2px 的焦点坐标为(1,0)则p=____;准线方程为_____(10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.(11)若等比数列{an }满足a2+a4=20,a3+a5=40,则公比q=__________;前n 项sn=_____. (12)设D 为不等式组,表示的平面区域,区域D 上的点与点(L,0)之间的距离的最小值为___________. (13)函数f (x )=的值域为_________.(14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP =λAB+μAC (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为__________.三、解答题共6小题,共80分。

2013年普通高等学校招生全国统一考试(全国新课标II卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( ) A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 答案 A解析 化简集合M 得M ={x |-1<x <3,x ∈R },则M ∩N ={0,1,2}.2.设复数z 满足(1-i)z =2i ,则z =( )A .-1+iB .-1-IC .1+iD .1-i 答案 A解析 由已知得z =2i1-i =2i (1+i )(1-i )(1+i )=-1+i.3.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( )A.13 B .-13 C.19 D .-19 答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.4.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l 答案 D解析 假设α∥β,由m ⊥平面α,n ⊥平面β,则m ∥n ,这与已知m ,n 为异面直线矛盾,那么α与β相交,设交线为l 1,则l 1⊥m ,l 1⊥n ,在直线m 上任取一点作n 1平行于n ,那么l 1和l 都垂直于直线m 与n 1所确定的平面,所以l 1∥l .5.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a 等于( ) A .-4 B .-3 C .-2 D .-1 答案 D解析 (1+ax )(1+x )5中含x 2的项为:(C 25+C 15a )x 2,即C 25+C 15a =5,a =- 1.6.执行右面的程序框图,如果输入的N =10,那么输出的S =( )A .1+12+13+…+110B .1+12!+13!+…+110!C .1+12+13+…+111D .1+12!+13!+…+111!答案 B解析 k =1,T =11,S =1,k =2,T =11×2=12!,S =1+12!,k =3,T =11×2×3=13!,S =1+12!+13!,…由于N =10,即k >10时,结束循环,共执行10次.所以输出S =1+12!+13!+…+110!.7.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,1,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为()答案 A解析 在空间直角坐标系中,先画出四面体O -ABC 的直观图,以zOx 平面为投影面,则得到正视图,所以选A.8.设a =log 36,b =log 510,c =log 714,则( )A .c >b >aB .b >c >aC .a >c >bD .a >b >c 答案 D解析 设a =log 36=1+log 32=1+1log 23,b =log 510=1+log 52=1+1log 25,c =log 714=1+log 72=1+1log 27,显然a >b >c.(9)已知a >0,x ,y 满足约束条件()133x x y y a x ⎧≥⎪+≤⎨⎪≥-⎩,若z=2x+y 的最小值为1,则a=(A) 14 (B) 12(C)1(D)210.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0 答案 C解析 若c =0,则有f (0)=0,所以A 正确.由f (x )=x 3+ax 2+bx +c 得f (x )-c =x 3+ax 2+bx ,因为函数f (x )=x 3+ax 2+bx 的对称中心为(0,0),所以f (x )=x 3+ax 2+bx +c 的对称中心为(0,c ),所以B 正确.由三次函数的图象可知,若x 0是f (x )的极小值点,则极大值点在x 0的左侧,所以函数在区间(-∞,x 0 )单调递减是错误的,D 正确.选C.11.设抛物线C :y 2=2px (p ≥0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2=8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2=16x 答案 C解析 由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p 2,则由抛物线的定义知,x M =5-p2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C.12.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫1-22,12 C.⎝⎛⎭⎫1-22,13 D.⎣⎡⎭⎫13,12 答案 B二、填空题13.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 由题意知:AE →·BD →=(AD →+DE →)·(AD →-AB →)=(AD →+12AB →)·(AD →-AB →)=AD →2-12AD →·AB →-12AB →2=4-0-2=2.14.从n 个正整数1,2,…,n 中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________. 答案 8解析 由题意,取出的两个数只可能是1与4,2与3这两种情况,∴在n 个数中任意取出两个不同的数的总情况应该是C 2n=n (n -1)2=2÷114=28,∴n =8.15.设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ=________. 答案 -105解析 ∵tan ⎝⎛⎭⎫θ+π4=12,∴tan θ=-13,即{ 3sin θ=-cos θ,2θ+cos 2θ=1,解得sin θ=1010,cos θ=-31010. ∴sin θ+cos θ=-105.16.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 答案 -49解析 由题意知a 1+a 10=0,a 1+a 15=103.两式相减得a 15-a 10=103=5d ,∴d =23,a 1=-3.∴nS n =n ·⎝⎛⎭⎫na 1+n (n -1)2d =n 3-10n 23=f (n ), f ′(n )=13n (3n -20).由函数的单调性知f (6)=-48,f (7)=-49. ∴nS n 的最小值为-49.三、解答题17.△ABC 中内角A ,B ,C 的对边分别为a ,b ,c ,已知a =bcos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 解 (1)由已知及正弦定理得sin A =sin B cos C +sin C sin B ,① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C .② 由①,②和C ∈(0,π)得sin B =cos B .又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1.18.如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1∥平面A 1CD ;(2)求二面角D -A 1C -E 的正弦值.(1)证明 连结AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连结DF ,则BC 1∥DF . 因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD , 所以BC 1∥平面A 1CD .(2)解 由AC =CB =22AB 得,AC ⊥BC .以C 为坐标原点,CA →的方向为x 轴正方向,CB →的方向为y 轴正方向,CC 1→的方向为z 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2), CD →=(1,1,0),CE →=(0,2,1),CA 1→=(2,0,2). 设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则{n ·CD →=0,n ·CA 1→=0,即{ x 1+y 1=0,x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则{m ·CE →=0,m ·CA 1→=0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D -A 1C -E 的正弦值为63.19.经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位: t,100≤X ≤150)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率; (3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的T 的数学期望.解 (1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000. 当X ∈[130,150]时,T =500×130=65 000.所以T ={ 800X -39 000,100≤X <130,,130≤X ≤150. (2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.(3)依题意可得T 的分布列为所以E (T )=45 000×20.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则 x 21a 2+y 21b 2=1① x 22a 2+y 22b2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6,所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0, 所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463;将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0, 设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.21.已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0.(1)解 f (x )=e x -ln(x +m )⇒f ′(x )=e x -1x +m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{x |x >-1},f ′(x )=e x-1x +m =e x (x +1)-1x +1,令1)1()(-+=x e x g x ,则0)2()(>+='x e x g x ,又0)0(=g显然f (x )在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 令g (x )=e x -ln(x +2),则g ′(x )=e x -1x +2(x >-2).h (x )=g ′(x )=e x -1x +2(x >-2)⇒h ′(x )=e x +1(x +2)2>0,所以h (x )是增函数,h (x )=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (x )=g ′(x )=0的唯一实根在区间⎝⎛⎭⎫-12,0内, 设g ′(x )=0的根为t ,则有g ′(t )=e t -1t +2=0⎝⎛⎭⎫-12<t <0,所以,e t =1t +2⇒t +2=e -t , 当x ∈(-2,t )时,g ′(x )<g ′(t )=0,g (x )单调递减; 当x ∈(t ,+∞)时,g ′(x )>g ′(t )=0,g (x )单调递增;所以g (x )min =g (t )=e t-ln(t +2)=1t +2+t =(1+t )2t +2>0,当m ≤2时,有ln(x +m )≤ln(x +2),所以f (x )=e x -ln(x +m )≥e x -ln(x +2)=g (x )≥g (x )min >0.22.[选修4-1]几何证明选讲如图,CD 为△ABC 外接圆的切线,AB 的延长线交直线CD 于点D ,E 、F 分别为弦AB 与弦AC 上的点,且BC ·AE =DC ·AF ,B 、E 、F 、C 四点共圆.(1)证明:CA 是△ABC 外接圆的直径;(2)若DB =BE =EA ,求过B 、E 、F 、C 四点的圆的面积与△ABC 外接圆面积的比值.(1)证明 因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC F A =DCEA,故△CDB ∽△AEF ,所以∠DBC =∠EF A .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC , 故∠EF A =∠CFE =90°. 所以∠CBA =90°,因此CA 是△ABC 外接圆的直径.(2)解 连结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE , 由DB =BE ,有CE =DC , 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC外接圆面积的比值为12.23.[选修4-4]坐标系与参数方程已知动点P 、Q 都在曲线C :{ x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解 (1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为{ x =cos α+cos 2α,y =sin α+sin 2α,(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π,d =0,故M 的轨迹过坐标原点.24.[选修4-5]不等式选讲设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得 a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c2a +a ≥2c ,故a 2b +b 2c +c2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1.。

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学(理科)精校版


【考查知识点】复数的四则运算。 【解析】 z
2i 2i 1 i 2(i i 2 ) 。此题属于容易题。 1 i ,选(A) 1 i 1 i 1 i 1 i2
(3)等比数列 {an } 的前 n 项和为 Sn ,已知 S3 a2 10a1 , a5 9 ,则 a1 (A)
2 1 ),此时 0 a 2 3
凯里市第一中学
贾士伟
答案仅供参考,如有错误,请等待官方标准答案!
由 S CQP
1 2
2
b 1 b 1 2|x | 2 | x | 1 a 1 a 1 2
Q p
可得 (1 b)
1 4 1 2 1 (1 a 2 ) [ , ) ,解得 b (1 , ] 2 9 2 2 3
又 为第二象限角,所以 sin 进而 sin cos
10 。 5
(16)等差数列 {an } 的前 n 项和为 Sn ,已知 S10 0, S15 25 ,则 nSn 的最小值为________. 【考查知识点】等差数列前 n 项和公式,函数最值问题。 【解析】设 Sn An Bn ,则
【考查知识点】一元二次不等式的解法,集合的交运算。 【解析】 M {x | 1 x 3} ,所以 M N {0,1, 2} ,选(A) 。此题属于容易题。 (2)设复数 z 满足 (1 i ) z 2i ,则 z (A) 1+i (B) 1 i (C) 1+i (D) 1 i
2 2
(C) y 4 x 或 y 16 x
2 2
(D) y 2 x 或 y 16 x
2 2
【考查知识点】抛物线的定义、点圆位置关系。 【解析】记 A(0, 2) , F ( 由题 AF AM (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013 北京理科数学 第1页 2013年普通高等学校夏季招生全国统一考试数学理工农医类 (北京卷) 第一部分(选择题 共40分) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B=( ). A.{0} B.{-1,0} C.{0,1} D.{-1,0,1} 2.在复平面内,复数(2-i)2对应的点位于( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.执行如图所示的程序框图,输出的S值为( ).

A.1 B.23 C.1321 D.610987 5.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=( ). A.ex+1 B.ex-1 C.e-x+1 D.e-x-1

6.若双曲线22221xyab的离心率为3,则其渐近线方程为( ).

A.y=±2x B.2yx C.12yx D.22yx 7.直线l过抛物线C:x2=4y的焦点且与y轴垂直,则l与C所围成的图形的面积等于( ).

A.43 B.2 C.83 D.1623 8.设关于x,y的不等式组210,0,0xyxmym表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m的取值范围是( ). A.4,3 B.1,3 C.2,3 D.5,3 第二部分(非选择题 共110分)

二、填空题共6小题,每小题5分,共30分.

9.在极坐标系中,点π2,6到直线ρsin θ=2的距离等于__________. 10.若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项和Sn=__________. 11.如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA=3,PD∶DB=9∶16,则PD= 2013 北京理科数学 第2页

__________,AB=__________. 12.(2013北京,理12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__________. 13.(2013北京,理13)向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则

__________.

14.(2013北京,理14)如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为__________.

三、解答题共6小题,共50分.解答应写出文字说明,演算步骤. 15.(本小题共13分)在△ABC中,a=3,26b,∠B=2∠A, (1)求cos A的值; (2)求c的值. 2013 北京理科数学 第3页

16.(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.

(1)求此人到达当日空气重度污染的概率; (2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 2013 北京理科数学 第4页

17.(2013北京,理17)(本小题共14分)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5,

(1)求证:AA1⊥平面ABC; (2)求二面角A1-BC1-B1的余弦值;

(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求1BDBC的值. 2013 北京理科数学 第5页

18.(本小题共13分) 设L为曲线C:lnxyx在点(1,0)处的切线. (1)求L的方程; (2)证明:除切点(1,0)之外,曲线C在直线L的下方.

19.(2013北京,理19)(本小题共14分)已知A,B,C是椭圆W:24x+y2=1上的三个点,O是坐标原点. (1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积; (2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由. 2013 北京理科数学 第6页

20.(本小题共13分) 已知{an}是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an+1,an+2,„的最小值记为Bn,dn=An-Bn. (1)若{an}为2,1,4,3,2,1,4,3,„,是一个周期为4的数列(即对任意n∈N*,an+4=an),写出d1,d2,d3,d4的值;

(2)设d是非负整数,证明:dn=-d(n=1,2,3,„)的充分必要条件为{an}是公差为d的等差数列; (3)证明:若a1=2,dn=1(n=1,2,3,„),则{an}的项只能是1或者2,且有无穷多项为1. 2013 北京理科数学 第7页 2013年普通高等学校夏季招生全国统一考试数学理工农医类 (北京卷) 第一部分(选择题 共40分) 一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.答案:B 解析:{-1,0,1}∩{x|-1≤x<1}={-1,0}. 2.答案:D 解析:∵(2-i)2=3-4i,∴该复数对应的点位于第四象限,故选D. 3.答案:A 解析:∵φ=π,∴y=sin(2x+π)=-sin 2x, ∴曲线过坐标原点,故充分性成立; ∵y=sin(2x+φ)过原点, ∴sin φ=0,∴φ=kπ,k∈Z. 故必要性不成立.故选A. 4.答案:C

解析:依次执行的循环为S=1,i=0;23S,i=1;1321S,i=2.故选C. 5.答案:D 解析:依题意,f(x)向右平移1个单位之后得到的函数应为y=e-x,于是f(x)相当于y=e-x向左平移1个单位的结果,∴f(x)=e-x-1,故选D. 6.答案:B

解析:由离心率为3,可知c=3a,∴b=2a.

∴渐近线方程为2byxxa,故选B. 7.答案:C 解析:由题意可知,l的方程为y=1. 如图,B点坐标为(2,1),

∴所求面积S=4-2202d4xx=4-3202|12x=83,故选C. 8.答案:C 解析:图中阴影部分表示可行域,要求可行域内包含y=12x-1上的点,

只需要可行域的边界点(-m,m)在y=12x-1下方,也就是m<12m

-1,即23m.故选C.

第二部分(非选择题 共110分) 二、填空题共6小题,每小题5分,共30分. 9.答案:1

解析:在极坐标系中,点π2,6对应直角坐标系中坐标为(3,1),直线ρsin θ=2对应直角坐标系中的方程为y=2,所以点到直线的距离为1. 10.答案:2 2n+1-2

解析:由题意知352440220aaqaa. 2013 北京理科数学 第8页

由a2+a4=a2(1+q2)=a1q(1+q2)=20, ∴a1=2.∴Sn=21212n=2n+1-2.

11.答案:95 4 解析:设PD=9k,则DB=16k(k>0). 由切割线定理可得,PA2=PD·PB,

即32=9k·25k,可得15k.

∴PD=95,PB=5. 在Rt△APB中,AB=22PBPA=4. 12.答案:96 解析:连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有4×1343CA=96(种). 13.答案:4 解析:可设a=-i+j,i,j为单位向量且i⊥j, 则b=6i+2j,c=-i-3j. 由c=λa+μb=(6μ-λ)i+(λ+2μ)j,

∴6123,,解得21.2,

∴4. 14.答案:255 解析:过E点作EE1垂直底面A1B1C1D1,交B1C1于点E1, 连接D1E1,过P点作PH垂直于底面A1B1C1D1,交D1E1于点H, P点到直线CC1的距离就是C1H,

故当C1H垂直于D1E1时,P点到直线CC1距离最小, 此时,在Rt△D1C1E1中,C1H⊥D1E1,D1E1·C1H=C1D1·C1E1,∴C1H=22555. 三、解答题共6小题,共50分.解答应写出文字说明,演算步骤. 15.解:(1)因为a=3,26b,∠B=2∠A,

所以在△ABC中,由正弦定理得326sinsin2AA.

相关文档
最新文档