手把手要教你编写Linux设备驱动程序
linux驱动开发(一)

linux驱动开发(⼀)1:驱动开发环境要进⾏linux驱动开发我们⾸先要有linux内核的源码树,并且这个linux内核的源码树要和开发板中的内核源码树要⼀直;⽐如说我们开发板中⽤的是linux kernel内核版本为2.6.35.7,在我们ubuntu虚拟机上必须要有同样版本的源码树,我们再编译好驱动的的时候,使⽤modinfo XXX命令会打印出⼀个版本号,这个版本号是与使⽤的源码树版本有关,如果开发板中源码树中版本与modinfo的版本信息不⼀致使⽆法安装驱动的;我们开发板必须设置好nfs挂载;这些在根⽂件系统⼀章有详细的介绍;2:开发驱动常⽤的⼏个命令lsmod :list moduel 把我们机器上所有的驱动打印出来,insmod:安装驱动rmmod:删除驱动modinfo:打印驱动信息3:写linux驱动⽂件和裸机程序有很⼤的不同,虽然都是操作硬件设备,但是由于写裸机程序的时候是我们直接写代码操作硬件设备,这只有⼀个层次;⽽我们写驱动程序⾸先要让linux内核通过⼀定的接⼝对接,并且要在linux内核注册,应⽤程序还要通过内核跟应⽤程序的接⼝相关api来对接;4:驱动的编译模式是固定的,以后编译驱动的就是就按照这个模式来套即可,下⾯我们来分下⼀下驱动的编译规则:#ubuntu的内核源码树,如果要编译在ubuntu中安装的模块就打开这2个#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build# 开发板的linux内核的源码树⽬录KERN_DIR = /root/driver/kernelobj-m += module_test.oall:make -C $(KERN_DIR) M=`pwd` modulescp:cp *.ko /root/porting_x210/rootfs/rootfs/driver_test.PHONY: cleanclean:make -C $(KERN_DIR) M=`pwd` modules cleanmake -C $(KERN_DIR) M=`PWD` modules这句话代码的作⽤就是到 KERN_DIR这个⽂件夹中 make modules把当前⽬录赋值给M,M作为参数传到主⽬录的Makefile中,实际上是主⽬录的makefile中有⽬标modules,下⾯有⼀定的规则来编译驱动;#KERN_VER = $(shell uname -r)#KERN_DIR = /lib/modules/$(KERN_VER)/build我们在ubuntu中编译内核的时候⽤这两句代码,因为在ubuntu中为我们保留了⼀份linux内核的源码树,我们编译的时候直接调⽤那个源码树的主Makefile以及⼀些头⽂件、内核函数等;了解规则以后,我们设置好KERN_DIR、obj-m这两个变量以后直接make就可以了;经过编译会得到下⾯⼀些⽂件:下⾯我们可以使⽤lsmod命令来看⼀下我们ubuntu机器现有的⼀些驱动可以看到有很多的驱动,下⾯我们使⽤insmod XXX命令来安装驱动,在使⽤lsmod命令看⼀下实验现象可以看到我们刚才安装的驱动放在了第⼀个位置;使⽤modinfo来打印⼀下驱动信息modinfo xxx.ko这⾥注意vermagic 这个的1.8.0-41是你⽤的linux内核源码树的版本号,只有这个编译的版本号与运⾏的linux内核版本⼀致的时候,驱动程序才会被安装注意license:GPL linux内核开元项⽬的许可证⼀般都是GPL这⾥尽量设置为GPL,否则有些情况下会出现错误;下⾯使⽤rmmod xxx删除驱动;-------------------------------------------------------------------------------------5:下⾯我们分析⼀下驱动。
Linux设备驱动程序原理及框架-内核模块入门篇

Linux设备驱动程序原理及框架-内核模块入门篇内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块内核模块介绍Linux采用的是整体式的内核结构,这种结构采用的是整体式的内核结构,采用的是整体式的内核结构的内核一般不能动态的增加新的功能。
为此,的内核一般不能动态的增加新的功能。
为此,Linux提供了一种全新的机制,叫(可安装) 提供了一种全新的机制,可安装) 提供了一种全新的机制模块” )。
利用这个机制“模块”(module)。
利用这个机制,可以)。
利用这个机制,根据需要,根据需要,在不必对内核重新编译链接的条件将可安装模块动态的插入运行中的内核,下,将可安装模块动态的插入运行中的内核,成为内核的一个有机组成部分;成为内核的一个有机组成部分;或者从内核移走已经安装的模块。
正是这种机制,走已经安装的模块。
正是这种机制,使得内核的内存映像保持最小,的内存映像保持最小,但却具有很大的灵活性和可扩充性。
和可扩充性。
内核模块内核模块介绍可安装模块是可以在系统运行时动态地安装和卸载的内核软件。
严格来说,卸载的内核软件。
严格来说,这种软件的作用并不限于设备驱动,并不限于设备驱动,例如有些文件系统就是以可安装模块的形式实现的。
但是,另一方面,可安装模块的形式实现的。
但是,另一方面,它主要用来实现设备驱动程序或者与设备驱动密切相关的部分(如文件系统等)。
密切相关的部分(如文件系统等)。
课程内容内核模块介绍应用层加载模块操作过程内核如何支持可安装模块内核提供的接口及作用模块实例内核模块应用层加载模块操作过程内核引导的过程中,会识别出所有已经安装的硬件设备,内核引导的过程中,会识别出所有已经安装的硬件设备,并且创建好该系统中的硬件设备的列表树:文件系统。
且创建好该系统中的硬件设备的列表树:/sys 文件系统。
(udev 服务就是通过读取该文件系统内容来创建必要的设备文件的。
)。
如何在Linux系统中安装驱动程序

如何在Linux系统中安装驱动程序Linux系统作为一个开源的操作系统,广泛应用于各种设备和领域。
而安装驱动程序是在Linux系统中使用外部硬件设备的关键步骤之一。
在本文中,我们将学习如何在Linux系统中安装驱动程序的方法和步骤。
1. 检查硬件设备在安装驱动程序之前,首先需要确定硬件设备的型号和制造商。
可以通过查询设备的型号或者查看设备的相关文档来获取这些信息。
这是非常重要的,因为不同的设备可能需要不同的驱动程序来正确地工作。
2. 更新系统在安装驱动程序之前,确保你的Linux系统已经是最新的状态。
可以通过在终端中运行以下命令来更新系统:```sudo apt-get updatesudo apt-get upgrade```更新系统可以确保你拥有最新的软件包和驱动程序,以获得更好的兼容性和性能。
3. 查找合适的驱动程序一般来说,大部分硬件设备的驱动程序都可以在Linux系统的软件仓库中找到。
可以通过使用包管理器(如apt、yum等)来查找并安装合适的驱动程序。
运行以下命令来搜索并安装特定的驱动程序:```sudo apt-cache search 驱动程序名称sudo apt-get install 驱动程序名称```注意替换“驱动程序名称”为具体的驱动程序名称。
安装驱动程序可能需要输入管理员密码和确认安装。
如果你无法在软件仓库中找到合适的驱动程序,可以转向设备的制造商网站或者开源社区来获取。
下载驱动程序后,根据驱动程序提供的文档和说明来安装。
4. 编译和安装驱动程序有些驱动程序可能需要手动编译和安装。
在这种情况下,你需要确保你的系统已经安装了编译工具(如GCC、make等)。
在终端中切换到驱动程序所在的目录,并按照以下步骤进行编译和安装:```./configuremakesudo make install```以上命令将分别进行配置、编译和安装驱动程序。
在进行安装之前,可能需要输入一些配置选项或者确认安装。
一、如何编写LinuxPCI驱动程序

⼀、如何编写LinuxPCI驱动程序PCI的世界是⼴阔的,充满了(⼤部分令⼈不快的)惊喜。
由于每个CPU体系结构实现不同的芯⽚集,并且PCI设备有不同的需求(“特性”),因此Linux内核中的PCI⽀持并不像⼈们希望的那么简单。
这篇简短的⽂章介绍⽤于PCI设备驱动程序的Linux APIs。
1.1 PCI驱动程序结构PCI驱动程序通过pci_register_driver()在系统中"发现"PCI设备。
事实上,恰恰相反。
当PCI通⽤代码发现⼀个新设备时,具有匹配“描述”的驱动程序将被通知。
详情如下。
pci_register_driver()将设备的⼤部分探测留给PCI层,并⽀持在线插⼊/删除设备[因此在单个驱动程序中⽀持热插拔PCI、CardBus和Express-Card]。
pci_register_driver()调⽤需要传⼊⼀个函数指针表,从⽽指⽰驱动程序的更⾼⼀级结构体。
⼀旦驱动程序知道了⼀个PCI设备并获得了所有权,驱动程序通常需要执⾏以下初始化:启⽤设备请求MMIO / IOP资源设置DMA掩码⼤⼩(⽤于⼀致性DMA和流式DMA)分配和初始化共享控制数据(pci_allocate_coherent())访问设备配置空间(如果需要)注册IRQ处理程序(request_irq())初始化non-PCI(即LAN/SCSI/等芯⽚部分)启⽤DMA /处理引擎当使⽤设备完成时,可能需要卸载模块,驱动程序需要采取以下步骤:禁⽌设备产⽣irq释放IRQ (free_irq())停⽌所有DMA活动释放DMA缓冲区(包括流式DMA和⼀致性DMA)从其他⼦系统注销(例如scsi或netdev)释放MMIO / IOP资源禁⽤该设备下⾯⼏节将介绍这些主题中的⼤部分。
其余部分请查看LDD3或<linux/pci.h>。
如果PCI⼦系统没有配置(没有设置CONFIG_PCI),下⾯描述的⼤多数PCI函数都被定义为内联函数,要么完全空,要么只是返回⼀个适当的错误代码,以避免在驱动程序中出现⼤量ifdefs。
Linux视频设备驱动编程(v4l2编程)

Linux视频设备驱动编程(v4l2编程)一.什么是video4linuxVideo4linux2(简称V4L2),是linux中关于视频设备的内核驱动。
在Linux 中,视频设备是设备文件,可以像访问普通文件一样对其进行读写,摄像头在/dev/video0下。
二、一般操作流程(视频设备):1. 打开设备文件。
int fd=open(”/dev/video0″,O_RDWR);2. 取得设备的capability,看看设备具有什么功能,比如是否具有视频输入,或者音频输入输出等。
VIDIOC_QUERYCAP,struct v4l2_capability3. 选择视频输入,一个视频设备可以有多个视频输入。
VIDIOC_S_INPUT,struct v4l2_input4. 设置视频的制式和帧格式,制式包括PAL,NTSC,帧的格式个包括宽度和高度等。
VIDIOC_S_STD,VIDIOC_S_FMT,struct v4l2_std_id,struct v4l2_format5. 向驱动申请帧缓冲,一般不超过5个。
struct v4l2_requestbuffers6. 将申请到的帧缓冲映射到用户空间,这样就可以直接操作采集到的帧了,而不必去复制。
mmap7. 将申请到的帧缓冲全部入队列,以便存放采集到的数据.VIDIOC_QBUF,struct v4l2_buffer8. 开始视频的采集。
VIDIOC_STREAMON9. 出队列以取得已采集数据的帧缓冲,取得原始采集数据。
VIDIOC_DQBUF10. 将缓冲重新入队列尾,这样可以循环采集。
VIDIOC_QBUF11. 停止视频的采集。
VIDIOC_STREAMOFF12. 关闭视频设备。
close(fd);三、常用的结构体(参见/usr/include/linux/videodev2.h):struct v4l2_requestbuffers reqbufs;//向驱动申请帧缓冲的请求,里面包含申请的个数struct v4l2_capability cap;//这个设备的功能,比如是否是视频输入设备struct v4l2_input input; //视频输入struct v4l2_standard std;//视频的制式,比如PAL,NTSCstruct v4l2_format fmt;//帧的格式,比如宽度,高度等struct v4l2_buffer buf;//代表驱动中的一帧v4l2_std_id stdid;//视频制式,例如:V4L2_STD_PAL_Bstruct v4l2_queryctrl query;//查询的控制struct v4l2_control control;//具体控制的值下面具体说明开发流程(网上找的啦,也在学习么)打开视频设备在V4L2中,视频设备被看做一个文件。
想要成为Linux底层驱动开发高手这些技巧绝对不能错过

想要成为Linux底层驱动开发高手这些技巧绝对不能错过对于想要成为Linux底层驱动开发高手的人来说,掌握一些关键技巧是非常重要的。
本文将介绍一些不能错过的技巧,帮助读者提升自己在Linux底层驱动开发领域的能力。
1. 深入理解Linux内核:在成为Linux底层驱动开发高手之前,你需要对Linux内核有深入的理解。
了解内核的基本概念、代码结构和内核模块之间的关系是非常重要的。
阅读Linux内核的源代码、参与内核邮件列表的讨论以及阅读相关的文献资料都是提升自己技能的好途径。
2. 熟悉底层硬件知识:作为底层驱动开发者,你需要熟悉底层硬件的工作原理。
这包括了解处理器架构、设备的寄存器操作、中断处理等。
掌握底层硬件知识可以帮助你编写高效、稳定的驱动程序。
3. 学习使用适当的开发工具:在Linux底层驱动开发中,使用适当的开发工具是非常重要的。
例如,使用调试器可以帮助你快速定位驱动程序中的问题。
掌握使用GCC编译器、GNU调试器(GDB)和性能分析工具(如OProfile)等工具可以提高你的开发效率。
4. 阅读相关文档和源代码:Linux底层驱动开发涉及到大量的文档和源代码。
阅读设备供应商提供的文档、Linux内核源代码以及其他相关文献资料可以帮助你更好地了解特定设备的工作原理和使用方法。
5. 编写清晰、高效的代码:编写清晰、高效的代码对于成为Linux底层驱动开发高手是至关重要的。
使用良好的编码风格、注释和命名规范可以提高代码的可读性。
此外,了解Linux内核的设计原则和最佳实践也是编写高质量驱动程序的关键。
6. 多实践、调试和优化:在实际开发过程中,积累经验是非常重要的。
通过多实践、调试和优化不同类型的驱动程序,你可以更好地理解Linux底层驱动开发的技巧和要点。
此外,学会使用内核调试工具和性能分析工具可以帮助你提高驱动程序的质量和性能。
7. 参与开源社区:参与开源社区是成为Linux底层驱动开发高手的好方法。
嵌入式linux驱动开发流程

三、设备的中断和轮询处理
对于不支持中断的设备,读写时需要轮询设备状态,以及是否需要继续进行数据传输。例如,打印机。如果设备支持中断,则可按照中断方式进行。
struct file_operations Key7279_fops =
{
.open = Key7279_Open,
.ioctl = Key7279_Ioctl,
.release = Key7279_Close,
.read = Key7279_Read,
};
1、 设备的打开和释放
模块在使用中断前要先请求一个中断通道(或者 IRQ中断请求),并在使用后释放它。通过request_irq()函数来注册中断,free_irq()函数来释放。
四、驱动程序的测试
对驱动程序的调试可以通过打印的方式来进行,就是通过在驱动程序中添加printk()打印函数,来跟踪驱动程序的执行过程,以此来判断问题。
◇ 设备的打开和释放。
ห้องสมุดไป่ตู้◇ 设备的读写操作。
◇ 设备的控制操作。
◇ 设备的中断和轮询处理。
Linux主要将设备分为三类:字符设备、块设备和网络设备。字符设备是指发送和接收数据以字符的形式进行,没有缓冲区的设备;块设备是指发送和接收数据以整个数据缓冲区的形式进行的设备;网络设备是指网络设备访问的BSD socket 接口。下面以字符设备为例,写出其驱动编写框架:
二、 构造file_operations结构中要用到的各个成员函数
Linux操作系统将所有的设备都看成文件,以操作文件的方式访问设备。应用程序不能直接操作硬件,使用统一的接口函数调用硬件驱动程序,这组接口被成为系统调用。每个系统调用中都有一个与之对应的函数(open、release、read、write、ioctl等),在字符驱动程序中,这些函数集合在一个file_operations类型的数据结构中。以一个键盘驱动程序为例:
linux 开发新驱动步骤

linux 开发新驱动步骤Linux作为一款开源的操作系统,其内核源码也是开放的,因此,许多开发人员在Linux上进行驱动开发。
本文将介绍在Linux上进行新驱动开发的步骤。
第一步:确定驱动类型和接口在进行驱动开发前,需要确定驱动类型和接口。
驱动类型包括字符设备驱动、块设备驱动、网络设备驱动等。
接口包括设备文件、系统调用、ioctl等。
根据驱动类型和接口的不同,驱动开发的流程也有所不同。
第二步:了解Linux内核结构和API驱动开发需要熟悉Linux内核的结构和API。
Linux内核由许多模块组成,每个模块都有自己的功能。
API是应用程序接口,提供了许多函数和数据结构,开发人员可以使用这些函数和数据结构完成驱动开发。
第三步:编写驱动代码在了解了Linux内核结构和API后,就可以编写驱动代码了。
驱动代码需要按照Linux内核的编码规范编写,确保代码风格统一、可读性好、可维护性强等。
在编写代码时,需要使用API提供的函数和数据结构完成相应的功能。
第四步:编译驱动代码和内核模块驱动代码编写完成后,需要编译成内核模块。
编译内核模块需要使用内核源码中的Makefile文件。
编译完成后,会生成一个.ko文件,这个文件就是内核模块。
第五步:加载和卸载内核模块内核模块编译完成后,需要加载到Linux系统中。
可以使用insmod命令加载内核模块,使用rmmod命令卸载内核模块。
在加载和卸载内核模块时,需要注意依赖关系,确保依赖的模块已经加载或卸载。
第六步:调试和测试驱动开发完成后,需要进行调试和测试。
可以使用printk函数输出调试信息,在/var/log/messages文件中查看。
测试时需要模拟各种可能的情况,确保驱动程序的稳定性和可靠性。
Linux驱动开发需要掌握Linux内核结构和API,熟悉驱动类型和接口,按照编码规范编写驱动代码,并进行编译、加载、调试和测试。
只有掌握了这些技能,才能进行高效、稳定和可靠的驱动开发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何编写Linux设备驱动程序Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。
在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。
以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料。
一、Linux device driver 的概念系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。
设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。
设备驱动程序是内核的一部分,它完成以下的功能: 1。
对设备初始化和释放。
2。
把数据从内核传送到硬件和从硬件读取数据。
3。
读取应用程序传送给设备文件的数据和回送应用程序请求的数据。
4。
检测和处理设备出现的错误。
在Linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。
字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。
块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。
已经提到,用户进程是通过设备文件来与实际的硬件打交道。
每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。
设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。
最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。
也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。
如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。
读/写时,它首先察看缓冲区的内容,如果缓冲区的数据如何编写Linux操作系统下的设备驱动程序二、实例剖析我们来写一个最简单的字符设备(比如蜂鸣器)驱动程序。
虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。
把下面的C代码输入机器,你就会获得一个真正的设备驱动程序。
#define __NO_VERSION__#include <linux/modules.h>#include <linux/version.h>char kernel_version [] = UTS_RELEASE;这一段定义了一些版本信息,虽然用处不是很大,但也必不可少。
Johnsonm 说所有的驱动程序的开头都要包含<linux/config.h>,一般来讲最好使用。
由于用户进程是通过设备文件同硬件打交道,对设备文件的操作方式不外乎就是一些系统调用,如open,read,write,close…,注意,不是fopen,fread,但是如何把系统调用和驱动程序关联起来呢?这需要了解一个非常关键的数据结构:struct file_operations{int (*seek) (struct inode * ,struct file *,off_t ,int); //文件定位int (*read) (struct inode * ,struct file *,char ,int);int (*write) (struct inode * ,struct file *,off_t ,int);int (*readdir) (struct inode * ,struct file *,struct dirent * ,int); //读取目录int (*select) (struct inode * ,struct file *,int ,select_table *);// I/O端口复用,非阻塞的状态下实现设备的访问int (*ioctl) (struct inode * ,struct file *,unsined int ,unsigned long);//对设备的属性修改int (*mmap) (struct inode * ,struct file *,struct vm_area_struct *);// 内存映射int (*open) (struct inode * ,struct file *);int (*release) (struct inode * ,struct file *);int (*fsync) (struct inode * ,struct file *); //设备的同步信息int (*fasync) (struct inode * ,struct file *,int); //异步int (*check_media_change) (struct inode * ,struct file *); //检测数据是否发生改变int (*revalidate) (dev_t dev); //使设备重新有效}这个结构的每一个成员的名字都对应着一个系统调用。
用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数。
这是linux的设备驱动程序工作的基本原理。
既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域。
下面就开始写子程序。
#include <linux/types.h>#include <linux/fs.h> //文件系统#include <linux/mm.h> //内存管理#include <linux/errno.h>#include <asm/segment.h> //汇编语言编写unsigned int test_major = 0; //主设备号,自动搜索static int read_test(struct inode *node,struct file *file,char *buf,int count)//读测试,inode *node表示哪一个设备,*file表示文件描述符,*buf表读取时的接口,count表期望读的字节数,static int 返回值—实际读到的数量{int left;if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )// verify_area,验证某一个buf中的数据是否有效return -EFAULT;for(left = count ; left > 0 ; left--){__put_user(1,buf,1); //从内核空间将数据拷贝到用户空间去,将”1”依次放到用户空间的buf中,每次放的大小是一个字节buf++;}return count; //返回读的数据数}这个函数是为read调用准备的。
当调用read时,read_test()被调用,它把用户的缓冲区全部写1。
buf 是read调用的一个参数。
它是用户进程空间的一个地址。
但是在read_test被调用时,系统进入核心态。
所以不能使用buf这个地址,必须用__put_user(),这是kernel提供的一个函数,用于向用户传送数据。
另外还有很多类似功能的函数。
请参考,在向用户空间拷贝数据之前,必须验证buf 是否可用。
这就用到函数verify_area。
static int write_tibet(struct inode *inode,struct file *file,const char *buf,int count) {return count;}// *inode表入口节点,*file表设备描述符static int open_tibet(struct inode *inode,struct file *file ){MOD_INC_USE_COUNT; //宏定义,注册一个驱动之后,模块数自动+1return 0;}static void release_tibet(struct inode *inode,struct file *file ){MOD_DEC_USE_COUNT; // 模块数自动减1}这几个函数都是空操作。
实际调用发生时什么也不做,他们仅仅为下面的结构提供函数指针。
struct file_operations test_fops = {NULL,read_test,write_test,NULL,/* test_readdir */NULL,NULL,/* test_ioctl */NULL,/* test_mmap */open_test,release_test,NULL,/* test_fsync */NULL,/* test_fasync *//* nothing more,fill with NULLs */};设备驱动程序的主体可以说是写好了。
现在要把驱动程序嵌入内核。
驱动程序可以按照两种方式编译。
一种是编译进kernel,另一种是编译成模块(modules),如果编译进内核的话,会增加内核的大小,还要改动内核的源文件,而且不能动态的卸载,不利于调试,所以推荐使用模块方式。
int init_module(void) //注册方式{int result;result = register_chrdev(0,"test",&test_fops);//注册字符型设备到内核中去,“0”表是自动根据设备节点里的主设备号来获取它的设备号;"test"表示你注册的设备名;&test_fops为注册的接口if (result < 0) {printk(KERN_INFO "test: can't get major number\n"); //在内核打印信息必须用printk;而print f只能在用户空间用return result;}if (test_major == 0) test_major = result; /* dynamic *///由内核分配一个设备号给驱动程序,获取设备的主设备号return 0;}在用insmod命令将编译好的模块调入内存时,init_module 函数被调用。