硅单晶生长工艺
单晶硅生产工艺及单晶硅片生产工艺

单晶硅生产工艺及单晶硅片生产工艺单晶硅是一种广泛用于各种电子和光伏应用的材料,它的生产过程需要高度的技术和专业知识。
以下是单晶硅生产工艺的一般步骤:1.提纯:首先,需要将原材料硅提纯。
这个过程包括化学方法,如歧化、精馏和还原等,以去除硅中的大部分杂质。
最终得到的硅纯度可达99%以上。
2.沉积:提纯后的硅被熔化并倒入模具中,形成一个圆柱形的硅锭。
这个过程中,硅锭的形状和大小取决于模具的形状和大小。
3.切片:硅锭被冷却并使用线锯或激光切片技术切割成一定厚度的硅片。
切片过程中需要控制硅片的厚度和形状,以确保其符合特定应用的要求。
4.清洗和抛光:切割后的硅片表面可能会存在杂质或损伤,因此需要进行清洗和抛光以去除这些缺陷。
清洗过程包括化学浸泡、冲洗和干燥,而抛光则使用机械研磨或化学腐蚀的方法来平滑硅片的表面。
5.检测和包装:清洗和抛光后的硅片需要进行质量检测,以确保其满足客户的要求。
检测过程可能包括观察硅片的表面质量、测量其尺寸和厚度、检查其强度和韧性等。
最后,合格的硅片被包装并发送给客户。
单晶硅片生产工艺是指将单晶硅棒切割成一定形状和大小的硅片,这些硅片通常用于制造太阳能电池板或其他电子设备。
以下是单晶硅片生产工艺的一般步骤:1.切片:将单晶硅棒切成一定厚度的硅片。
这个过程通常使用专业的切片机或线锯来完成。
2.分选和清洗:切好的硅片可能存在大小、形状、厚度和表面质量等方面的差异。
为了满足应用要求,需要对硅片进行分选和清洗。
分选过程可能包括人工或自动检测,根据检测结果将硅片分成不同等级。
清洗过程包括化学浸泡、冲洗和干燥,以去除硅片表面的污垢和其他杂质。
3.加工和抛光:对于一些特定的应用,需要对硅片进行加工和抛光。
加工可能包括切割、磨削或钻孔等,而抛光则使用机械研磨或化学腐蚀的方法来平滑硅片的表面。
加工过程中需要注意控制硅片的形状和质量,以避免出现裂纹、变形或损伤等问题。
4.检测和包装:加工和抛光后的硅片需要进行质量检测,以确保其满足客户的要求。
【书】直拉硅单晶工艺学

直拉硅单晶工艺学前言本教材是通过多年的实践经验和一定的教学经验编写而成。
编写过程中力求教材通俗易懂,联系生产实际。
由于编者水平有限,错误之处在所难免,请读者批评指正,编者深表感谢。
绪论硅单晶是一种半导体材料。
直拉单晶硅工艺学是研究用直拉方法获得硅单晶的一门科学,它研究的主要内容:硅单晶生长的一般原理,直拉硅单晶生长工艺过程,改善直拉硅单晶性能的工艺方法。
直拉单晶硅工艺学象其他科学一样,随着社会的需要和生产的发展逐渐发展起来。
十九世纪,人们发现某些矿物,如硫化锌、氧化铜具有单向导电性能,并用它做成整流器件,显示出独特的优点,使半导体材料得到初步应用。
后来,人们经过深入研究,制造出多种半导体材料。
1918年,切克劳斯基(J·Czochralski)发表了用直拉法从熔体中生长单晶的论文,为用直拉法生长半导体材料奠定了理论基础,从此,直拉法飞速发展,成为从熔体中获得单晶一种常用的重要方法。
目前一些重要的半导体材料,如硅单晶,锗单晶,红宝石等大部分是用直拉法生长的。
直拉锗单晶首先登上大规模工业生产的舞台,它工艺简单,生产效率高,成本低,发展迅速;但是,锗单晶有不可克服的缺点:热稳定性差,电学性能较低,原料来源少,应用和生产都受到一定限制。
六十年代,人们发展了半导体材料硅单晶,它一登上半导体材料舞台,就显示了独特优点:硬度大,电学热稳定性好,能在较高和较低温度下稳定工作,原料来源丰富。
地球上25.8%是硅,是地球上锗的四万倍,真是取之不尽,用之不竭。
因此,硅单晶制备工艺发展非常迅速,产量成倍增加,1964年所有资本主义国家生产的单晶硅为50-60吨,70年为300-350吨,76年就达到1200吨。
其中60%以上是用直拉法生产的。
单晶硅的生长方法也不断发展,在直拉法的基础上,1925年又发明了坩埚移动法。
1952年和1953年又相继发明了水平区熔和悬浮区熔法,紧接着基座相继问世。
总之,硅单晶生长技术以全新姿态登上半导体材料生产的历史舞台。
半导体材料课件熔体晶体生长 硅、锗单晶生长

≈ θm
1− hr 2 / 2ra
⎜⎛1 ⎝
−
1 2
hra
⎟⎞ ⎠
⎡ exp⎢−
⎢⎣
⎜⎜⎝⎛
2h ra
⎟⎟⎠⎞1/
2
z
⎤ ⎥ ⎥⎦
吉林大学电子科学与工程学院 半导体材料
3-2 熔体的晶体生长
晶体中温度梯度沿轴向z和沿径向r的分量为
( ) ∂θ
∂z
≈
−θm
⎜⎜⎝⎛
2h ra
⎟⎟⎠⎞1/
2
1− hr 2 / 2ra
⎝ dZ ⎠L
Runyan对一个硅单晶生长系统进行了估算:
fmax=2.96cm/min。
实际测得 fmax=2.53 cm/min。
理论与实验值大体是相符的。 QF = fAdH~ = QC - QL
③ 生长速度f 一定时,A=(QC-QL)/fdH
QC→大 或 QL →小, A →大 (非稳定生长→建立新 的稳态 )
相对温度θ(r.φ.z)=T(r.φ.z)-T0;
T0:环境温度,T:体系温度。
晶体中热场是圆柱对称,与圆周角
φ无关;θ只是半径r和高度z的函
数,热传导方程为
∂ 2θ
∂r 2
+1 r
∂θ
∂r
+
∂ 2θ
∂z 2
=0
吉林大学电子科学与工程学院 半导体材料
l
3-2 熔体的晶体生长
三个边界条件:
l
⑴ 固-液界面上,界面温度为熔点Tm,
3-2 熔体的晶体生长
AK
L
⎜⎛ ⎝
dT dZ
⎟⎞ ⎠L
+
fAd
H~
=
单晶制备方法

直拉法制单晶硅和区熔法晶体生长第一节概述多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。
例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。
在化学活性方面,两者的差异极小。
多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。
多晶硅由很多单晶组成的,杂乱无章的。
单晶硅原子的排列都是有规律的,周期性的,有方向性。
当前生长单晶主要有两种技术:其中采用直拉法生长硅单晶的约占80%,其他由区溶法生长硅单晶。
采用直拉法生长的硅单晶主要用于生产低功率的集成电路元件。
例如:DRAM,SRAM,ASIC电路。
采用区熔法生长的硅单晶,因具有电阻率均匀、氧含量低、金属污染低的特性,故主要用于生产高反压、大功率电子元件。
例如:电力整流器,晶闸管、可关断门极晶闸管(GTO)、功率场效应管、绝缘门极型晶体管(IGBT)、功率集成电路(PIC)等电子元件。
在超高压大功率送变电设备、交通运输用的大功率电力牵引、UPS电源、高频开关电源、高频感应加热及节能灯用高频逆变式电子镇流器等方面具有广泛的应用。
直拉法比用区溶法更容易生长获得较高氧含量(12`14mg/kg)和大直径的硅单晶棒。
根据现有工艺水平,采用直拉法已可生产6`18in (150`450mm)的大直径硅单晶棒。
而采用区溶法虽说已能生长出最大直径是200mm的硅单晶棒,但其主流产品却仍然还是直径100`200mm的硅单晶。
区熔法生长硅单晶能够得到最佳质量的硅单晶,但成本较高。
若要得到最高效率的太阳能电池就要用此类硅片,制作高效率的聚光太阳能电池业常用此种硅片。
硅太阳能电池制造工艺

硅太阳能电池制造工艺硅太阳能电池制造工艺是指将硅材料变成太阳能电池的过程,包括材料处理、单晶硅生长、硅片制备、器件制备等多个方面。
下面将对硅太阳能电池制造工艺进行详细介绍。
1. 材料处理硅太阳能电池制造的首要工艺就是材料处理。
硅太阳能电池采用的主要材料是单晶硅、多晶硅和非晶硅。
这些材料都需要经过一系列的处理工艺,如去氧化、赋氢、赋磷、溅射金属等。
其中,像赋磷,可以使得硅片的导电性更好,提高太阳能电池的转换效率。
2. 单晶硅生长单晶硅是制造太阳能电池的核心材料。
单晶硅的生长过程主要有两种方法,分别是典型的克尔宁(Czochralski)法和辊道法(Float-Zone)。
目前主流的生产工艺是克尔宁法。
这种方法利用硅的熔点和冷却过程来实现单晶的生长。
但是,克尔宁法的成本较高,缺点在于对硅晶体不均匀性的限制严格,易造成氧杂质和机械应力等缺陷。
辊道法则消除了这种限制,在晶体均匀性和质量上表现更好,但是较少使用。
3. 硅片制备硅片是太阳能电池的主要组成部分,是从单晶硅生长中得到的。
生长出的硅锭通常有200毫米到300毫米,必须被切割成更薄的硅片,以便在太阳能电池中使用。
这个过程被称为硅片制备,主要分为切割和封边两个步骤。
切割是指用硅锯将硅锭切成很薄的硅片。
然后这些硅片边缘用磨床和化学刻蚀加工成封边。
4. 器件制备在器件制备阶段,使用化学蚀刻裂解的方法在硅片表面形成p-n结,并在p-n结上放置电极,形成太阳能电池。
这个工艺叫做“光刻工艺”或“半导体光刻冲技术”。
通过上述工艺步骤,太阳能电池制造完毕,可以用于发电,促进可再生能源的利用。
硅pu生产工艺

硅pu生产工艺硅晶体是一种重要的半导体材料,广泛应用于电子产业中。
在现代的芯片制造过程中,硅晶体的生产工艺是十分关键的一步。
下面就来介绍一下硅晶体的生产工艺。
硅晶体的生产主要分为四个步骤:原料准备、单晶生长、切割、改善和激活。
首先是原料准备。
硅晶体生产的原料主要是硅矿石,经过多道物理和化学处理,将硅矿石转化为硅单质,即用于硅晶体生产的硅石。
硅石要经过高温炼炉处理,使其中的杂质得到去除,同时控制硅石的成分和纯度,以保证后面硅晶体的质量。
接下来是单晶生长。
单晶生长是指将硅石中的硅熔体无限生长成为硅单晶,其过程采用Czochralski法。
首先将硅石加热至高温熔化,然后在石英容器中摆放单晶种子,通过上下拉动种子,与熔融硅石接触,使硅熔体在种子上结晶生长。
控制加热温度、拉动速度等参数,可以控制硅晶体的尺寸和纯度。
整个生长过程需要高度的温度控制和气氛保护,以确保硅晶体的质量。
然后是切割。
在单晶生长后,硅晶体需要进行切割,将其切割成片状的硅片。
切割是通过磨削和切割等方法进行的。
首先,使用磨削工具将硅晶体的两侧进行磨平,使其形成平整的硅片;然后,使用切割工具进行切割,将硅片切割成所需的尺寸和形状。
切割时需要控制切割角度和表面质量,以满足后续工艺的要求。
最后是改善和激活。
在切割后的硅片表面存在着一些缺陷和杂质,需要进行改善和激活处理。
改善是指通过化学方法去除硅片表面的氧化层和其他杂质,使其表面更加纯净和平整;激活是将硅片暴露在高温下,使其表面重新生长氧化层,提高晶体的电子迁移率。
改善和激活的过程中需要严格控制温度和化学品浓度,以保证处理效果和硅晶体的质量。
总结来说,硅晶体的生产工艺包括原料准备、单晶生长、切割、改善和激活等步骤。
每个步骤都需要精确的控制温度、化学环境和机械操作,以确保硅晶体的质量。
这些工艺的不断完善和创新,为现代电子技术的发展提供了坚实的基础。
直拉法单晶硅的工艺流程
直拉法单晶硅的工艺流程
直拉法生长单晶硅的主要工艺流程为:准备→开炉→生长→停炉。
准备阶段先清洗和腐蚀多晶硅,去除表面的污物和氧化层,放人坩埚内。
K4T51163QG-HCE6再准备籽晶,籽晶作为晶核,必须挑选晶格完整性好的单晶,其晶向应与将要拉制的单晶锭的晶向一致,籽晶表面应无氧化层、无划伤。
最后将籽晶卡在拉杆卡具上。
开炉阶段是先开启真空设各将单晶生长室的真空度抽吸至高真空,一般在102Pa以上,通入惰性气体(如氩)及所需的掺杂气体,至一定真空度。
然后,打开加热器升温,同时打开水冷装置,通入冷却循环水。
硅的熔点是1417℃,待多晶硅完全熔融,坩埚温度升至约14⒛℃。
生长过程可分解为5个步骤:引晶→缩颈→放肩→等径生长→收尾。
引晶又称为下种,是将籽晶与熔体很好地接触。
缩颈是在籽晶与生长的单晶锭之问先收缩出晶颈,晶颈最细部分直径只有2~3mm。
放肩是将晶颈放大至所拉制晶锭的直径尺寸,再等径生长硅锭.直至耗尽坩埚内的熔体硅。
最后收尾结束单晶生长。
晶体生长中,控制拉杆提拉速度和转速、坩埚温度及坩埚反向转速是很重要的,硅锭的直径和生长速度与上述囚素有关。
在坩埚温度、坩埚反向转速一定时,主要通过控制拉杆提拉速度来控制硅锭的生长。
即籽晶熔接好后先快速提拉进行缩颈,再渐渐放慢提拉度进行放肩至所需直径,最后等速拉出等径硅锭。
(完整word版)单晶硅生产工艺及单晶硅片生产工艺
单晶硅生产工艺及单晶硅片生产工艺单晶硅原子以三维空间模式周期形成的长程有序的晶体。
多晶硅是很多具有不同晶向的小单晶体单独形成的,不能用来做半导体电路。
多晶硅必须融化成单晶体,才能加工成半导体应用中使用的晶圆片。
加工工艺:加料—→熔化—→缩颈生长—→放肩生长—→等径生长—→尾部生长(1)加料:将多晶硅原料及杂质放入石英坩埚内,杂质的种类依电阻的N或P型而定。
杂质种类有硼,磷,锑,砷。
(2)熔化:加完多晶硅原料于石英埚内后,长晶炉必须关闭并抽成真空后充入高纯氩气使之维持一定压力范围内,然后打开石墨加热器电源,加热至熔化温度(1420℃)以上,将多晶硅原料熔化。
(3)缩颈生长:当硅熔体的温度稳定之后,将籽晶慢慢浸入硅熔体中。
由于籽晶与硅熔体场接触时的热应力,会使籽晶产生位错,这些位错必须利用缩颈生长使之消失掉。
缩颈生长是将籽晶快速向上提升,使长出的籽晶的直径缩小到一定大小(4-6mm)由于位错线与生长轴成一个交角,只要缩颈够长,位错便能长出晶体表面,产生零位错的晶体。
(4)放肩生长:长完细颈之后,须降低温度与拉速,使得晶体的直径渐渐增大到所需的大小。
(5)等径生长:长完细颈和肩部之后,借着拉速与温度的不断调整,可使晶棒直径维持在正负2mm之间,这段直径固定的部分即称为等径部分。
单晶硅片取自于等径部分。
(6)尾部生长:在长完等径部分之后,如果立刻将晶棒与液面分开,那么热应力将使得晶棒出现位错与滑移线。
于是为了避免此问题的发生,必须将晶棒的直径慢慢缩小,直到成一尖点而与液面分开。
这一过程称之为尾部生长。
长完的晶棒被升至上炉室冷却一段时间后取出,即完成一次生长周期。
单晶硅棒加工成单晶硅抛光硅片加工流程:单晶生长—→切断—→外径滚磨—→平边或V型槽处理—→切片倒角—→研磨腐蚀—→抛光—→清洗—→包装切断:目的是切除单晶硅棒的头部、尾部及超出客户规格的部分,将单晶硅棒分段成切片设备可以处理的长度,切取试片测量单晶硅棒的电阻率含氧量。
单晶硅的制备
单晶硅的制备
直拉法技术改进
单晶硅的制备
磁控直拉技术
半导体晶体生长方法之一,简称MCZ法,是在 直拉法(CZ法)单晶生长的基础上对坩埚内的熔体施加 -强磁场,使熔体的热对流受到抑制。因而除磁体外, 主体设备如单晶炉等并无大的差别。
单晶硅的制备
NdFeB永磁体结构示意图
单晶硅的制备
其基本原理为,在熔体施加磁场后,则运动的导 电熔体体元受到洛伦兹力f的作用。 加上磁场后, 改变了整个熔体的流动状态及杂质的输运条件并使 单晶可以在温度波动范围小、生长界面处于非常平 稳的状态下生长
2、硼、磷的分凝系数接近 1 ,仅用区熔提 纯不能除去,这也一直是限制物理法提纯 硅材料的一个关键问题
单晶硅的制备
悬浮区熔法
• 锭料竖直放置且不用 容器,称为悬浮区熔
• 由于在熔化和生长硅 晶体过程中,不使用 石英坩埚等容器,又 称为无坩埚区熔法
单晶硅的制备
悬浮区熔法
在悬浮区熔法中,使圆 柱形硅棒固定于垂直方向, 用高频感应线圈在氩气气 氛中加热,形成一 个尖端状的熔区,然后该 熔区与特定晶向的籽晶接 触,这个过程就是引晶表面张力形成的熔区 沿棒长逐步向上移动,将 其转换成单晶。
单晶硅的制备
水平区熔法
• 在熔炼过程中,锭料水平放置,称为水平 区熔
单晶硅的制备
水平区熔法
水平区熔法主要用于材料的物理提纯,也用来生长单晶体,其装置图 如下图所示。水平区熔法是将材料置于水平舟内,通过加热器加热。先在 舟端放置籽晶,并使其与多晶材料间产生熔区,然后以一定的速度移动熔 区,使熔区从一端移至另一端,使多晶材料变为单晶体。
晶
体
硅
的
金
刚
石
结
磁场中直拉硅单晶的生长
磁场中直拉硅单晶的生长一、引言近年来,半导体硅工艺中,出现了一种令人注目的新工艺—外加磁场直拉(MCZ)法〔l〕。
它给硅材料工业带来一大变革。
半导体工业所用的硅单晶,几乎90%是用cZ法生长的。
常规cZ法生长的晶体中,氧主要来自石英钳锅,其浓度变化范围介于4.0 x 10'0与2.0 x 10`8原子/厘米”之间〔3,4),随晶体生长的各种参数而变,其浓度上限接近于硅熔点时的饱和浓度。
氧在硅晶体内的分布是不均匀的:沿晶体轴向,头部浓度最高,尾部浓度最低;沿晶体径向,中间浓度高,边缘浓度低。
直拉‘硅单晶中氧起着有益的和有害的两种作用。
’从有益方面来说,由于钉扎位错,增强了硅晶格,滑移得以延迟。
通过沉淀氧化物和伴生位错网络,氧原子间接吸除易动性杂质;‘从有害方面来说,如果氧化物沉淀起因于初始氧浓度高的话,则通过硅一氧复合体产生施主,形成堆垛层错,并使片子翘曲。
要是保持氧浓度小于38PPma;就可减少这种有害作用。
在CZ晶体的生长期间,由于熔体存在着热对流,使微量杂质分布不均匀,形成生长条纹。
因此,在拉晶过程中,如何抑制熔体的热对流和温度波动,一直是单晶生产厂家棘手的问题。
为了抑制熔体的热对VrL以降低熔硅与石英柑祸的反应速率,并使氧可控,从而生长出高质量的单晶,采用Mcz法是行之有效的。
二、原理众所周知,用CZ法拉制单晶时会发生如图1所示的热对流。
这种热对流的驱动力可用无量纲瑞利数NRa来表示,加热器热对流氧硅熔体石英坩埚。
一、引言近年来,半导体硅工艺中,出现了一种令人注目的新工艺—外加磁场直拉(MCZ)法〔l〕。
它给硅材料工业带来一大变革。
半导体工业所用的硅单晶,几乎90%是用cZ法生长的。
常规cZ法生长的晶体中,氧主要来自石英钳锅,其浓度变化范围介于4.0 x 10'0与2.0 x 10`8原子/厘米”之间〔3,4),随晶体生长的各种参数而变,其浓度上限接近于硅熔点时的饱和浓度。