熔融指数实验
实验四 熔融指数的测定

实验四热塑性塑料熔融指数的测定一、实验目的1、测定聚乙烯、聚丙烯、聚苯乙烯等热塑性聚合物的熔融指数。
2、了解热塑性塑料熔体流动速率与加工性能之间的关系。
3、掌握热塑性塑料熔体流动速率的测定方法,学习使用MFI-1221熔体流动速率仪。
4、掌握熔体质量流动速率计算方法。
二、实验原理大多数热塑性塑料都可以用它的熔体流动速率来表示它的流动性。
熔体流动速率(MFR)是指热塑性高聚物在规定的温度、压力条件下,熔体在10min内通过标准毛细管的质量值,其单位是g/10min,习惯用熔融指数(MI)表示,又称为熔融流动指数(MFI)。
对于同一种聚合物,在相同的条件下,流出的量越大,MI越大,说明其流动性越好。
对于不同的聚合物来说,由于测试时所规定的条件不同,因此,不能用熔融指数的大小来比较它们的流动性。
同时,对于同一种高聚物来说还可用MI来比较其相对分子质量的大小。
MI越小,其相对分子质量越高;反之MI越大,其相对分子质量越小,说明它的流动性越好。
因此,一般来说,分子量越大,分子链越长,支链越多,熔融指数越小,加工性越差,但生产出来的聚合物产品应用性能如断裂强度、硬度、韧性、缺口冲击、耐老化稳定性等就越好。
反之,分子量小、分子链越短,支链越小,熔融指数越大,加工性越好,但是生产出来的产品应用性能就相应较差。
在塑料加工成型中,对塑料的流动性常有一定的要求。
如压制大型或形状复杂的制品时,需要塑料有较大的流动性。
如果塑料的流动性太小,常会使塑料在模腔内填塞不紧,从而使制品质量下降,甚至成为废品。
而流动性太大时,会使塑料溢出模外,造成上下模面发生不必要的黏合或使导合部件发生阻塞,给脱模和整理工作造成困难,同时还会影响制品尺寸的精度。
所以聚合物生产要在加工性能和应用性能间找到平衡,根据产品的特点,发现最佳参数。
用MI表征高聚物熔体的黏度,作为流动物性指标已在国内外广泛采用。
由此可见,高聚物流动性的好坏,与加工性能关系非常密切,是成型加工时必须考虑的一个很重要的因素,不同用途、不同加工方法对高聚物MI值有不同的要求,对选择加工工艺参数如加工温度、螺杆转速、加工时间等都有实际的指导意义。
[最新]聚合物熔融指数的测定
![[最新]聚合物熔融指数的测定](https://img.taocdn.com/s3/m/903c6296e43a580216fc700abb68a98271feac68.png)
实验1 聚合物熔融指数的测定一、实验目的1.掌握热塑性高聚物熔融指数的测定方法。
2.了解聚合物熔融指数的测定条件。
二、实验原理熔融指数就是热塑性高聚物在一定温度,一定压力下,熔体在10分钟内通过标准毛细管的重量值,以克/10分钟表示。
熔融指数(MI)的数据可以用来区别各种热塑性高聚物在熔融状态时流动性的好坏。
但只是一个大体上的分类手段,还不能根据熔融指数数据预测实际成型加工工艺过程。
另外,对同一种高聚物,还可以用熔融指数来比较高聚物分子量大小,作为生产上的品质控制。
一般来讲,同一种高聚物(化学结构一定),其熔融指数愈小,分子量愈大,熔融指数愈大,分子量愈小。
三、仪器设备熔融指数仪、天平等。
XNR-400四、实验条件1.熔融指数仪主要零件尺寸及规格:出料口直径:2.095±0.005mm出料口长度:8.000±0.025mm装料口直径:9.550±0.025mm装料口长度:160mm活塞杆大直径:9.475±0.015mm活塞杆头长度:6.350±0.100mm温度波动:<±0.5℃(出料口上端毫米处)2. 试料:工业聚丙烯(PP)3. 温度、负荷的选择:根据国标,选择230℃ 2.16kg4. 取样条(即切割段)时间的选择:40S五、实验步骤1.根据试样要求,选择相应的口模,从料筒的上端装入,并用顶杆将其压到与挡板接触为止。
3.插上电源插头,打开面板上的电源开关,电源指示灯亮,仪器进入监控状态。
4.键入实验参数。
通过面板上的按键依次设定切料方式、实验温度、负载等,将压杆放入炉膛,按预热键,仪器进入预热状态。
5.料筒内已达恒温状态(恒在设定温度上)。
即可继续以下操作。
6.装料,用装料斗和装料杆逐次装入并压实进入料筒的试样,将活塞杆放入料筒中,五分钟后,即可加上所需砝码进入实验。
7.试样切取。
当活塞杆下压到下环形标记与加热炉顶部相平时,旋转刮刀手柄,切除挤出的试样,同时启动秒表,并用容器接在出料口的下方,40秒后用刮刀切取该段时间内挤出的料作为第一次取样,之后,每340秒取一次试样。
聚合物熔融指数的测定

聚合物熔融指数的测定姓名:他雪峰学号:130242119一.实验目的熔融指数是热塑性塑料在一定温度和一定压力下,熔体在十分钟内通过毛细管的重量值,其单位“克/10分钟”,习惯上用“MI”表示。
通过本实验掌握熔融指数的测定方法,并了解热塑性塑料在熔融状态下的流动性大小与分子量的关系。
二.实验原理熔融指数是用来区别各种热塑性聚合物材料在熔融状态时的流动性,对同一种聚合物是可以用熔融指数来比较聚合物分子量大小,同一类型的聚合物(化学结构一定),其熔融指数愈小,分子量就愈高,随着分子量的提高,聚合物的断裂强度﹑硬度﹑韧性﹑耐老化稳定性﹑缺口冲击强度等性能都有所提高。
熔融指数大,分子量就小,加工性能就好一些。
但从熔融指数仪得到的流动性能数据,不能满足成型加工过程中所需要的具体数据,因为熔融指数是在低剪切速率下进行的,即剪切速率为2~50/秒,实际成型加工是在高剪切速率下进行,即5×104~7×104 /秒,两者相差很大。
所以熔融指数只是一个分类的手段,对于某一种热塑性聚合物来说,只有当熔融指数与加工条件,产品性能和经验联系起来才有实际意义。
由于熔融指数测定仪及测试方法的简易性,国内生产的热塑性树脂(尤其是聚烯烃类),常附有熔融指数的指标。
三.仪器及样品1.仪器装置熔融指数仪是一种简易的毛细管式的在低剪切速率下工作的仪器,由主体和加热控温两部分组成,主体结构如下图所示:XYZ—190熔融指数仪的主体结构是本装置的关键部分,主要由砝码,圆筒,活塞,毛细管,直角温度计和加热系统所组成(但本次我们所做的试验已经采用更加先进的自动控温装置,而没有直角温度计)。
圆筒和活塞应是不锈钢制成,同时要求圆筒与活塞头直径之差(间隙)为0.075±0.015毫米。
间隙的大小,都会直接影响测试结果。
毛细管由耐磨损的钨钢材料制成,外径稍小于圆筒内径,以便它能在圆筒孔中自由下落到圆筒底部,毛细管的中心孔径为1.180±0.020毫米,要求直而光滑。
塑料的熔融指数测定

塑料的熔融指数测定熔融指数的定义是热塑性树脂试样在一定温度、恒定压力下,熔体在10min 内流经标准毛细管的质量值,单位是g /10min,通常用MI 来表示熔融指数。
一、实验目的1) 掌握XRZ-400-1 型熔融指数测试仪的使用方法。
2) 了解熔融指数的意义及与塑料加工性能之间的关系。
二、实验原理:线性高聚物在一定温度与压力的作用下具有流动性,这是高聚物加工成型的依据,如许多塑料可以压模、吹塑、注射等进行加工成型,合成纤维可以进行熔融纺丝,因此高聚物的流动性的好坏是成型加工时必须考虑的一个很重要的因素。
流动性好的高聚物在成型加工时温度可以选得低一些,或者是外力可以选得小一点。
相反对流动性差得高聚物成型加工的温度应该高一些,或者是外力应该大一点。
衡量高聚物流动性好坏的指标有多种,如熔融指数,表观粘度、流动度,这里只介绍熔融指数。
熔融指数是在标准的熔融指数仪中测定的。
先把一定量高聚物放入按规定温度的料筒中,使之全部熔融,然后在按规定的负荷下它从固定直径的小孔中流出来,并规定用10 分钟内流出来的高聚物的重量克数作为它的熔融指数。
在相同条件下(同一种聚合物、同温度、同负荷),熔融指数越大,说明它的流动性越好,相反熔融指数越小,则流动性越差。
不同用途和不同的加工方法,对高聚物的熔融指数有不同的要求,一般情况下注射成型用的高聚物熔融指数较高。
但是通常测定的【MI 】不能说明注射或挤出成型的聚合物的实际流动性能,因为在荷重2160克的条件下,熔体的剪切速率约10-2~10 秒-1范围,属于低剪切速率下流动远比注射或挤出成型加工中通常的剪切速率(102~104秒-1)范围为低。
由于熔融指数测定仪具有简单,方法简便的优点,用【MI 】能方便的表示聚合物流动性的高低,所以对于成型加工中材料的选择和使用性有参考的使用价值。
三、实验设备及试样:设备:XRZ-400-1型熔融指数测试仪(附示意图);该仪器由试料挤出系统河加热控制系统两个部分组成。
高聚物的熔融指数测定实验

高聚物的熔融指数测定实验一、实验目的1.测定聚合物的熔融指数;2.了解热塑性塑料在熔融状态(即粘液态)时流动粘性的特性及其重要性;3.学习使用XNR-400A型熔融指数仪。
二、实验原理熔融指数指热塑性高聚物在规定的温度、压力条件下熔体在10min通过标准毛细管的质量值,其单位是g/10min,习惯用MI表示,又称熔融流动指数(MFI)。
熔融指数可以用来区别不同的热塑性材料在熔融状态时的流动性,对同一品牌的高聚物可用MI来比较其相对分子质量的大小,MI越小,其相对分子质量越高,反之MI越大,其相对分子质量越小,说明它的流动性好,其加工性能就相应好一些,但聚合物其它性能如断裂强度、硬度、耐老化稳定性等将差一些。
用MI表征高聚物熔体的粘度,作为流动物性指标已在国内外广泛采用。
提高温度和压力,几乎所有聚合物的粘度都有不同程度的下降,熔体流动速率都有不同程度的增加。
因此,在塑料成型加工实际生产控制中,往往用改变温度和压力来调节塑料熔体的流动性和充模速度。
高聚物流动的好坏,是成型加工时必须考虑的一个很重要的因素,不同用途、不同加工方法对高聚物MI值有不同要求,对选择加工工艺参数-加工温度、螺杆转速、加工时间都有实际的指导意义。
在测定高聚物的熔融指数时,测试条件主要是温度和负荷的选择为了相互有可比性,对每一种高聚物均有统一的标准.三.实验步骤1.熟悉仪器,并检查仪器是否水平,料筒、压料杆、出料口是否清洁。
2.将试样进行干燥。
3.插上电源插头,按下面板上电源开关和照明开关,面板上PV、SV显示器和底部照明灯即亮。
面板上显示器首先出现类型显示,再自动变换到输入范围显示,然后自动变换到SV、PV显示模式,并开始升温。
4. 将标准口模(出料口)放入料筒,插入活塞杆,开始升温,到达实验所需温度后,恒至少15min。
5. 称取3试样,拔出活塞杆,经过漏斗向料筒装料,,用料杆压实后,再少量加入,反复进行,这样有助于防止气泡,对于流动率大的尤为重要。
熔融指数的测定

4 实验步骤
5、 温度稳定后即可加料。加料前取出料杆,置于耐高温物体上,避免 料杆头部碰撞。把加料用漏斗插入料筒内(尽量不与料筒壁相碰,以免 发烫),快速加料,加料完毕,用压料杆将料压实(以减少气泡),再 插入料杆,套上砝码托盘。 6、 加砝码,基础砝码325g,加负荷1835g(875g+960g),总负荷 2160g 7、 下环线与顶面平齐后,按“预切”“测量”开始试验,收集切下的 料条,含有气泡的料条舍弃
MI=m*600/t 式中:m:料段质量(算术平均值),g;
t = 20 s。
5 实验注意事项
♦料筒,压料杆,毛细管属于精密仪器要轻拿轻放,不可掉落地上, 清理时切忌擦伤; ♦加金属重物压出余料时,切忌用人的压力把余料挤出,一样压料杆 和出料托板等因受力不当和超载而变形; ♦操作过程中要戴上手套,以防烫手; ♦所切取的几个料段中,最大值与最小值之差不能超过平均值的10%。有较高的实 际意义。
3 实验样品与仪器
实验样品
聚丙烯 低密度聚乙烯
实验仪器
XNR—400B熔体流动速率测定仪
3 实验样品与仪器
实验仪器介绍
XNR—400B熔体 流动速率测定仪
4 实验步骤
1、 熟悉仪器,并检查仪器是否水平,料筒、压料杆、毛细管是否清洁; 2、 备好样品,用架盘天平称取4~5gLDPE或PP; 3、 装好料筒,毛细管; 4、 开启电源,指示灯亮,设定参数(温度190℃、时间20s、次数10次), 按下“控温”开始升温,蜂鸣响4声,恒温15min;
近年来,熔体流动速率从“质量”的概念上,又引伸到“体积”的概念 上,即增加了熔体体积流动速率。其定义为:熔体每10min通过标准口模毛 细管的体积,用MVR表示,单位为cm3/10min。
聚合物熔融指数测定实验报告
2、
三、仪器及药品:
仪器:XNR-400B熔融指数仪一台
样品:聚乙烯、聚丙烯
四、测定方法:
(一)熔融指数测定仪的使用方法:
1、先按下参数设定,设置好温度,按控温键,升温至设定的温度。
2、待温度升至标定的温度后,加入试样,在既定的载荷下测试聚合物样品10分钟流出的重量。
(二)试样
试样可以是能放入园筒中的热塑性粉料,粒料、条状、片状等,加料量是根据其熔融指数的大小而定。
实验ห้องสมุดไป่ตู้果处理
1、数据列表
请设计个熔融指数实验数据纪录表
2、公式计算可由下式计算熔融指数
计算 (克/10分)
式中w—三个切割段重量算术平均量值(克)
t—切割段所需的时间
六、思考题
1、有那些因素影响聚合物(同一品种)熔融指数大或小?
2、聚合物的熔融指数与相对分子量有什么关系?熔融指数在不同聚合物之间能否进行对比?
(2)切取样条时间的选择
当园筒内的试样达到规定的温度时,就可加上负荷,熔体通过毛细管而流出,用铣的刀刃在规定时间切割流出的样条,每条切割段所需的时间与熔融指数(M1)的大小有关,下表为加料量与切样时间和熔融指数的关系。
MI(克/10分钟)
料筒试样克数
切样时间(秒)
0.15-1.0
2.5-3.0
180-300
(三)条件选择
(1)温度负荷的选择
测试温度选择的依据,首先要考虑到热塑性高聚物的流动温度。测试温度必须高于流动温度,但不能太高,否则材料因过于受热而分解。
负荷:要考虑到熔体粘度的大小(即熔融指数)。粘度大的应取较大的负荷,反之则取较小的负荷。
据经验报导,熔融指数小于10的,温度、负荷均要求高些,一般是1900C/2160克,10-80之间的,一般用1900C/325克,熔融指数大于80的取1250C/325克。
实验四熔融指数的测定
实验四熔融指数的测定实验四热塑性塑料熔融指数的测定一、实验目的1、测定聚乙烯、聚丙烯、聚苯乙烯等热塑性聚合物的熔融指数。
2、了解热塑性塑料熔体流动速率与加工性能之间的关系。
3、掌握热塑性塑料熔体流动速率的测定方法,学习使用MFI-1221熔体流动速率仪。
4、掌握熔体质量流动速率计算方法。
二、实验原理大多数热塑性塑料都可以用它的熔体流动速率来表示它的流动性。
熔体流动速率(MFR)是指热塑性高聚物在规定的温度、压力条件下,熔体在10min内通过标准毛细管的质量值,其单位是g/10min,习惯用熔融指数(MI)表示,又称为熔融流动指数(MFI)。
对于同一种聚合物,在相同的条件下,流出的量越大,MI越大,说明其流动性越好。
对于不同的聚合物来说,由于测试时所规定的条件不同,因此,不能用熔融指数的大小来比较它们的流动性。
同时,对于同一种高聚物来说还可用MI来比较其相对分子质量的大小。
MI 越小,其相对分子质量越高;反之MI越大,其相对分子质量越小,说明它的流动性越好。
因此,一般来说,分子量越大,分子链越长,支链越多,熔融指数越小,加工性越差,但生产出来的聚合物产品应用性能如断裂强度、硬度、韧性、缺口冲击、耐老化稳定性等就越好。
反之,分子量小、分子链越短,支链越小,熔融指数越大,加工性越好,但是生产出来的产品应用性能就相应较差。
在塑料加工成型中,对塑料的流动性常有一定的要求。
如压制大型或形状复杂的制品时,需要塑料有较大的流动性。
如果塑料的流动性太小,常会使塑料在模腔内填塞不紧,从而使制品质量下降,甚至成为废品。
而流动性太大时,会使塑料溢出模外,造成上下模面发生不必要的黏合或使导合部件发生阻塞,给脱模和整理工作造成困难,同时还会影响制品尺寸的精度。
所以聚合物生产要在加工性能和应用性能间找到平衡,根据产品的特点,发现最佳参数。
用MI表征高聚物熔体的黏度,作为流动物性指标已在国内外广泛采用。
由此可见,高聚物流动性的好坏,与加工性能关系非常密切,是成型加工时必须考虑的一个很重要的因素,不同用途、不同加工方法对高聚物MI值有不同的要求,对选择加工工艺参数如加工温度、螺杆转速、加工时间等都有实际的指导意义。
熔融指数测试标准
熔融指数测试标准
熔融指数的测试标准包括以下:
一、样品:
1. 选择可以熔融的物质,并按照规定的标准把样品分片或者研磨;
2. 将样品放入能够熔融的容器中,根据熔融指数测定要求放置在熔点内;
二、测定:
1. 利用温度差热量法,测定样品的熔点,并根据背景温度的变化,可以大致确定样品的流动性;
2. 利用温度梯度步进法,测定样品的熔点,根据不同的温度差步进,可以就近的估算出样品的熔点;
3. 在规定的温度区间内,测定样品的完全熔,即完全液化,以此作为样品的标准熔点;
三、计算:
1. 利用完全熔点和背景温度,计算熔融指数(MI);
2. 通过比较测定结果,与物料的性能指标构成比较,从而确定样品的可熔融性;
四、结果:
1. 根据计算出来的熔融指数,对物料进行分类,判定其在熔融时的行
为是否符合要求;
2. 熔融指数的测定结果可作为物料的评价和选择的依据。
通过熔融指数验证物料的可熔融性,可以有效地进行材料的性能测试。
也能根据物料的性能指标,及早发现物料的质量问题,从而确认大规
模生产的产品质量。
熔融指数的测试标准,可以为材料生产提供适用性,稳定性和可靠性,有助于提升整个供应链的管理水平,保证生产
环节的质量管理工作。
聚合物熔融指数的测定资料
聚合物熔融指数的测定资料聚合物熔融指数的测定熔融指数(Melt Flow Index,MFI)是聚合物材料的一个重要参数,它反映了聚合物在熔融状态下的流动性。
熔融指数的测定对于聚合物生产、加工和使用具有重要的指导意义。
本文将介绍熔融指数的测定原理、实验方法、影响因素和结果分析。
一、测定原理熔融指数是通过测量聚合物在指定温度和压力下,10分钟内从毛细管流出物料的重量。
毛细管下端连接一个装有石棉纤维的过滤器,以防止粒料冲出。
测定时,先将毛细管加热到指定温度,在一定的压力下使聚合物熔融,然后用规定的力量把物料挤出毛细管。
从流出物料的重量可以知道聚合物的熔融状况和流动性。
二、实验方法1.按照规定的方法将聚合物样品切成小片或粒状。
2.将毛细管加热到指定温度(例如:PE为190℃,PP为230℃),保持一定时间,使聚合物完全熔融。
3.在毛细管下端连接一个过滤器,以防粒料冲出。
4.在规定的时间(例如:10分钟)内,通过毛细管流出物料的重量即为熔融指数。
三、影响因素1.温度:温度对熔融指数有较大影响。
温度升高,分子运动加剧,熔融指数增大。
因此,在测定熔融指数时,要严格控制温度。
2.压力:在一定温度下,压力对熔融指数也有一定影响。
压力增大,物料流出速度加快,熔融指数增大。
但是,过高的压力可能导致物料分解。
因此,要合理选择压力。
3.料筒内物料量:料筒内物料量对熔融指数有一定影响。
物料量过多,可能会导致物料受热不均;物料量过少,则可能使物料过早地到达过滤器,导致测量不准确。
4.过滤器:过滤器的状态对熔融指数的测量结果有很大影响。
如果过滤器堵塞或阻力过大,会导致物料流出速度减慢,从而影响测量结果。
因此,在实验前要对过滤器进行检查和清洗。
四、结果分析熔融指数是表征聚合物熔体流动性能的重要参数,它反映了聚合物在加工过程中的流动性和塑化程度。
一般来说,熔融指数越高,聚合物的流动性越好,越容易加工;熔融指数越低,聚合物的流动性越差,加工难度越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
按屏幕提示进行设定,现举例说明:假如我们要恒温230.0℃,测量间隔为20.0s,测量次数为10次,则要依次输入230.0℃、020.0s、10。
上述设定过程结束,按“继续”键则会显示
当系统已经恒温时,蜂鸣器响四声,提示系统恒温后,液晶屏上会提示如下信息:
塑料熔体流动速率的测定
实验目的:
1了解热塑性塑料熔体流动速率与加工性能的关系。
2了解熔融指数仪的构造,掌握熔体流动速率的测试方法。
实验原理:
熔体流动速率系指热塑性塑料在一定温度和负荷下,熔体每10min通过标准口模的质量,用MFR来表示,其数值可以表征热塑性塑料在熔融状态时的粘流特性。参见《GB/T3682-2000热塑性塑料熔体质量流动速率和熔体体积流动速率的测定》第6部分。
达到规定温度后,恒温15min。
注意:如果初次设置参数时,不小心按错键,应该按一下“复位”键,然后按“1”键重新设置参数。
4取出基础砝码,用漏斗将试样加入料筒内,并用活塞将料压实(以减少气泡),整个加料过程与压实过程须在1分钟内完成,将活塞留在料筒内,根据选定的试验条件加负荷。按下数字键9,启动定时器。
当活塞下降到上环形标记和导向套上平面平齐时,停止切取。保留连续切取的无气泡样条三个,样条长度最好在10mm~20mm之间,不同的切料时间间隔,切得样条的长度将有所不同。
6样条冷却后,置于天平上,分别称重。天平的最小称量准确至±0.5mg。
7若所切样条的重量最大值和最小值之差超过其平均值的15%,则试验重做。
8仪器的清理:
(1)活塞清洗:由于熔融料的粘附,活塞在直接提起的时候,阻力可能很大,此时可一边顺时针转动基础砝码,一边渐渐向上提起。用纱布或软布将活塞擦拭干净。
注意:不能逆时针转动,否则,活塞会与砝码盖脱开,料筒因基础砝码逆时针转动而松动,在提起活塞时,可能会将料筒一并提出炉膛,给后续清洗工作造成较大的麻烦。
(2)口模清洗:把炉体外手柄向左拉出,用加料顶杆把口模从炉体下方顶出,同时,用手(注意一定要带着隔热手套)在炉体下方接住口模。迅速用口模清理棒将口模孔内残余热料顶出,然后用纱布或软布把口模外表面擦拭干净。
(3)料筒清洗:用缠绕带型纱布的清洗杆插入料筒内迅速上下擦拭几次。
注意:清洗和试验操作中应带隔热手套,以免烫伤。以上操作都要趁热进行,对一些难清洗的试样可适当加些润滑物(如硅油、石蜡或其他化学试剂)辅助清洗。禁止使用可能损Βιβλιοθήκη 活塞、料筒或模头表面的磨料或材料。
9样条称量:准确到±0.5mg,并计算出它们的平均质量。如果这些单个称量值中的最大值和最小值之差超过平均值的15%,则放弃这一结果而用新样品重作试验。从装料到切断最后一个样条的时间不应超过25min。
实验原理详见《高分子物理实验》。
实验步骤:
1将基础砝码插入料筒。
2接通仪器电源,液晶显示屏上会出现:
3设置参数
等待2秒后屏幕将显示上次试验所保留的试验参数设定值,如上次试验用参数如下:恒温190.0℃,测量间隔为240.0s,测量次数为04次,则屏幕显示如下:
如果本此试验所需参数和上次试验使用参数相同,只需按“继续”键开始试验即可。按下“继续”键将显示如下图所示信息。
5在装料完成后4min,炉温应恢复到规定温度。系统蜂鸣器响三声,提示操作者可加砝码,如果原来没有加负荷或负荷不足的,此时应把选定的负荷加到活塞上。让活塞在重力的作用下下降,直到挤出没有气泡的细条,根据材料的实际粘度,这个现象可能在加负荷前或加负荷后出现。这个操作时间不应超过1min。
待活塞下降至下环形标记和导向套上平面相平时,按下前面板上的“预切”键,进行预切料,切除已经流出的样条,然后按“切料”键进行正式的试验,待测量次数再次显示为设定的切料次数时说明切料完毕。