生物表面活性剂驱油性能研究
表面活性剂在石油工程中的应用研究进展论文

表面活性剂在石油工程中的应用研究进展论文表面活性剂在石油工程中的应用研究进展论文摘要:表面活性剂在石油工程的油气钻井、开采及储运中均有很广泛的应用。
综述了表面活性剂在石油工程中的研究及应用现状,由于国内一些大型油气藏已到开采后期,油田采收率较低,利用表面活性剂可以提高采收率。
高分子类型的表面活性剂既能提高波及系数,又能提高洗油效率,是很好的驱油助剂。
目前不少油田在开采低渗透油藏以及页岩油气藏,压裂液助剂的开发研究是现在及将来的一个研究热点。
关键词:表面活性剂;石油工程;应用;研究表面活性劑是一类分子由极性的亲水部分和非极性的亲油部分组成的,少量存在即能显著降低溶剂表面张力的物质。
它们广泛用于日常生活[1,2],以及石油工程。
例如,在油气钻井工作中可以用作钻井液的杀菌剂、缓蚀剂、起泡剂、消泡剂、解卡剂、乳化剂等;在油气开采作业中可以用作黏土稳定剂、驱油剂、清防蜡、酸压助剂(可用于乳化酸、泡沫酸,成胶和破胶、助排剂等);在油气田地面工程中可以用作减阻剂、破乳剂、杀菌剂、絮凝剂等,于浩洋等[3-6]对其在油田中的主要应用及其作用机理进行过归纳。
目前国内一些大型油藏已到开发后期,原油采收率较低,可以采用化学驱进行驱油。
例如,大庆油田的碱-表面活性剂-聚合物(ASP)三元复合驱为大庆油田的增产和稳产作出了巨大贡献[7]。
对低孔低渗的油气藏如目前国内外热门的页岩油/气藏的开采则多用压裂工艺,其中关键的化学剂常用到表面活性剂[8-11]。
根据表面活性剂在水中起活性作用的亲水基团来进行分类,可以将其分为阴离子型、阳离子型、两性离子型、非离子型及特种类型(包括含氟和含硅、Gemini、Bola及生物表面活性剂等)表面活性剂。
现根据其类型对其在石油工程尤其是在低孔低渗油气藏中的研究及应用现状进行综述,以供我国页岩油/气藏开采技术的研究人员作参考。
1普通表面活性剂的研究及应用1.1阴离子型在水中起活性作用的部分为离子的表面活性剂。
鼠李糖脂应用场景

鼠李糖脂应用场景石油上应用鼠李糖脂是一种天然生物表面活性剂,它可以提高原油开采率、优化管道输送和改善储罐清洗。
发酵得到的鼠李糖脂与其他生物聚合物复配,可以建立新的生物驱油体系,显著提高采收率。
鼠李糖脂构成的新型环保纳米片,可以在高温高盐条件下提高低渗透油藏的采收率。
提高石油开采率采用鼠李糖脂可以改善水、油及岩石之间的作用关系,达到提高原油采收率的目的。
鼠李糖脂可以降低石油与岩石的亲和力,减少石油在驱油过程中的流动阻力,提高石油的可动性和开采率。
同时,鼠李糖脂还可以在水驱过程中优化驱替相图,增强驱油效果。
物理模拟实验表明,鼠李糖脂可以使原油开采率显著提高。
新的李糖脂生物驱油体系通过发酵法获得鼠李糖脂后,与其他生物聚合物如黄原胶复配,可以建立新的生物驱油体系。
5%鼠李糖脂发酵液的生物复合体系可使采收率达到17.4%,表明在微生物采油领域有良好应用前景。
鼠李糖脂-二硫化钼纳米片提高低渗透油藏鼠李糖脂-二硫化钼纳米片是一种新型环保生物两性纳米片,可以在高温高盐条件下提高低渗透油藏的采收率。
0.005wt%的超低浓度纳米流体可以在天然岩心上观察到25.3%的额外采油量。
其机理是通过原油乳化、改善润湿性、降低界面张力和产生结构分离压力等。
作为原油管道减阻剂和降粘剂鼠李糖脂可以溶解在有机溶剂中,然后添加到原油,用作原油管道的减阻剂和降粘剂。
100-1000ppm的鼠李糖脂可以使管道阻力下降20-50%,100-9000ppm的鼠李糖脂可以使原油粘度下降10-90%以上。
罐底油泥的洗脱发酵鼠李糖脂液可以提高储油罐罐底油泥中原油的回收率,实现对罐底油泥的有效洗脱。
鼠李糖脂液可以使溶液表面张力达到0.037N/m,显示出很好的表面活性作用。
作为抗结蜡添加剂,在石油炼化过程中鼠李糖脂可以降低某些石油馏分的凝固点,防止在低温下析出固体蜡质,从而提高石油的低温流动性和抗结蜡性能。
这在燃料油和润滑油方面具有重要作用。
作为粘度指数改进剂。
碱-表面活性剂-聚合物(ASP)三元驱油技术的研究进展

碱-表面活性剂-聚合物(ASP)三元驱油技术的研究进展何清秀【摘要】On the strategy of the exploration , most of oil field in the world use the methods of water flood , which are low efficient and can only exploit about 20%~30%of the pool of oil.Recently , with the exhausted petroleum resources and the rise of international oil price , the need of the new flooding technology is imperative in order to increase oil productions.ASP ( Alkaline/Surfactant/Polymer) flooding is one of such techniques that has been proven successful due to its ability to improve displacement and sweep efficiency.Although this technology is still in laboratory and pilot stage , it has attracted much attention of researchers due to its higher the oil displacement efficiency and good application prospects.The status of research and application of ASP flooding technology were analyzed and summarized , and the limitations of the ASP flooding technology and technical solutions were also discussed.%当前世界上的油田基本都采用注水的驱油方式进行开采,但注水驱油的方式开采效率低,一般仅能开采20%~30%左右的地下油藏。
生物表面活性剂在油田中的应用

生物表面活性剂在油田中的应用生物表面活性剂是指有严格的亲水基团和疏水基团、由微生物产生的化学物质。
这种微生物生长在水不溶的物质中并以它为食物源,适应环境并产生这些物质。
它们能吸收、乳化、润湿、分散、溶解水不溶的物质。
生物表面活性剂在工业上有很大的用途,可用于油的开采、油管套清洗、纺织工业、制药业、化妆品、家用清洁剂、造纸业、陶瓷和金属工业。
然而最有前景的应用是用于清理污染的油罐、油轴的清洗、重油的运移、提高采收率、在污泥中和被碳、重金属离子和其他污染剂污染的区域采取生物补救措施开采原油。
已经证明生物表面活性剂是微生物采油的重要机理。
1 生物表面活性剂的特点生物表面活性剂和化学表面活性剂一样具有驱油能力,而且生物表面活性剂还具有如下特点:(1)水溶性好,在油-水界面有高的表面活性。
(2)在含油岩石表面润湿性好,能剥落油膜,分散原油,具有很强的乳化原油的能力。
(3)固体吸附量小。
(4)反应的产物均一,可引进新类型的化学基团,其中有些基团是化学方法难以合成的。
(5)生物表面活性剂无毒、安全。
(6)生物表面活性剂生产工艺简单,在常温、常压下即可发生反应。
若用化学生产条件极为复杂,有些需要苛刻的条件,如高温、高压。
研究表明,生物表面活性剂的驱油效率比人工合成的表面活性剂的驱油效率高3.5倍~8倍,而价格却为人工合成的表面活性剂的30%。
许多国家已经把产生生物表面活性剂的微生物采油作为长期开采油田项目的一部分。
2筛选产生生物表面活性剂的菌种菌种生长在水不溶的物质中,如石油烃、聚苯乙烯、橄榄油、煤油、甲苯、凡士林、二甲苯,并以它们为食物源。
提高采收率的生物表面活性剂,多数是从被原油污染的土壤、海水、地表废水中分离出来的。
这些微生物能有效地降解脂肪族和芳香族的烃类化合物,它们利用这些化合物,在微生物细胞和烃接触的界面上产生生物表面活性剂。
3生物表面活性剂的类型目前,生物表面活性剂主要有4类:糖脂类、磷脂类、脂蛋白或缩氨酸脂和聚合物类。
《微生物菌体及代谢产物驱油机理研究》范文

《微生物菌体及代谢产物驱油机理研究》篇一一、引言随着对石油资源的需求持续增长,有效利用和提高石油采收率成为了研究领域的热点问题。
微生物菌体及其代谢产物在驱油方面的应用逐渐受到关注。
本文旨在探讨微生物菌体及代谢产物的驱油机理,为进一步应用这些生物技术提供理论依据。
二、微生物菌体及其代谢产物的特点微生物菌体及其代谢产物具有独特的特点,使其在驱油领域具有潜在的应用价值。
微生物菌体生长迅速,可产生多种生物活性物质,如酶、多糖、氨基酸等。
这些物质在驱油过程中可发挥重要作用。
三、微生物菌体驱油机理1. 生物表面活性剂的作用:微生物菌体可产生生物表面活性剂,降低油水界面张力,有助于将附着在岩石表面的原油松动并带走。
2. 生物降解作用:微生物菌体能够分泌酶类物质,对原油中的大分子烃类进行生物降解,使其转化为小分子烃类,从而提高采收率。
3. 微生物粘附作用:微生物菌体及其代谢产物具有一定的粘附性,可附着在岩石表面,形成一层生物膜,有助于将原油从岩石表面剥离。
四、微生物代谢产物驱油机理1. 代谢产物的物理作用:微生物代谢产物中含有多糖、氨基酸等成分,具有一定的粘稠性,可改善原油的流动性,使其更容易被采出。
2. 代谢产物的化学作用:微生物代谢产物中的某些化学成分可以与原油中的成分发生化学反应,降低原油的粘度,提高采收率。
五、实验研究及结果分析通过实验室模拟实验和现场试验,验证了微生物菌体及代谢产物在驱油过程中的作用。
实验结果表明,利用微生物菌体及其代谢产物可以有效提高石油采收率,降低原油粘度,具有较好的应用前景。
六、结论通过对微生物菌体及代谢产物的驱油机理进行研究,发现它们在降低油水界面张力、生物降解、粘附作用以及改善原油流动性等方面具有显著效果。
这些特点使得微生物菌体及代谢产物在驱油过程中发挥了重要作用。
同时,实验研究及结果分析表明,利用微生物技术可以提高石油采收率,降低原油粘度,为石油开采提供了新的思路和方法。
七、展望与建议未来研究方向包括进一步研究微生物菌体及代谢产物的种类和数量对驱油效果的影响,优化微生物培养条件和工艺,提高其在实际油田应用中的效果。
绿色表面活性剂烷基糖苷高温高盐驱油性能研究

绿色表面活性剂烷基糖苷高温高盐驱油性能研究陈立峰;冯保华;侯宝英;白英睿;杜芬芬【摘要】考察了温度、矿化度对烷基糖苷(APG)油水界面张力与乳化性能的影响,以及高温高盐条件下烷基糖苷提高采收率的能力.结果表明,升高温度及增大矿化度在一定程度上能增强APG的油水界面活性和乳化性能.90℃时,APG1214的油水界面张力可降至4.46×10-2mN/m,远低于ABS,HABS的油水界面张力;矿化度为100 g/L条件下,APG1214的油水界面张力为8.97×10-2 mN/m,耐盐能力明显高于ABS,HABS;高温条件下,APG可自乳化产生微乳液;APG乳液的稳定性随着矿化度的增大先增强后减弱;在矿化度为100 g/L、温度为80℃的条件下,APG1214提高采收率的幅度可达8.03%,约为ABS,HABS的2倍.【期刊名称】《精细石油化工进展》【年(卷),期】2012(013)009【总页数】4页(P33-36)【关键词】烷基糖苷;界面张力;乳化性能;提高采收率【作者】陈立峰;冯保华;侯宝英;白英睿;杜芬芬【作者单位】中国石油大学(华东)石油工程学院,青岛266580;中国石油大学(华东)石油工程学院,青岛266580;中国石油大学(华东)石油工程学院,青岛266580;中国石油大学(华东)石油工程学院,青岛266580;中国石油大学(华东)石油工程学院,青岛266580【正文语种】中文烷基糖苷(APG)是在酸催化作用下葡萄糖半缩醛羟基和脂肪醇羟基脱水而得到的一种绿色表面活性剂,无毒不污染环境,生物降解性能优异,乳化性能、起泡性能和润湿性能等驱油性能良好[1]。
生产烷基糖苷的原料植物油与淀粉是天然可再生资源,廉价易得。
国外对烷基糖苷在油田上的应用研究较早,1995年,Kahlweit 等[2]将烷基糖苷应用于表面活性剂驱中,取得了良好效果。
Walker[3]研制出烷基糖苷环保型钻井液,在部分油田已经大量应用。
表面活性剂驱油

实验结果与分析
驱油效率
通过对比不同表面活性剂的驱油效率,分析 表面活性剂性能的优劣。
采收率
评估表面活性剂对提高采收率的作用,分析 其对油藏的增采潜力。
影响因素
分析实验过程中温度、压力、注入速度等参 数对驱油效果的影响。
适用性
评估不同类型表面活性剂在不同油藏条件下 的适用性。
案例分析
案例选择
选择具有代表性的实际油田作为案例研究对象。
非离子型表面活性剂
总结词
非离子型表面活性剂是一种温和型表面活性剂,具有低毒、 低刺激性和良好的生物降解性。
详细描述
非离子型表面活性剂在水溶液中不发生电离,其分子结构中 含有的亲水基团和疏水基团平衡作用使其具有降低表面张力 和油水界面的能力。非离子型表面活性剂具有较好的耐硬水 性能和抗盐性,适用于多种水质条件。
环保领域
1 2
废水处理
表面活性剂能够降低油水界面张力,促进油滴的 分离和沉降,用于废水中的油类物质的去除。
土壤修复
对于土壤中的油类污染,表面活性剂可以用于增 强油滴的分离和回收,实现土壤修复。
3
溢油处理
在海上或陆地发生的油类泄漏事故中,表面活性 剂可用于降低油膜的厚度和粘性,加速油滴的沉 降和回收。
原理
表面活性剂能够吸附在油水界面上,降低油水界面张力,使残余油易于被采出。 同时,表面活性剂能够改变岩石表面的润湿性,使亲油岩石变为亲水岩石,提 高洗油效率。
表面活性剂驱油的重要性
01
提高采收率
通过降低油水界面张力,表面活 性剂驱油能够将残余油从岩石表 面释放出来,从而提高采收率。
节约资源
02
03
其他领域
01
02
驱油用表面活性剂的发展

驱油用表面活性剂的发展一、概述随着石油资源的日益枯竭和开采难度的不断增大,提高原油采收率成为石油工业面临的重要挑战。
在这一背景下,驱油用表面活性剂的研究与应用逐渐受到广泛关注。
表面活性剂作为一种具有特殊分子结构的化学物质,能够在油水界面形成稳定的乳状液,从而改善原油的流动性,提高采收率。
驱油用表面活性剂的发展历程可追溯到20世纪初期,随着科学技术的不断进步,其种类和应用范围也在不断扩大。
驱油用表面活性剂已经形成了包括磺酸盐类、羧酸盐类、非离子型等多种类型在内的完整体系。
这些表面活性剂在油田开采中发挥着越来越重要的作用,不仅提高了原油采收率,还降低了开采成本,为石油工业的可持续发展提供了有力支持。
驱油用表面活性剂的研究与应用仍面临诸多挑战。
高温高盐油藏、稠油油藏、低渗透油藏等特殊油藏的开采条件对表面活性剂的性能提出了更高要求;另一方面,环保法规的日益严格也要求表面活性剂在生产和使用过程中必须满足环保要求。
未来驱油用表面活性剂的研究将更加注重高性能、环保型产品的研发与应用,以满足石油工业对高效、环保开采技术的迫切需求。
驱油用表面活性剂作为提高原油采收率的重要手段之一,在石油工业中发挥着不可替代的作用。
随着科学技术的不断进步和环保要求的日益严格,驱油用表面活性剂的研究与应用将迎来更加广阔的发展前景。
1. 驱油用表面活性剂在石油开采中的重要作用在石油开采领域,驱油用表面活性剂发挥着举足轻重的作用。
表面活性剂作为一种特殊的化学剂,其分子结构既包含亲水基团又包含疏水基团,这一特性使得它能够在油水界面产生显著降低表面张力的效果。
通过注入表面活性剂,油层中的原油与水的界面张力被大幅度降低,从而增强了原油的流动性,使原本难以流动的石油变得易于开采。
表面活性剂还能够提升地层内部的润滑性,减少石油在流动过程中因摩擦力而滞留在孔洞中的现象。
这种润滑性的提升不仅有助于石油的顺畅流动,还能够减少开采过程中的机械阻力,提高开采效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E n Reore, hn nvri f esine h n Wu a, u e 4 o 7, i ̄ a h sucs C iaU ie t G oeecsWu a , h n H bi 3 o4 C n ) syo h
Ab t c : r b eo l x l i t np r r n e a dfed a p iai n p t n il f i s ra t n c o e e tn i es mp i gwa s r t Top o et i e p o t i e f ma c n l p l t oe t o u ca t a h ao o i c o aob f mi r b , xe sv a l s n
e f in y f l a af e t n s a a re u . t r h r ame t y b o u f ca t r o e g i s c u e ol t ei t r — f c e c , ed p r f n t ame tt tw sc r id o t Af ete t n is ra tn c b sa an t r d i h n e f i i i r e et b mi , a
W u W eg o a d L ia n vDi
f . olg h mit n h mi a E g n ei g c a n v r i fC i a T ig a , h n o g2 6 0 , h n ; . c o o 1 C le eo fC e s ya dC e c l n i e rn ,O e n U i e st r yo h n . sn to S a d n 6 1 0 C i a 2 S ho l f
ca r s u eo i a d wae e c n e 0 il e s r f ห้องสมุดไป่ตู้ n trd s e d d t 1 ~mN/ ol ic st e l e y 5 p o o m, i v s o i d ci d b 0%, i r c v r a i c e s d b 0%, f c ie y n o l e o ey r t i ra e y 1 on ef t e v r t f e d p r f nte t n e c e 5%a d s gewe l i o t u s d b 3 5t a i o l a a ame t a h d 6 o f i i r r n i l l o l up t ie y 7 . .Bis r c a t r o e h we d p l a n r o u a t n c b s o dwi ea p i — f mi s c t n p o p c s n ME i r s e t OR c n q e u h a a af e t n n l g i gp e e t no e l a o i t h i u ss c s r f n t a me t dp u gn r v n i f h l t mme it ii i . e p i r a o t we i d a e c nt v y
v rai no r d i at r h o t g a h e t n y mir b s b s d o d o h sc l d l n x e i n f i e po tt n a i t f u e ol f r ma o r p y t ame t c o e , a e n i o rp y ia o c ec r b n mo e l ge p rme t l x l i i i oo ao
关键词 : 微生物采油; 生物表面活性剂; 菌种; 试验分析; 吉林油 田
中 图分 类 号 :E 5 . T 3 79 文献标识码 : A
Re e r h o o ur a t n o le p o t to s a c n bi s f c a ti i x l ia i n n
油 气藏评 价 与 开 发
第2 第 1 卷 期
R S R ORE A U TO N E E O M N E E V I V L A INA DD V L P E T 21 年 2 02 月
生物表面活性剂驱油性能研究
吴维高 , 迪 吕
(. 1 中国海 洋大学化学化工学 院, 山东 青岛 2 6 0 ;. 6 10 2中国地质 大学( 武汉) 资源学 院, 湖北 武汉 4 0 7 ) 3 0 4
摘要 : 为探 讨生物表面活 性剂菌种采油性 能及 矿场应用潜力 , 吉林 油 区广泛取样 , 在 采用特定 培养基对菌种进 行筛选 , 在 建立 生物表 面活性剂检测方法 的基础上 , 对菌种生长代谢及发 酵环境条件进 行 了分析。采用色谱法对菌种作 用原油后组
分 变化进行 了定 性分析 , 室 内物模驱 油效率试验 的基 础上 , 行 了矿场清 防蜡 应用试验 。原 油经生物表面 活性剂菌作 在 进 用后 , 油水 界面张力 降低 到 1~mN m, 0 / 原油黏度 下降 5 ; 内物模驱 油效率试验提高采 收率 1 以上 , 0% 室 0% 矿场 清防蜡有效 率> 5% 单 井平 均增 油7 . ; 6 , 35t在微 生物强化水驱 、 油井清防蜡及近 井解堵 等ME R工 艺方面具有 良好的应用前景。 O
cn u tdi i noled a dmirb s r ce n db sn e i cme ims Bae ntee tbih dbo u a tn ee t n o d ce Jl i l , n co e es re e yu igs cf du . sdo sa ls e isr ca t tci n i i f we p i h f d o
meh d t eg o t tb l m n e me tt n e vr n n f c o e r n l z d Af rq a i t ea ay i f h o o e t t o , h r w hmea oi a df r n a i n io me t r b s s o o mi we ea ay e . t u l ai n l sso ec mp n n e t v t