压电陶瓷的制备与应用
压电陶瓷及其应用

压电陶瓷及其应用
压电陶瓷是一种能够将机械能转换为电能或反过来将电能转换为机械能的材料。
压电现象是指当压电材料受到外力压缩或拉伸时,会在其表面产生正电荷和负电荷的分布,从而产生电场,形成电荷偏移现象。
在电场作用下,压电材料会发生形变,这种形变成为“压电效应”。
由于其稳定性好、耐热性强等优点,压电陶瓷被广泛应用于传感器、换能器、精密仪器等领域中。
压电陶瓷的基本原理是利用石英、石英玻璃、陶瓷等材料的压电效应,通过施加电场和机械应力,从而使得材料产生明显的形变。
一个典型的压电陶瓷元件由两个相互平行的金属板组成,中间夹着压电陶瓷。
当加电压的方向与晶格压缩方向相同时,压电陶瓷的壳体会向两个板之间形成一个弯曲或膨胀,即拉伸或压缩,而当电压反向时,它会变小或成为弯曲或膨胀与电压方向相反的形状。
通过压电陶瓷传感器可以获得不同种类的物理量,如力、压力、形变、应力等,并将其转化为电磁信号输出。
在机械加工和测量领域中,使用压电陶瓷可以进行高精度的形变测量和位置控制。
此外,压电陶瓷不仅可以作为传感器和换能器,还可以作为精密陶瓷器件,如滤波器和元件储能器,作为贴片电容器,甚至可以用作超声波清洗器。
近年来,压电陶瓷在医疗设备中的应用也越来越广泛。
例如,在医疗图像仪器的探头中使用压电陶瓷的探头技术,可以使得医疗设备具有更高的灵敏度和精确度,在医疗成像和诊断方面具有重要意义。
此外,压电陶瓷也可作为医疗器械上的声子部件,用于制造射频刀和其它医疗设备。
总之,压电陶瓷的应用非常广泛,一些发展中国家同样具有一定的生产能力,其应用挖掘和研发,对于现代工业和医疗事业具有重要意义。
压电陶瓷的机理及应用

压电陶瓷的机理及应用压电陶瓷是一种特殊的陶瓷材料,具有压电效应。
压电效应是指在施加外力或变形作用下会产生电势差的现象,既可以把电能转化为机械能,又可以把机械能转化为电能。
压电陶瓷的机理主要涉及晶格结构和电偶极矩的相互作用。
压电陶瓷的晶格结构由正极性和负极性离子组成,称为铅酸钡结构。
这种结构有一个重要特性,即当施加压力或机械应力时,该结构会发生畸变,导致离子移动,进而在材料中产生电荷分离,形成电场。
这个电场就是压电陶瓷产生电势差的原因。
具体来说,当外界施加压力时,压电陶瓷晶体结构会发生压缩和伸展。
在压缩时,正极性离子向负极性离子方向移动;在伸展时,正负极性离子则相反地移动。
这种离子的移动引起了电势差的产生。
压电陶瓷的应用非常广泛。
以下是一些主要的应用领域:1. 声波和超声波技术:压电陶瓷可将电能转化为声波能量,它被广泛应用于扬声器、声纳、超声波清洗器等领域。
2. 振动控制技术:压电陶瓷能够将机械能转化为电能,可以被用于减震、减振和振动控制系统,如压电陶瓷驱动器、振动降噪器等。
3. 电子和通信设备:压电陶瓷在电子设备中用于振荡器、滤波器、传感器等部件中,因其良好的电特性被广泛应用于通信和电子设备领域。
4. 高精度测量技术:压电陶瓷电特性的稳定性和高精度使其适用于精密测量领域,如压力传感器、温度传感器、加速度传感器等。
5. 医疗器械:由于其生物相容性,压电陶瓷常被用于医疗器械中,如超声医学成像、心脏起搏器、超声刀等。
6. 能量采集和储存:压电陶瓷可以将机械能转化为电能,因此被广泛应用于能量采集和储存技术,如压电发电、压电储能装置等。
总的来说,压电陶瓷以其优异的压电性能,在声波和超声波技术、振动控制、电子和通信设备、高精度测量、医疗器械以及能量采集和储存等领域得到了广泛的应用和研究。
随着科技的不断进步,压电陶瓷的应用前景将不断扩大。
压电陶瓷ppt课件

感谢您的观看
THANKS
造传感器和换能器。
工作模式二
压电陶瓷可以在交变电场下工作, 产生交变的机械振动,用于制造超 声波设备和振动器。
工作模式三
压电陶瓷可以在高电压、大电流下 工作,产生强烈的机械振动或变形 ,用于制造大型驱动器和执行器。
03
压电陶瓷的制造工艺
配料与混合
配料
按照配方称取适量的原料,如钛 酸钡、二氧化锆、氧化镁等。
04
压电陶瓷的性能参数
电学性能
介电常数
衡量压电陶瓷在电场作用下极化 程度的物理量。介电常数越大, 极化程度越高,压电效应越明显
。
绝缘电阻
反映压电陶瓷内部绝缘性能的参 数。高绝缘电阻表明陶瓷内部缺
陷少,性能稳定。
电致伸缩系数
衡量压电陶瓷在电场作用下产生 的机械应变能力的物理量。电致 伸缩系数越大,机械应变能力越
压电陶瓷的特性
高压电性能
压电陶瓷具有较高的压电常数和机电耦合系 数,能够将微小的机械形变转换为较大的电 能或机械能。
温度稳定性
压电陶瓷具有较好的温度稳定性,可以在较 宽的温度范围内保持稳定的性能。
可靠性高
压电陶瓷具有较高的机械强度和稳定性,不 易疲劳压电陶瓷的振动和换能特性,可以将太阳能转换为电能,提高太阳能利用率 。
压电陶瓷在风能发电中的应用
压电陶瓷可以作为风能发电机的传感器和换能器,实现风能的高效利用。
压电陶瓷在其他领域的应用探索
压电陶瓷在医疗领域的应用
压电陶瓷在医学领域具有广泛的应用前景,如超声成像、药物传递等。
压电陶瓷在环保领域的应用
利用压电陶瓷的振动特性,制造出声 波发生器、超声波探头等声学器件。
压电陶瓷发电特性及其应用研究共3篇

压电陶瓷发电特性及其应用研究共3篇压电陶瓷发电特性及其应用研究1压电陶瓷发电特性及其应用研究压电陶瓷是一种能够将电能和机械能相互转换的材料,其具有很强的压电效应和角电效应。
因此,它在能量转换和储存领域中具有广泛的应用。
本文将重点介绍压电陶瓷的发电特性及其应用研究。
1. 压电陶瓷的发电特性压电陶瓷的发电机制是基于压电效应。
当施加外力或压力时,它会产生电荷分布不均的情况,从而产生电势差并形成电流。
这种电荷分布的不均匀是压电效应的直接结果。
另一方面,压电陶瓷也具有角电效应。
当施加过电压时,它可以被用作电极化器,在没有任何电学信号的情况下将机械幅度转换为电学信号。
2. 压电陶瓷的应用研究2.1 压电陶瓷发电机压电陶瓷发电机可以将机械能转换为电能。
它可以通过施加外力来刺激压电陶瓷并流过电流。
由于其结构简单、可靠性高、无污染、可靠性高等特点,压电陶瓷发电机受到了广泛的关注。
2.2 压电能量收集装置压电能量收集装置是将压电陶瓷与电容器等元件结合使用,以收集从机械系统中产生的微弱电能。
其中一种常见的应用是使用人体步态能量来为电子设备充电。
此外,还可以通过将压电元件与振动绝缘和滤波元件结合使用来收集车辆振动或其他环境振动中的能量,以实现稳定、可靠的电源供应。
2.3 压电陶瓷传感器压电陶瓷传感器被广泛应用于建筑结构、机器人、生物医学监测和流量计等领域。
例如,压电陶瓷传感器可用于对结构的物理变形和应力进行测量,以便进行健康监测。
另外,它还被用作假肢控制和人机交互的红外触摸传感器。
3. 结论压电陶瓷发电具有广泛的应用前景,但其性能需要进一步提高。
研究应该重点关注如何提高压电陶瓷的输出功率和增加其工作寿命。
此外,在应用中,还应注意减小压电陶瓷的失效率以及尽可能减少它在安装中的受外部机械、化学和热损害的风险综上所述,压电陶瓷作为一种新型的能量转换材料,具有着广泛的应用前景。
通过应用研究可发现,压电陶瓷在发电、能量收集和传感器领域都具有非常重要的应用前景。
压电陶瓷的生产工艺技术与应用

压电陶瓷的生产工艺技术与应用摘要:压电陶瓷的发现已经有四十年多年的历史,国内外的研究者在其生产工艺技术的探索上已经做了不少研究。
研究者针对压电陶瓷传统工艺流程中的某些环节进行改进,研究出压电陶瓷的一些特殊生产工艺技术,使其在一些特定范围内更好地发挥作用。
因此,本文将从压电陶瓷的一般工艺展开,引出到目前为止,压电陶瓷的一些其他生产工艺技术,并系统地介绍了压电陶瓷在生产生活中的应用。
关键词:压电陶瓷;生产工艺技术;改进;应用Production technology and applications of piezoelectric ceramics Abstract: The discovery of piezoelectric ceramics have been over forty years in history, the researchers at home and abroad have done a lot of research to explore the production technology of piezoelectric ceramics. The researchers have improved some links of the piezoelectric ceramics' traditional process and come up with some special production technology of piezoelectric ceramics, which have made piezoelectric ceramics wok better in some particular range. Therefore, this paper will launch the piezoelectric ceramics' production technology from general process to, so far, some of the other piezoelectric ceramics' production technology, and introduce the applications of piezoelectric ceramics systematically.Key Words: piezoelectric ceramics;production technology;improve;applications1. 前言1.1 压电陶瓷的研究背景[1]-[8-10]1880年,居里兄弟首先在单晶发现压电效应,这是压电学建立和发展的起点。
压电陶瓷材料及应用..-共22页

压电陶瓷材料及应用一、概述1.1电介质电介质材料的研究与发展成为一个工业领域和学科领域,是在20世纪随着电气工业的发展而形成的。
国际上电介质学科是在20世纪20年代至30年代形成的,具有标志性的事件是:电气及电子工程师学会(IEEE)在1920年开始召开国际绝缘介质会议,以后又建立了相应的分会(IEEE Dielectric and Electrical Insulation Society)。
美国MIT建立了以Hippel教授为首的绝缘研究室。
苏联列宁格勒工学院建立了电气绝缘与电缆技术专业,莫斯科工学院建立了电介质与半导体专业。
特别是德国德拜教授在20世纪30年代由于研究了电介质的极化和损耗特性与其分子结构关系获得了诺贝尔奖,奠定了电介质物理学科的基础。
随着电器和电子工程的发展,形成了研究电介质极化、损耗、电导、击穿为中心内容的电介质物理学科。
我国电介质领域的发展是在1952年第一个五年计划制定和实行以来,电力工业和相应的电工制造业得到迅速发展,这些校、院、所、首先在我国开展了有关电介质特性的研究和人才的培养,并开出了“电介质物理”、“电介质化学”等关键专业课程,西安交大于上海交大、哈尔滨工大等院校一道为我国培养了数千名绝缘电介质专业人才,促进了我国工程电介质的发展。
80年代初中国电工技术学会又建立了工程电介质专业委员会。
近年来,随着电子技术、空间技术、激光技术、计算机技术等新技术的兴起以及基础理论和测试技术的发展,人们创造各种性能的功能陶瓷介质。
主要有:(1)、电子功能陶瓷如高温高压绝缘陶瓷、高导热绝缘陶瓷、低热膨胀陶瓷、半导体陶瓷、超导陶瓷、导电陶瓷等。
(2)、化学功能陶瓷如各种传感器、化学泵等。
(3)、电光陶瓷和光学陶瓷如铁电、压电、热电陶瓷、透光陶瓷、光色陶瓷、玻璃光纤等。
(电介质物理——邓宏)功能陶瓷作为信息时代的支柱材料,以其独特的力、热、电、磁、光以及声学等功能性质,在各类信息的检测、转换、处理和存储中具有广泛的应用,是一类重要的、国际竞争极为激烈的高技术材料。
压电陶瓷的成型方法

压电陶瓷的成型方法
压电陶瓷是一种重要的功能陶瓷材料,具有压电效应和介电效应,广泛应用于传感器、振动器、滤波器、电子陶瓷等领域。
成型是制备压电陶瓷的关键步骤之一,本文将介绍几种常见的压电陶瓷成型方法。
1. 热压成型法
热压成型法是一种常见的压电陶瓷成型方法,其主要原理是将陶瓷粉末加热至一定温度,然后施加一定压力,使其在模具中形成所需形状。
该方法具有成型精度高、成型时间短、成型效率高等优点,广泛应用于制备压电陶瓷件。
2. 注浆成型法
注浆成型法是一种将粉末与粘结剂混合后,将混合物注入模具中,在高温下烘干成型的方法。
该方法具有成型精度高、成型效率高等优点,适用于制备大型、复杂形状的压电陶瓷。
3. 热等静压成型法
热等静压成型法是一种将陶瓷粉末加热至一定温度,然后施加一定压力,在高温下烧结成型的方法。
该方法具有成型精度高、成型效率高、成型强度高等优点,适用于制备高强度、高密度的压电陶瓷。
4. 凝胶注模成型法
凝胶注模成型法是一种将陶瓷粉末与溶液混合后,在模具中注入,通过凝胶化后的陶瓷凝胶在高温下烧结成型的方法。
该方法具有成型精度高、成型效率高、成型强度高等优点,适用于制备复杂形状的压电陶瓷。
5. 旋转成型法
旋转成型法是一种将陶瓷粉末加入到模具中,在高速旋转的模具内形成所需形状的方法。
该方法具有成型精度高、成型效率高、成型强度高等优点,适用于制备圆形、对称形状的压电陶瓷。
压电陶瓷的成型方法多种多样,选择合适的成型方法可以提高压电陶瓷的成型效率和质量,满足不同工业领域的需求。
压电陶瓷

01
压电陶瓷的原 理及应用
压电陶瓷的 性能参数
03
02
04
压电陶瓷的制 作工艺
压电陶瓷的 研究现状
压电陶瓷的原理及应用
)
压电陶瓷是一种将机械能与电能相互转换的功能陶瓷
压电陶瓷点火器 深大材料学院
压电陶瓷加湿器
压电陶瓷的原理及应用
)
压电陶瓷因受力形变而产生电的效应,称为正压电效应。 压电陶瓷因加电压而产生形变的效应,称为逆压电效应。
深大材料学院
压电陶瓷的制作工艺
干压成型是将经过造粒的瓷料装入一定形状的钢模内, 借助于模塞,在一定外力下压制成坯体。
)
加压方式
干压成型一般分单向加压和双向加压两种方式。较薄 制品可采用单向加压方式;厚制品宜采用双向加压,以 使坯体内密度较均匀。
深大材料学院
压电陶瓷的制作工艺 排塑
粘合剂是一种还原性强的物质,压电瓷料干压成型主要 使用聚乙烯醇(PVA)、聚乙二醇(PGE)。在成型以后需要 升温将其排出,以避免影响烧结质量,这一工序称为排塑。 为了防止还原作用,排塑时要保证较好的通风条件。
深大材料学院
压电陶瓷的制作工艺
)
2) 材料类型
① 接收型压电陶瓷材料 已引入了降低电导率和老化率的高价施主杂质,原料中 在0.5%以内的杂质不足以显著影响施主杂质的既定作用。 ② 发射型压电陶瓷材料 要求低机电损耗,因而配料中的杂质总量,愈少愈好, 一般希望在0.05%以下。对于为了提高其它性能参数的有意 添加物,另当别论。
深大材料学院
压电陶瓷的原理及应用
)
这种电极化不是由外电场产生,而是由晶体自身 产生的,所以成为自发极化,其相变温度TC称为 居里温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压电陶瓷的制备与应用
【摘要】本文主要概述了国内外关于压电陶瓷材料的发展历史进程和研究现状,提出压电陶
瓷材料的制备方法,探讨了其发展趋势和应用前景。指出了现代压电陶瓷材料正在向着复合
化,薄膜化,无铅化及纳米化方向发展。该材料应用前景广阔,是一种极有发展潜力的材料。
【关键词】 压电陶瓷性能参数 制备方法应用
压电陶瓷是指把氧化物混合(氧化锫、氧化铅、氧化钛等)高温烧结、固相反应后而成的多晶
体.并通过直流高压极化处理使其具有压电效应的铁电陶瓷的统称,是一种能将机械能和电
能互相转换的功能陶瓷材料。压电陶瓷是含高智能的新型功能电子材料,随着材料及工艺的
不断研究和改良,压电陶瓷的技术应用愈来愈广。压电材料作为机、电、声,光、热敏感材
料,在传感器、换能器、无损检测和通讯技术等领域已获得了广泛的应用,世界各国都高度
重视压电陶瓷材料的研究和开发。
1、压电陶瓷的性能参数
(1)机械品质因数
机械品质因数的定义是:Qm=×2∏,他表示在振动转换时,材料内部能量消耗的程度。机
械品质因数越大,能量的损耗越小。机械品质因数可以根据等效电路计算而得:Qm=,式中
R1为等效电阻,Ws为串联谐振频率,C1为振子谐振时的等效电容。当陶瓷片作径向振动
时,可近似地表示为Qm=,式中C0为振子的静态电容,单位F;△f为振子的谐振频率fr
与反谐振频率fa之差,单位Hz;Qm为无量纲的物理量。
(2)基电耦合系数
机电耦合系数K是综合反映压电材料性能的参数,它表示压电材料的机械能与电能的耦合效
应。机电耦合系数可定义为K2=(逆压电效应),K2=(正压电效应)没有量纲。
机电耦合系数是压电材料进行机—电能量转换的能力反映,它与机—电效率是完全不同的两
个概念。它与材料的压电常数、介电常数和弹性常数等参数有关,因此,机电耦合常数是一
个比较综合性的参数。
(3)弹性系数
根据压电效应,压电陶瓷在交变电场作用下,会产生交变伸长和收缩,从而形成与激励电场
频率(信号频率)相一致的受迫振动。对于具有一定形状、大小和被覆工作电极的压电陶瓷
称为压电陶瓷振子(简称振子)。实际上,振子谐振时的形变是很小的,一般可以看作是弹
性形变。反映材料在弹性形变范围内应力与应变之间的参数为弹性系数。
压电陶瓷材料是一个弹性体,它服从胡克定律:在弹性限度范围内,应力与应变成正比。当
数值为T的应力(单位为Pa)加于压电陶瓷片上时,所产生的应变S为S=sT、T=cS式中s
为弹性柔顺系数,单位m2/N,c为刚性刚度系数,单位Pa。
2、压电陶瓷的制备过程
I、生产中广泛采用的压电陶瓷工艺,主要包括以下步骤:配料混合预烧粉碎成型排胶烧结
被电极极化测试,如图2所示。
(1)配料、球磨混合
原料选用纯度高、细度小和活性大的粉料,根据配方或分子式选择所用原料,并按原料纯度
进行修正计算,然后进行原料的称量。按化学配比配料以后,使用行星式球磨机将各种配料
混合均匀。实验室常采用的是水平方向转动球磨方式,震动球磨是另一种常用的球磨方法,
此外还有气流粉碎法等混合方法。
(2)预烧、粉碎、成型、排胶和烧结
混合球磨后的原料进行预烧。预烧是使原料间发生固相化学反应以生成所需产物的过程,预
烧过程中应注意温度和保温时间的选择。将预烧反应后的材料使用行星式球磨机粉碎。
成型的方法主要有四种;轧膜成型、流延成型、干压成型和静水压成型。轧膜成型适用于薄
片元件;流延成型适合于更薄的元件,膜厚可以小于10 m;干压成型适合于块状元件;静
水压成型适合于异形或块状元件。除了静水压成型外,其他成型方法都需要有粘合剂,粘合
剂一般占原料重量的3%左右。成型以后需要排胶。粘合剂的作用只是利于成型,但它是一
种还原性强的物质,成型后应将其排出以免影响烧结质量。
烧结是将坯体加热到足够高的温度,使陶瓷坯体发生体积收缩、密度提高和强度增大的过程。
烧结过程的机制是组成该物质的原子的扩散运动。烧结的推动力是颗粒或者晶粒的表面能,
烧结过程主要是表面能降低的过程。晶粒尺寸是借助于原子扩散来实现的。
(3)被电极、极化、测量
烧结后的样品要被电极,可选用的电极材料有银、铜、金.铂等,形成电极层的方法有真空
蒸发、化学沉积等多种。压电陶瓷中广泛采用的是,在烧结后的样品涂上银浆,在空气中烧
制电极。为了防止空气在高压下电离、击穿,极化一般是在硅油中进行。为了获得优良的压
电性能,需要选择合适的电场强度,适当的极化温度。极化样品放置24小时后,用压电常
数测量仪测量d33,用高频阻抗分析仪(Agilent4294A等)测量介电常数、介电损耗、谐振频
率等。
II溅射法 (sp ut tering)是利用高速运动的荷能离子把靶材上的原子(或分子) 轰击下来沉积在
基片(加热或不加热)上形成薄膜的方法,采用射频磁控溅射能进一步增加电子的行程,加强电
离和离子轰击效果,从而能有效提高溅射效率及薄膜的均匀性。
III、脉冲激光沉积(PLD)是80年代后期发展起来的新型薄膜制备技术。相对于其它薄膜制备
技术, PLD具有沉积速度快、靶材和薄膜成分一致、生长过程中可原位引入多种气体、烧蚀
物粒子能量高、容易制备多层膜及异质结、工艺简单、灵活性大、可制备的薄膜种类多、可
用激光对薄膜进行多种处理等优点
IV、sol-gel法是通过将含有一定离子配比的金属醇盐和其它有机或无机金属盐溶于共同的溶
液中,通过水解和聚合形成均匀的前驱体———溶胶,再经提拉、旋转涂覆、喷涂或电沉积法
等将前驱体溶胶均匀地涂覆在基片上,然后烘干除去有机物,最后退火处理得到具有一定晶相
结构的无铅压电陶瓷薄膜。
3、压电陶瓷的应用
近年来,随着宇航、电子、计算机、激光、微声和能源等新技术的发展,对各类材料器件提
出了更高的性能要求,压电陶瓷作为一种新型功能材料,在日常生活中,作为压电元件广泛
应用于传感器、气体点火器、报警器、音响设备、超声清洗、医疗诊断及通信等装置中。它
的重要应用大致分为压电振子和压电换能器两大类。前者主要利用振子本身的谐振特性,要
求压电、介电、弹性等性能稳定,机械品质因数高。后者主要是将一种能量形式转换成另一
种能量形式,要求机电耦合系数和品质因数高。
压电陶瓷的主要应用领域如下表所示:
应用领域
主要用途举例
电源
压电变压器
雷达、电视显像管、阴极射线管、盖克计数管、激光管和电子复印机等高压电源和压电点火
装置
信号源
标准信号信号源
振荡器、压电音叉、压电音片等用作精密仪器中的时间和频率标准信号源
信号转换
电声换能器
拾声器、送话器、受话器、扬声器、蜂鸣器等声频范围的电声器件
超声换能器
超声切割、焊接、清洗、搅拌、乳化及超声显示等频率高于20Hz的超声器件
发射与接收
超声换能器
探测地质构造、油井固实程度、无损探伤和测厚、催化反应、超声衍射、疾病诊断等各种工
业用的超声器件
水声换能器
水下导航定位、通信和探测的声呐、超声探测、鱼群探测和传声器等
信号处理
滤波器
通信广播中所用各种分立滤波器和复合滤波器,如彩电中频率波器;雷达、自控和计算机系
统所用带通滤波器、脉冲滤波器等
放大器
声表面波信号放大器以及振荡器、混频器、衰减器、隔离器等
表面波导
声表面波传输线
4、结束语
压电陶瓷是一种重要的功能材料,具有优异的压电、介电和光电等电学性能,被广泛地应用
于电子、航空航天、生物等高技术领域。近年来,各国都在积极研究和开发新的压电功能陶
瓷,研究的重点大都是从老材料中发掘新效应,开拓新应用;从控制材料组织和结构入手,
寻找新的压电材料。特别值得重视的是随着材料技术和工艺的发展,目前国际上对压电材料
的应用研究十分活跃,许多新的压电器件,包括过去认为是难以实现的器材也被研制出来了。
随着对材料的组成、制备工艺及结构的不断深入研究,更加新颖的压电器件将不断的映现出
来。
【参考文献】
[1]张沛霖,钟维烈.压电材料与器件物理[M].济南t山东科学技术出版社.1994.
[2]陆雷、肖定全、田建华、朱建国. 无铅压电陶瓷薄膜的制备及应用研究.
[3]张雷、沈建新.压电陶瓷制备方法的研究进展.硅酸盐通报.
[4]肖定全. 关于无铅压电陶瓷及其应用的几个问题. 电子元件与材料.2004.
材料合成与制备方法论文
压电陶瓷的制备与应用
院系:物理与电子工程学院
专业:材料物理
姓名:李鹏洋