七年级数学上册 一元一次方程易错题解析
《易错题》七年级数学上册第三单元《一元一次方程》-选择题专项(含解析)

一、选择题1.已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2a b =D .2a b = D 解析:D【分析】根据等式的性质判断即可.【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确;B 、因为a=2b ,所以a-m=2b-m ,正确;C 、因为a=2b ,所以2a =b ,正确; D 、因为a=2b ,当b≠0,所以a b =2,错误; 故选D .【点睛】此题考查比例的性质,关键是根据等式的性质解答.2.甲、乙两个工程队,甲队32人,乙队28人,现在从乙队抽调x 人到甲队,使甲队人数为乙队人数的2倍.则根据题意列出的方程是( )A .32+x =2(28−x)B .32−x =2(28−x)C .32+x =2(28+x)D .2(32+x)=28−x A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x ).故答案为:32+x=2×(28-x ),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.3.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m B 解析:B设计划注入水的时间为x 小时,根据“比预定的时间提前了10分钟完成注水任务”列出方程并解答.【详解】设计划注入水的时间为x 小时,依题意得:()20105002+5001+2025006060x x ⎛⎫⨯⨯---= ⎪⎝⎭%, 解得x=5.5×500=2500,即计划注入水的体积为2500立方米.故选B.【点睛】此题考查一元一次方程的应用,解题关键在于根据题意找到等量关系列出方程. 4.若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系是( )A .m>n>kB .n>k>mC .k>m>nD .m> k> n A 解析:A【分析】要比较m 、n 、k 的大小,只有从给出已知条件中,算出其值,比较它们的大小,就会迎刃而解了.【详解】解:(1)∵|2x−3|+m =0无解,∴m >0.(2)∵|3x−4|+n =0有一个解,∴n =0.(3)∵|4x−5|+k =0有两个解,∴k <0.∴m >n >k .故选:A .【点睛】本题主要考查的是含有绝对值符号的一元一次方程的拓展计算题,要充分利用已知条件.难易适中.5.如图,将长和宽分别是 a ,b 的长方形纸片的四个角都剪去一个边长为 x 的正方形.用含 a ,b ,x 的代数式表示纸片剩余部分的面积为( ) A .ab+2x 2 B .ab ﹣2x 2 C .ab+4x 2 D .ab ﹣4x 2D【分析】用长方形的面积减去四周四个小正方形的面积列式即可.【详解】∵长方形的面积为ab ,4个小正方形的面积为4x 2,∴剩余部分的面积为:ab-4x 2,故选D.【点睛】本题考查了列代数式,根据题意用字母表示长长方形和正方形的面积是解题关键. 6.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D A解析:A【分析】 设运动x 秒后,乌龟和兔子第2020次相遇,根据路程=速度×时间,即可得出关于x 的一元一次方程,解之即可得出x 的值,将其代入2x 中可求出乌龟运动的路程,再结合正方形的周长,即可得出乌龟和兔子第2020次相遇点.【详解】解:设运动x 秒后,乌龟和兔子第2020次相遇,依题意,得:2x +6x =2×4×2020,解得:x =2020,∴2x =4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A .故选:A .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 7.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ D 解析:D【分析】方程两边每一项都乘以6即可得.【详解】方程两边都乘以6,得:2(2x-1)=6-3(5x+2),故选D.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.8.若4a﹣9与3a﹣5互为相反数,则a2﹣2a+1的值为()A.1 B.﹣1 C.2 D.0A解析:A【解析】试题分析:∵4a-9与3a-5互为相反数,∴4a-9+3a-5=0,解得:a=2,∴=1,故选A.考点:1.解一元一次方程;2.相反数;3.代数式求值.9.若正方形的边长增加3cm,它的面积就增加39cm,则正方形的边长原来是()A.8cm B.6cm C.5cm D.10cm C解析:C【解析】试题分析:原来正方形的边长为x,则=39,解得:x=5.考点:一元一次方程的应用10.下列方程中,其解为﹣1的方程是()A.2y=﹣1+y B.3﹣y=2 C.x﹣4=3 D.﹣2x﹣2=4A解析:A【分析】分别求出各项中方程的解,即可作出判断.【详解】解:A、方程2y=-1+y,移项合并得:y=-1,符合题意;B、方程3-y=2,解得:y=1,不合题意;C、方程x-4=3,移项合并得:x=7,不合题意;D、方程-2x-2=4,移项合并得:-2x=6,解得:x=-3,不合题意,故选A.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8 B.﹣8 C.6 D.﹣6D解析:D【详解】因为xΔy=xy+x+y,且2Δm=-16,所以2m+2+m=-16,解得m=- 6,故选D.考点:1.新定义题2.一元一次方程.12.若代数式x+2的值为1,则x等于( )A.1 B.-1 C.3 D.-3B解析:B【分析】列方程求解.【详解】解:由题意可知x+2=1,解得x=-1,故选B.【点睛】本题考查解一元一次方程,题目简单.13.某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水()m3.A.38 B.34 C.28 D.44C解析:C【解析】试题设小明家5月份用水xm3,当用水量为20m3时,应交水费为20×2=40(元).∵40<64,∴x>20.根据题意得:40+(2+1)(x-20)=64,解得:x=28.故选C.14.下列判断错误的是()A.若a=b,则a−3=b−3B.若a=b,则7a−1=7b−1C.若a=b,则ac2+1=bc2+1D.若ac2=bc2,则a=b D解析:D 【解析】【分析】根据等式的基本性质分别对每一项进行分析,即可得出答案.【详解】A. 若a=b ,则a−3=b−3,正确;B. 若a=b ,则7a−1=7b−1,正确;C. 若a=b ,则a c 2+1=bc 2+1,正确; D. 当c=0时,若ac 2=bc 2,a 就不一定等于b ,故本选项错误;故选D.【点睛】此题考查等式的性质,解题关键在于掌握其性质定义.15.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .62B 解析:B【分析】首先设个位上的数为x ,则十位数字为()31x +,根据题意可得等量关系:十位上的数与个位上的数的和=9,列出方程,再解方程即可.【详解】设个位上的数为x ,则十位数字为()31x +,由题意得:x +(3x +1)=9,解得:x =2,十位数字为:6+1=7,这个两位数是:72.故选:B.【点睛】考查一元一次方程的应用,读懂题目,找出题目中的等量关系是解题的关键.16.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A .()182812x x -=B .()1828212x x -=⨯C .()181412x x -=D .()2182812x x ⨯-= B 解析:B【分析】若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x 张硬纸板制作盒身,则(28-x )张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.17.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元C解析:C【详解】解:设该商品的进价为x元/件,依题意得:(x+20)÷510=200,解得:x=80.∴该商品的进价为80元/件.故选C.18.下列方程变形一定正确的是()A.由x+3=-1,得x=-1+3 B.由7x=-2,得x=-7 4C.由12x=0,得x=2 D.由2=x-1,得x=1+2D解析:D【分析】根据等式的性质,可得答案.【详解】解:由x+3=-1,得x=-1-3,所以A选项错误;由7x=-2,得x=-27,所以B选项错误;由12x=0,得x=0,所以C选项错误;由2=x-1,得x=1+2,所以D选项正确.故选D.【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.19.把方程10.58160.60.9x x-++=的分母化为整数,结果应为()A.1581669x x-++=B.10105801669x x-++=C.101058016069x x-+-=D.15816069x x-++= B解析:B【分析】利用分数的基本性质,化简已知方程得到结果,即可做出判断.【详解】 把方程10.58160.60.9x x -++=的分母化为整数,结果应为: 10105801669x x -++=. 故选:B .【点睛】此题考查了解一元一次方程,其全部步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.20.下列各题正确的是( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+- C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x = D解析:D【分析】根据解一元一次方程的步骤计算,并判断.【详解】A 、由743x x =-移项得743x x -=-,故错误;B 、由213132x x --=+去分母得()()221633x x -=+-,故错误; C 、由()()221331x x ---=去括号得42391x x --+=,故错误;D 、由()217x x +=+去括号得:227x x +=+,移项、合并同类项得5x =,故正确.故选:D .【点睛】本题主要考查了一元一次方程的解法,注意移项要变号,但没移的不变;去分母时,常数项也要乘以分母的最小公倍数;去括号时,括号前是“-”号的,括号里各项都要变号. 21.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A .120元B .125元C .135元D .140元B解析:B【分析】设每件的成本价为x 元,列方程求解即可.【详解】设每件的成本价为x元,0.8(140%)15x x⨯+=+,解得x=125,故选:B.【点睛】此题考查一元一次方程的实际应用—销售问题,正确理解题意是列方程解决问题的关键. 22.甲乙两人骑摩托车从相距170千米的A,B两地相向而行,2小时相遇,如果甲比乙每小时多行5千米,则乙每小时行()A.30千米B.40千米C.50千米D.45千米B解析:B【解析】【分析】相向而行,2小时相遇,那么相应的等量关系为:甲2小时走的路程+乙2小时走的路程=170,把相关数值代入即可求解.【详解】解:乙每小时行x千米,甲每小时走(x+5)千米,则2x+2(x+5)=170,解得x=40,选B.【点睛】本题主要考查用一元一次方程解决行程问题中的相遇问题;得到甲乙行程和的等量关系是解决本题的关键.23.下列变形中,正确的是()A.2x+6=0变形为2x=6B.x+32=2+x变形为x+3=4+2xC.−2(x−4)=2变形为x−4=1D.−x+12=12变形为−x+1=1B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, x+32=2+x两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, −2(x−4)=2两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, −x+12=12两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.24.如图所示,两人沿着边长为90 m的正方形,按A→B→C→D→A…的方向行走,甲从A 点以65 m/min的速度、乙从B点以75 m/min的速度行走,当乙第一次追上甲时,将在正方形的()边上.A.BC B.DCC.AD D.AB C解析:C【分析】设乙x分钟后追上甲,根据乙追上甲时,比甲多走了270米,可得出方程,求出时间后,计算乙所走的路程,继而可判断在哪一条边上相遇.【详解】设乙x分钟后追上甲,由题意得,75x−65x=270,解得:x=27,而75×27=5×360+212×90,即乙第一次追上甲是在AD边上.故选C.【点睛】本题考查了一元一次方程的应用,完成本题要注意通过所行路程及正方形的周长正确判断追上时在正方形的那条边上.25.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A.①②③B.①③C.①②D.②③B解析:B【分析】根据等式的性质,可得答案.【详解】因为最左边天平是平衡的,所以2个球的重量=4个圆柱的重量;①中一个球的重量=两个圆柱的重量,根据等式的性质,此选项正确;②中,一个球的重量=1个圆柱的重量,错误;③中,2个球的重量=4个圆柱的重量,正确;故选B .【点睛】本题的实质是考查等式的性质,先根据①判断出2个球的重量=4个圆柱的重量,再据此解答.26.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+= C .360020160240x x +-= D .360020160240x x --= A 解析:A【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可.【详解】设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A .【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.27.小丽买了20支铅笔,店主给她8折优惠(即按标价的80%出售),结果共便宜了1.6元,则每支铅笔的标价是( )A .0.20元B .0.40元C .0.60元D .0.80元B解析:B【分析】设未知数,根据题意中的等量关系列出方程,然后求解.【详解】解:设每支铅笔的标价是x 元,根据题意得:20×(1-80%)x=1.6解得x=0.4故选:B .【点睛】本题考查一元一次方程的实际应用,此题要注意联系生活,知道八折就是标价的80%. 28.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km 其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①②B 解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 29.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=18B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x 元,那么练习本的单价为(x ﹣2)元,则6(x ﹣2)+4x =18, 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.30.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是().A.95元B.90元C.85元D.80元B解析:B【解析】解:设商品的进价为x元,则:x(1+20%)=120×0.9,解得:x =90.故选B.点睛:本题考查了一元一次方程的实际应用,解决本题的关键是根据题目给出的条件,找出合适的等量关系,列出方程,再求解.亦可根据利润=售价一进价列方程求解.。
初一数学一元一次方程易错题解析

第三章《一元一次方程》易错题一、解方程易错题:易错范例分析:例1.(1)下列结论中正确的是( )A.在等式3a-6=3b+5的两边都除以3,可得等式a-2=b+5B.在等式7x=5x+3的两边都减去x-3,可以得等式6x-3=4x+6C.在等式-5=0.1x的两边都除以0.1,可以得等式x=0.5D.如果-2=x,那么x=-2(2)解方程,下列变形较简便的是( )A.方程两边都乘以20,得4(5x-120)=140B.方程两边都除以,得C.去括号,得x-24=7D.方程整理,得例2.(1)若式子3nx m+2y4和-mx5y n-1能够合并成一项,试求m+n的值。
(2)下列合并错误的个数是( )①5x6+8x6=13x12②3a+2b=5ab③8y2-3y2=5④6a n b2n-6a2n b n=0(A)1个(B)2个(C)3个(D)4个例3.解下列方程(1)(2)(3)易错点关注:两边同乘兼约分去括号,有同学跳步急赶忘了,4(2x-1)化为8x-1,分配需逐项分配,-3(5x+1)化为-15x+3忘了去括号变号;两边同乘,每项均乘到,去括号注意变号;(4)2(4x-1.5)-5(5x-0.8)=10(1.2-x)8x-3-25x+4=12-10x-7x=11评述:此题首先需面对分母中的小数,有同学会忘了小数运算的细则,不能发现,而是两边同乘以0.5×0.2进行去分母变形,更有思维跳跃的同学认为0.5×0.2=1,两边同乘以1,将方程变形为:0.2(4x-1.5)-0.5(5x-0.8)=10(1.2-x)二、行程问题(一)本课重点,请你理一理1.基本关系式:_________________ __________________ ;2.基本类型:相遇问题; 相距问题; ____________ ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=_________________________逆水(风)速度=_________________________(二)易错题,请你想一想1.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分乙的速度是甲速度的3/2倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢?思路点拨:此题是关于行程问题中的同向而行类型。
《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项经典题(含解析)(1)

一、解答题1.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.解析:(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B 所对应的数为﹣12,点A 所对应的数为﹣20,∴m =﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.2.已知方程3210x a +-=的解与方程20x a -=的解互为相反数,求a 的值. 解析:14a =- 【分析】先分别求出两个方程的解,再根据解互为相反数列方程计算即可.【详解】3210x a +-=,解得123a x -=; 20x a -=,解得2x a =. 由题意得,12203a a -+=, 解得14a =-. 【点睛】本题考查一元一次方程的解法,解题的关键是根据两个方程的解互为相反数列方程求解. 3.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?解析:10个家长,5个学生【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可.【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生,根据题意得:100x +100×0.8(15﹣x )=1400,解得:x =10,15﹣x =5,答:小明他们一共去了10个家长,5个学生.【点睛】本题考查了一元一次方程的应用.4.利用等式的性质解下列方程:(1)x -2=5;(2)-23x =6; (3)3x =x +6.解析:(1)x =7;(2)x =-9;(3)x =3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解; (3)两边同时减x ,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x -2+2=5+2,即x =7.(2)等式两边乘-32,得x =6×(-32), 即x =-9.(3)等式两边减x ,得2x =6.两边除以2,得x =3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立. 5.解下列方程(1)5m-8m-m=3-11;(2)3x+3=2x+7解析:(1)m=2;(2)x=4【分析】(1)先合并同类项,再化系数为1解一元一次方程即可;(2)先移项,再合并同类项解一元一次方程即可.【详解】(1)合并同类项,得 :﹣4m=﹣8,系数化为1,得: m=2,(2)移项,得:3x ﹣2x=7﹣3,合并同类项,得: x=4.【点睛】本题考查解一元一次方程,熟练掌握一元一次方程的解法及步骤是解答的关键. 6.已知16y x =-,227y x =+,解析下列问题:(1)当122y y =时,求x 的值;(2)当x 取何值时,1y 比2y 小3-.解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解.【详解】(1)由题意得:62(27)x x -=+ 解得215x = 215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x 18x ∴=. 【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.王叔叔十月份的工资为8000元,超过5000元的部分需要交3%的个人所得税。
部编数学七年级上册易错10解一元一次方程(解析版)【突破易错·冲刺满分】含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!【突破易错·冲刺满分】2021-2022学年七年级数学上册期末突破易错挑战满分(人教版)易错10 解一元一次方程【易错1例题】移项合并同类型解一元一次方程1-1.(2021·全国·七年级课时练习)下列变形中,属于移项的是()A .由32x =-,得23x =-B .由32x =,得6x =C .由570x -=,得57x =D .由520x -+=,得250x -=【答案】C【分析】利用等式的基本性质,以及移项法则判断即可.【详解】解:A 、由3x =-2,得23x =-,不合题意;B 、由32x =,得x =6,不合题意;C 、由5x -7=0,得5x =7,符合题意;D 、由520x -+=,得250x -=,不合题意,故选:C .【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.1-2.(2021·江苏·七年级专题练习)解方程:(1)310415x x +=+ ;(2)3441x x -=+【答案】(1)5x =-;(2)5x =-【分析】(1)先移项,再合并同类项,最后未知数系数化为1,即可得;(2)先移项,再系数化为1,即可得.【详解】解:(1)310415x x +=+移项,得341510x x -=+-合并同类项,得5x -=系数化为1,得5x =-所以,方程的解为5x =-;(2)3441x x -=+移项,得5x -=系数化为1,得5x =-所以,方程的解为5x =-.【点睛】本题考查了解一元一次方程,解题的关键是掌握解一元一次方程的步骤.【易错2例题】去括号去分母解一元一次方程2-1.(2021·江苏·七年级专题练习)在解方程123123x x -+-=时,去分母正确的是()A .()()312231x x --+=B .()()312231x x -++=C .()()312236x x -++=D .()()312236x x --+=【答案】D【分析】方程左右两边乘以6去分母得到结果,即可作出判断.【详解】解:123123x x -+-=,方程左右两边乘以6得,()()312236x x --+=;故选:D .【点睛】此题考查了解一元一次方程,熟练掌握去分母的方法是解本题的关键.2-2.(2021·重庆市第十一中学校七年级月考)解方程:(1)3312x x -=+; (2)121224x x+--=+【答案】(1)8x =- ;(2)4x =【分析】先去分母,再移项,合并同类项,最后系数化为1,即可求解.【详解】解:(1)3312x x -=+方程两边同时乘以2,得:2632x x -=+,移项,得:2326x x -=+ ,合并同类项,得:8x -= ,系数化为1,得:8x =- ;(2)121224x x +--=+方程两边同时乘以4,得:22482x x +-=+- ,移项,得:28224x x +=+-+ ,合并同类项,得:312x = ,系数化为1,得:4x = .【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.【专题训练】一、选择题1.(2021·黑龙江·绥棱县克音河乡学校七年级期中)方程261x x -=-的解是( ).A .5B .52-C .5±D .53【答案】A【分析】根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解.【详解】解:261x x -=-,移项得,261x x -=-,合并同类项得,5x =,故选:A .【点睛】本题考查了解一元一次方程,比较简单,注意移项要变号.2.(2021·河北献县·七年级期末)在解方程123123x x -+-=时,去分母正确的是()A .3(1)2(23)1x x --+=B .3(1)2(23)1x x -++=C .3(1)2(23)6x x --+=D .3(1)2(23)6x x --+=【答案】D【分析】根据方程两边都乘以分母的最小公倍数6即可选择答案.【详解】解:123123x x -+-=方程两边都乘以分母的最小公倍数6,得3(1)2(23)6x x --+=,故选D .【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.3.(2021·全国·七年级课时练习)下列移项正确的有( )(1)125x -=-,移项,得125x -=;(2)73132x x -+=--,移项,得13732x x -=--;(3)2334x x +=+,移项,得2433x x -=-;(4)57211x x --=-,移项,得11725x x -=-.A .1个B .2个C .3个D .4个【答案】B【分析】根据移项法则进行判断即可.【详解】解:(1)125x -=-,移项,得125x +=,故(1)错误;(2)73132x x -+=--,移项,得13732x x -=--,故(2)正确;(3)2334x x +=+,移项,得2433x x -=-,故(3)正确;(4)57211x x --=-,移项,得11725x x -=+,故(4)错误.故选:B .【点睛】本题主要考查的是解一元一次方程,熟练掌握移项要变号的法则是解题的关键.4.(2021·黑龙江·哈尔滨市第四十七中学七年级月考)下列方程变形中,正确的是( )A .方程3x ﹣2=2x +1,移项,得3x ﹣2x =﹣1+2B .方程3﹣x =2﹣5(x ﹣1),去括号,得3﹣x =2﹣5x ﹣1C .方程23x =32,未知数系数化为1,得x =1D .方程10.2x -﹣0.5x=1化成3x =6【答案】D【分析】按解方程的一般步骤,逐个计算确定变形正确的选择.【详解】解:方程3x−2=2x+1,移项,得3x−2x=1+2,故选项A错误;方程3−x=2−5(x−1),去括号,得3−x=2−5x+5,故选项B错误;方程23x=32,未知数系数化为1,得x=94,故选项C错误;利用分数的基本性质,10.2x-﹣0.5x=1化成5x−5−2x=1,即:3x=6,故选项D正确.故选:D.【点睛】本题考查了一元一次方程的解法,掌握解一元一次方程的一般步骤并能灵活运用是解决本题的关键.二、填空题5.(2021·江苏苏州·七年级月考)已知3a - 4与-5互为相反数,则a的值为______.【答案】3【分析】根据相反数的性质互为相反数的和为0列方程求解即可.【详解】解:由题意,得3a – 4+(-5)=0,解得a=3,故答案为:3.【点睛】本题考查了一元一次方程,相反数的性质,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆,互为相反数的两个数的和为0是解题关键.6.(2021·全国·七年级课时练习)方程213132x x--=+的分母的最小公倍数为_______.【答案】6【分析】根据方程中的两个分母即可得分母的最小公倍数.【详解】方程中两个分母分别为2与3,其最小公倍数为6,故方程213132x x--=+的分母的最小公倍数为6.故答案为:6.【点睛】本题考查了解含有分母的一元一次方程中的第一步去分母−找最小公倍数,要注意的是最好找各分母的最小公倍数.7.(2021·辽宁抚顺·七年级期末)新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为___.【答案】2【分析】根据题意,可得:2x+2﹣x=2x+x﹣2,据此求出x的值为多少即可.【详解】解:∵a☆b=ab+a﹣b,2☆x=x☆2,∴2x+2﹣x=2x+x﹣2,整理,可得:2x=4,解得x=2.故答案为:2.【点评】此题主要考查了新定义下的运算,以及解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.8.(2021·吉林公主岭·七年级期末)阅读框图,在四个步骤中,不是依据等式性质变形的是________(填序号即可).【答案】③【分析】等式两边乘同一个数或除以一个不为零的数,结果仍得等式,依据性质2进行判断即可.【详解】解:①去分母时,在方程两边同时乘上10,依据为:等式的性质2;②移项时,等式两边同时减去2x,依据为:等式的性质1;③合并同类项时,依据是合并同类项法则;不是等式性质;④系数化为1时,在等式两边同时除以3,依据为:等式的性质2;故答案为:③.【点睛】本题主要考查了等式的基本性质,等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式.三、解答题9.(2021·黑龙江·绥棱县克音河乡学校七年级期中)解方程(1)(2x -3)=4(x +1);(2)-16136x x x +-=-【答案】(1)72x =-;(2)2x =.【分析】(1)先去括号,再移项,合并同类项,最后化系数为1即可;(2)先去分母,再去括号,移项、合并同类项,最后化系数为1.【详解】解:(1)(2x -3)=4(x +1)2x -3=4x +42x -4x =4+3-2x =772x \=-;(2)-16136x x x +-=-去分母得,62(1)6(6)x x x --=-+去括号得,62+266x x x -=--移项得,26626x x x --+=---合并同类项得,714x -=-化系数为1得,2x =.【点睛】本题考查解一元一次方程,涉及去分母、去括号、移项,合并同类项、化系数为1等知识,是重要考点,掌握相关知识是解题关键.10.(2021·浙江平阳·七年级期中)解方程:(1)5x+4=3(x﹣4);(2)2 213xx--=.【答案】(1)x=﹣8;(2)15 x=【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【详解】解:(1)5x+4=3(x﹣4),去括号,得5x+4=3x﹣12,移项,得5x﹣3x=﹣12﹣4,合并同类项,得2x=﹣16,系数化成1,得x=﹣8;(2)2 213xx--=,去分母,得3(2x﹣1)=x﹣2,去括号,得6x﹣3=x﹣2,移项,得6x﹣x=3-2,合并同类项,得5x=1,系数化成1,得x=15.【点睛】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键,解一元一次方程的步骤是:去分母,去括号,移项,合并同类项,系数化成1.11.(2021·黑龙江·哈尔滨市第四十七中学七年级期中)(1)3a+7=32﹣2a;(2)1﹣738x+=3104x-.【答案】(1)a=5;(2)x=7 3【分析】(1)先移项,再合并同类项,最后化系数为1;(2)先去分母,再去括号,然后移项,合并同类项,最后化系数为1;【详解】(1)37322a a+=-移项得,32327a a +=-合并同类项得,525a =化系数为1,得5a =(2)1﹣738x +=3104x -去分母得,8(73)2(310)x x -+=-去括号得,873620x x --=-移项得,362087x x --=--+合并同类项,得921x -=-化系数为1,得73x =【点睛】本题考查了解一元一次方程,正确的计算是解题的关键.12.(2021·全国·七年级课时练习)解下列方程:(1)98x -=;(2)516y -=-;(3)3413x +=-; (4)2153x -=.【答案】(1)17x =;(2)21y =;(3)173x =-;(4)9x =.【分析】(1)直接根据等式的性质,等号两边同时加9即可;(2)等号两边同时减去5,然后等号两边同时除以1-即可;(3)等号两边同时减去4,然后等号两边同时除以3即可;(4)等号两边同时加上1,然后等号两边同时除以23即可.【详解】解:(1)98x -=,等号两边同时加9得:9989x -+=+,解得:17x =;(2)516y -=-,等号两边同时减去5得:55165y --=--,等号两边同时除以1-:21y =;(3)3413x +=-,等号两边同时减去4得:317x =-,然后等号两边同时除以3得:173x =-;(4)2153x -=,等号两边同时加上1得:263x =,然后等号两边同时除以23得:9x =.【点睛】本题考查了解一元一次方程,熟知等式的基本性质是解本题的关键.13.(2020·山东青岛·七年级单元测试)解方程:(1)2(x ﹣2)﹣3(4x ﹣1)=5(1﹣x );(2)214x +﹣1=x ﹣10112x +;(3)1﹣7331084x x x +-=-.【答案】(1)x =﹣1.2;(2)x =2;(3)x =21【分析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.【详解】解:(1)去括号得:2x ﹣4﹣12x +3=5﹣5x ,移项得:2x ﹣12x +5x =5+4﹣3,合并同类项得:﹣5x =6,系数化为1得:x =﹣1.2;(2)去分母得:3(2x +1)﹣12=12x ﹣(10x +1),去括号得:6x +3﹣12=12x ﹣10x ﹣1,移项得:6x ﹣12x +10x =﹣1﹣3+12,合并同类项得:4x =8,系数化为1得:x =2;(3)去分母得:8﹣(7+3x )=2(3x ﹣10)﹣8x ,去括号得:8﹣7﹣3x =6x ﹣20﹣8x ,移项得:﹣3x ﹣6x +8x =﹣20﹣8+7,合并同类项得:﹣x =﹣21,系数化为1得:x =21.【点睛】此题考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解决本题的关键.14.(2021·全国·七年级课时练习)解下列方程:(1)423x x -=-; (2)7224x x -+=-;(3)215x x -=-+; (4)12233x x -=-+.【答案】(1)1x =;(2)23x =;(3)53x =-;(4)1x =【分析】根据解一元一次方程的基本步骤“去分母,去括号,移项,合并同类项,系数化为1”逐个求解即可.【详解】解:(1)移项,得432x x +=+,合并同类项,得55=x ,系数化为1,得1x =;(2)移项,得7242x x --=--,合并同类项,得96x -=-,系数化为1,得23x =;(3)移项,得215x x -+=,合并同类项,得315x -=,系数化为1,得53x =-;(4)移项,得112233x x +=+,合并同类项,得7733x =,系数化为1,得1x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解决本题的关键.15.(2021·全国·七年级课时练习)解下列方程:(1)4118332x x -=-; (2)0.50.7 6.5 1.3x x -=-;(3)12(36)365x x -=-; (4)1231337x x -+=-.【答案】(1)23x =-;(2)4x =;(3)20x =-;(4)6723x =.【分析】(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(2)方程移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:(1)去分母得:8481833x x -=-,移项合并得:1510x =-,解得:23x =-;(2)移项合并得:1.87.2x =,解得:4x =;(3)去分母得:5(36)1290x x -=-,去括号得:15301290x x -=-,移项合并得:360x =-,解得:20x =-;(4)去分母得:7149363-=+-x x ,移项合并得:2367x =,解得:6723x =.【点睛】本题考查了解一元一次方程,解题的关键是熟练掌握解方程的基本步骤.16.(2021·四川·绵阳中学育才学校七年级月考)对于有理数x 、y 规定一种新运算:x ※y =ax +y .其中a 为常数,等式右边是乘法和加法运算,已知2※3=11.(1)求常数a 的值.(2)求(﹣34)※2的值.【答案】(1)4a =;(2)-1.【分析】(1)根据新运算将2※3=11转化为关于a 的等式,解出a 即可.(2)根据(1)所求a 的值和新定义下的运算将(234-※转化为一般运算即可解答.【详解】(1)根据新运算和2※3=11,得:2311a +=解得:4a =.(2)根据(1)可知x ※y =4x +y ,所以33242144æöæö-=´-+=-ç÷ç÷èøèø※.【点睛】本题考查新定义下的计算.理解题意,正确运用x y ax y =+※是解答本题的关键.17.(2021·江苏·靖江市实验学校七年级月考)现定义运算“*”,对于任意有理数a ,b ,满足2()*2()a b a b a b a b a b -³ì=í-<î.如1135*32537,*121222=´-==-´=-.(1)计算:(2* 3)-(4* 3);(2)若x *3=5,求有理数x 的值.【答案】(1)9-;(2)4x =【分析】(1)因为2<3,4>3,所以根据题意进行解答即可得;(2)分情况讨论,①当x <3时,235x -´=,解得11x =,因为11>3,这与x <3矛盾,所以11x =舍去;②当3x ³时,235x -=,解得4x =,因为4>3,所以符合3x ³,综上,即可得4x =.【详解】解:(1)∵2<3,4>3,∴根据题意,原式=(223)(243)-´-´-=(26)(83)---=45--=9-;(2)①当x<3时,235x-´=,65x-=,解得11x=,∵11>3,这与x<3矛盾∴11x=舍去;②当3x³时,235x-=,28x=,解得4x=∵4>3,∴符合3x³;综上,4x=.【点睛】本题考查了新定义下运算,解题的关键是掌握题中的运算规则.18.(2021·重庆八中七年级月考)形如a cb d的式子叫做二阶行列式,其运算法则用公式表示为a cad bcb d=﹣.依此法则计算:(1)计算27(3)122---的值.(2)若1327422x--=1,求x的值.【答案】(1)14.5;(2)17x=【分析】(1)根据a bad bcc d=-计算27(3)122---即可;(2)根据1327422x--=1可得13(2)()42127x´---´=,再解方程即可.【详解】解:(1)∵a bad bcc d=-,∴227(3)17()(3)(2) 1222-=´---´---)792(2--´=-7182=-+ 14.5=;(2)∵1327422x--=1,∴13(2)()421 27x´---´=,整理得:181x-+=,解得17x=.【点睛】此题主要考查了有理数的混合运算以及解一元一次方程,熟练掌握运算法则是解本题的关键.。
七年级数学上册 3.4 实际问题与一元一次方程 一元一次方程易错点例析素材 (新版)新人教版

易错点例析1、错于移项例 1 解方程 4x - 2 =3 - x .错解:移项,得 4x - x = 3 - 2.合并同类项,得3x = 1.方程两边同除以3,得x =31. 分析:方程中的某一项从方程的一边移到另一边,应改变符号,而上述并没有改变符号. 正解:移项,得4x + x = 3 +2.合并同类项,得5x =5.方程两边同除以5,得x =1.2、错于去分母〔1〕去分母时漏乘不含分母的项例 2 解方程312-x =42+x - 1 . 错解:去分母,得 4〔2x - 1〕= 3〔x + 2〕- 1 .去括号,得8x – 8 = 3x + 6 – 1.移项、合并同类项,得5x = 13.方程两边同除以5,得x =513. 分析:去分母时,方程两边都乘各分母的最小公倍数,而上述解法漏乘了方程右边不含分母的项“1〞.正解:去分母,得 4〔2x - 1〕〕= 3〔x + 2〕-12.去括号,得8x – 8 = 3x + 6 – 12.移项、合并同类项,得5x = 2.方程两边同除以5,得x =52. 〔2〕去分母时漏添括号例 3 解方程 312+x -615-x = 1 . 错解:去分母,得 4x + 2 - 5x - 1 = 6 .移项、合并同类项,得x = -5.分析:上述错误是无视了分数线的双重功能,即分数线不仅具有“除号〞作用,而且还具有“括号〞作用. 因此去分母时,不要忘记给分子加上括号,特别是最小公倍数与分母相等时更要注意.正解:去分母,得2〔x + 1〕 -〔5x - 1〕= 6 .去括号,得2x + 2 – 5x + 1 = 6.移项、合并同类项,得-3x = 3.方程两边同除以-3,得x =1.3、错于去括号例 4 解方程 11x + 1=5〔2x + 1〕.错解:去括号,得11x + 1= 10x + 1.移项、合并同类项,得x = 0.分析:运用乘法分配律去括号时,用括号外面的数去乘括号内的每一项,再把积相加. 上述解法只乘了括号内的第一项.正解:去括号,得11x + 1= 10x + 5.移项、合并同类项,得x = 4.4、错于把未知数的系数化为1例 5 解方程 2x + 5 = 10 - 8x .错解:移项,合并同类项,得 10x = 5 .系数化为1,得 x = 2 .分析:把方程10x = 5中x 的系数化为1时,两边都除以10即10为除数,应得x =21. 上述解法10作了被除数,故而错误.正解略.5、错于化小数为整数化分母的小数为整数时混用分数根本性质和等式根本性质 例 6 解方程2.01+x -4.013-x = 1 . 错解:原方程变形为:21010+x -41030-x = 10, 去分母,得2〔10x + 10〕-〔30x -10〕= 40.移项,合并同类项,得-10x =10.方程两边同除以-10,得 x = -1.分析:原方程为了把分母0.2和0.4化为整数,利用分数根本性质将2.01+x 和-4.013-x 两项的分子、分母同乘以10,并非利用等式根本性质,方程两边都乘以10,方程右边应为1而不是10.正解:原方程变形为:21010+x-41030-x= 1 . 去分母,得2〔10x + 10〕-〔30x -10〕= 4.移项,合并同类项,得-10x = -26.方程两边同除以-10,得 x =2.6.。
最新七年级数学上册一元一次方程易错题(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分∠BOC.①求t的值;②此时ON是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由.【答案】(1)解:①∵∠AON+∠BOM=90°,∠COM=∠MOB,∵∠AOC=30°,∴∠BOC=2∠COM=150°,∴∠COM=75°,∴∠CON=15°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,解得:t=15°÷3°=5秒;②是,理由如下:∵∠CON=15°,∠AON=15°,∴ON平分∠AOC(2)解:15秒时OC平分∠MON,理由如下:∵∠AON+∠BOM=90°,∠CON=∠COM,∵∠MON=90°,∴∠CON=∠COM=45°,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∵∠AOC﹣∠AON=45°,可得:6t﹣3t=15°,解得:t=5秒(3)解:OC平分∠MOB∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,∴∠COM为(90°﹣3t),∵∠BOM+∠AON=90°,可得:180°﹣(30°+6t)= (90°﹣3t),解得:t=23.3秒;如图:【解析】【分析】(1)①根据∠AON+∠BOM=90°,∠COM=∠MOB,及平角的定义∠BOC=2∠COM=150°,故∠COM=75°,根据角的和差得出∠CON=15°从而得到AON=∠AOC ﹣∠CON=30°﹣15°=15°,根据旋转的速度,就可以算出t的值了;②根据∠CON=15°,∠AON=15°,即可得出ON平分∠AOC ;(2)15秒时OC平分∠MON,理由如下:∠AON+∠BOM=90°,∠CON=∠COM,从而得出∠CON=∠COM=45°,又三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON为3t,∠AOC为30°+6t,根据∠AOC﹣∠AON=45°得出含t的方程,求解得出t的值;(3)根据∠AON+∠BOM=90°,∠BOC=∠COM,及三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,故设∠AON为3t,∠AOC为30°+6t,从而得到∠COM为(90°﹣3t),又∠BOM+∠AON=90°,从而得出含t的方程,就能解出t的值。
初一数学一元一次方程易错题解析
初一数学一元一次方程易错题解析一元一次方程是初中数学中的基础知识,在解题过程中容易犯错。
下面我将针对一元一次方程的易错题进行解析,希望能够帮助到你。
常见的易错题类型有以下几种:1.括号运算错误:在解一元一次方程时,有时会遇到括号运算的问题。
例如:(1)2(x+3)=4x+6这个题目中,容易犯错的地方是没有将括号中的数乘以2、正确的解法是将括号内的式子展开,得到2x+6=4x+6,最终得到x=0。
2.无解或无穷多解的情况:有些题目可能会给出无解或无穷多解的情况,容易漏掉或没有考虑到这种特殊情况。
例如:(1)2x+3=2x+5这个题目中,容易犯错的地方是将方程两边的2x抵消掉,导致方程变成了3=5,显然是不对的。
正确的解法是将方程两边的2x移项,得到3-5=0,由于左右两边相等,所以方程无解。
3.其中一步骤的运算错误:在解一元一次方程的过程中,有时会出现计算错误的情况,例如:(1)3x-5=2x+7这个题目中,容易犯错的地方是在移项时计算错误,导致最终结果不正确。
正确的解法是将等式两边的2x移项,得到3x-2x=7+5,化简得到x=124.式子的展开错误:有些题目需要将括号中的式子进行展开,容易出现展开错误的情况。
例如:(1)3(x+2)+4x=7x-5这个题目中,容易犯错的地方是在展开式子时计算错误,导致最终结果不正确。
正确的解法是将括号内的式子展开,得到3x+6+4x=7x-5,然后移项得到3x+4x-7x=-5-6,化简得到x=-11总结解题的一般步骤:(1)移项:将方程中的项移到等号的另一边;(2)合并同类项:将含有同一未知数的项合并,简化方程;(3)化简:将方程进行化简,将常数项合并;(4)解方程:通过展开式子、分配律等等方式解方程,找到未知数的值;(5)检验:将求得的解代入方程,验证等式是否成立。
在解题的过程中,我们要仔细观察题目给出的条件,确保在每一步操作时都准确无误。
同时,化简过程中要注意合并同类项、移项时运算的正确性,避免犯错。
《易错题》七年级数学上册第三单元《一元一次方程》-解答题专项(含解析)
一、解答题1.如图,在一条不完整的数轴上,一动点A 向左移动4个单位长度到达点B ,再向右移动7个单位长度到达点C .(1)若点A 表示的数为0,求点B 、点C 表示的数;(2)如果点A ,C 表示的数互为相反数,求点B 表示的数;(3)在(1)的条件之下,若小虫P 从点B 出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q 恰好从点C 出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的点D 相遇,点D 表示的数是多少?解析:(1)点B 表示的数为4-,点C 表示的数为3;(2)点B 表示的数为 5.5-;(3)1【分析】(1)根据数轴上两点间的距离公式,分别求出B 、C 表示的数.(2)根据相反数的定义求解即可.(3)根据题意列出方程求解即可.【详解】(1)若点A 表示的数为0,因为044-=-,所以点B 表示的数为4-.因为473-+=,所以点C 表示的数为3.(2)若点A ,C 表示的数互为相反数,因为743AC =-=,所以点A 表示的数为 1.5-.因为 1.54 5.5--=-,所以点B 表示的数为 5.5-.(3)设小虫P 与小虫Q 的运动时间为t .依题意得0.50.27t t +=,解得10t =,则点D 表示的数是0.51041⨯-=.【点睛】本题考查了数轴的综合问题,掌握数轴两点的距离公式、相反数的性质、解一元一次方程的方法是解题的关键.2.10.3x -﹣20.5x + =1.2. 解析:4【解析】 试题分析:先将分母化成整数后,再去分母,去括号,移项,系数为1的步骤解方程即可; 试题12 1.20.30.5x x -+-=10103x --10205x +=6550x-50-30x-60=1820 x=128x=6.4 3.一批皮鞋,按成本加5成作为售价,后因季节性原因,按原售价的七五折降低价格出售,降价后的新售价是每双63元,问这批皮鞋每双的成本价是多少元按降价后的新售价每双还可赚多少元?解析:成本价是56元,按降价后的新售价每双还可赚7元.【分析】若设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元,根据降价后的新售价是每双63元即可得方程0.75(1+50%)x=63,解方程求得x 的值,根据盈利=售价-进价即可求得答案.【详解】设成本价为x 元,则成本加5成后的售价为(1+50%)x 元,再按七五折后的售价为0.75(1+50%)x 元.根据题意得:0.75(1+50%)x=63,解得:x=56,所以成本价是56元,按降价后的新售价每双还可赚7元.【点睛】本题考查了一元一次方程的应用,解决问题时弄清加五成和七五折这些概念. 4.解下列方程:(1)15(x +15)=1231-(x -7). (2)2110121364x x x -++-=-1. 解析:(1)x =-516;(2)x =16. 【分析】(1)直接根据解一元一次方程的步骤进行即可;(2)直接根据解一元一次方程的步骤进行即可.【详解】解:(1)15(x +15)=1231-(x -7). 去分母,得6(x +15)=15-10(x -7).去括号,得6x +90=15-10x +70.移项及合并同类项,得16x =-5. 系数化为1,得x =-516.(2)2110121 364x x x-++-=-1去分母,得4(2x-1)-2(10x+1)=3(2x+1)-12.去括号,得8x-4-20x-2=6x+3-12.移项,得8x-20x-6x=3-12+4+2.合并同类项,得-18x=-3.系数化为1,得x=16.【点睛】此题主要考查解一元一次方程,熟练掌握解一元一次方程的步骤是解题关键.5.利用等式的性质解下列方程:(1)x-2=5;(2)-23x=6;(3)3x=x+6.解析:(1)x=7;(2)x=-9;(3)x=3【分析】(1)两边同时加上2即可求解;(2)两边同时乘-32即可求解;(3)两边同时减x,然后同时除以2即可求解.【详解】解:(1)等式两边加2,得x-2+2=5+2,即x=7.(2)等式两边乘-32,得x=6×(-32),即x=-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.6.全班同学去划船,如果减少一条船,每条船正好坐9个同学,如果增加一条船,每条船正好坐6个同学,问原有多少条船?解析:原有5条船.【分析】首先设原有x条船,根据“减少一条船,那么每条船正好坐9名同学;增加一条船,那么每条船正好坐6名同学”得出等式方程,求出即可.【详解】设原有x条船,如果减少一条船,即(x-1)条,则共坐9(x-1)人.如果增加一条船,则共坐6(x+1)人,根据题意,得9(x-1)=6(x+1).去括号,得9x-9=6x+6.移项,得9x-6x=6+9.合并同类项,得3x=15.系数化为1,得x=5.答:原有5条船.【点睛】此题主要考查了一元一次方程的应用,根据题意利用全班人数列出等量关系式是完成本题的关键.7.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25 x,得35x-8+25x=-25x+1+25x.化简,得x-8=1.两边加8,得x-8+8=1+8.所以x=9.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.8.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】 ①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=138. 【点睛】 此题考查解一元一次方程,解题关键在于掌握方程的解法.9.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a (如图2).(1)请用含a 的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a 表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a ,则a 的上一个数为a−18,下一个数为a +18,前一个数为a−2,后一个数为a +2;(2)设中间的数是a ,依题意有5a =2015,a =403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n =193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a =2020,a =404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.10.一种商品每件成本a 元,按成本增加22%标价.(1)每件标价多少元?(2)由于库存积压,实际按标价的九折出售,每件是盈利还是亏损?盈利或亏损多少元? 解析:(1)1.22a ;(2)盈利0.098a【分析】(1)根据:标价=成本()122%⨯+,列出代数式,再进行整理即可;(2)根据:售价=标价0.9⨯,利润=售价-成本,列出代数式,即可得出答案.【详解】(1)∵每件成本a 元,原来按成本增加22%定出价格,∴每件售价为()122% 1.22a a +=(元);(2)现在售价:1.220.9 1.098a a ⨯=(元);每件还能盈利:1.0980.098a a a -=(元);∴实际按标价的九折出售,盈利0.098a (元)【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到等量关系,注意把列出的式子进行整理.11.列方程解应用题:为参加学校运动会,七年级一班和七年级二班准备购买运动服. 下面是某服装厂给出的运动服价格表:已知两班共有学生67人(每班学生人数都不超过60人),如果两班单独购买服装,每人只买一套,那么一共应付3650元. 问七年级一班和七年级二班各有学生多少人?解析:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【分析】首先根据题中表格数据得出有一个班的人数大于35人,接着设大于35人的班有学生x 人,根据等量关系列出方程,求解即可.【详解】解:∵67604020⨯=40203650>∴所以一定有一个班的人数大于35人.设大于35人的班有学生x人,则另一班有学生(67-x)人,依题意得5060(67)3650x x+-=6730x-=答:七年级一班有37人,七年级二班有30人;或者七年级一班有30人,七年级二班有37人.【点睛】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.12.为鼓励居民节约用电,某市试行每月阶梯电价收费制度,具体执行方案如下:档次每户每月用电量(度)执行电价(元/度)第一档小于或等于2000.5第二档大于200且小于或等于450时,超出200的部分0.7第三档大于450时,超出450的部分1(1)一户居民七月份用电300度,则需缴电费__________元.(2)某户居民五、六月份共用电500度,缴电费290元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于450度.①请判断该户居民五、六月份的用电量分别属于哪一个档次?并说明理由.②求该户居民五、六月份分别用电多少度?解析:(1) 170元;(2)①五月份用电量在第一档,六月份用电量在第二档. ②设五、六月份分别用电100度、400度.【分析】(1)根据阶梯电价收费制度,七月份用电300度属于第二档,所以应缴电费200×0.5+100×0.7=170(元);(2)①分情况进行讨论,从而确定五六月份的用电量分别位于哪一档;②由①的结论,设五月份用电x度,列方程求解即可.【详解】解:(1) ∵200<300小于450∴应缴电费:200×0.5+100×0.7=170(元)故答案为:170(2)①因为两个月的总用电量为500度,所以每个月用电量不可能都在第一档;假设该用户五、六月每月用电均超过200度,此时的电费共计200×0.5+200×0.5+100×0.7=270(元),而270<290,不符合题意;又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.②设五月份用电x 度,则六月份用电(500-x)度,根据题意,得0.5x+200×0.5+0.7×(500-x-200)=290解得x=100,500-x=400.答:该户居民五、六月份分别用电100度、400度.【点睛】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据收费标准列式计算;(2)分情况讨论用电量,列出关于x 的一元一次方程.13.如果,a b 为定值,关于x 的方程2236kx a x bk +-=+无论k 为何值时,它的根总是1,求,a b 的值. 解析:a=132,b=﹣4 【分析】 先把方程化简,然后把x =1代入化简后的方程,因为无论k 为何值时,它的根总是1,就可求出a 、b 的值.【详解】解:方程两边同时乘以6得:4kx +2a =12+x−bk ,(4k−1)x +2a +bk−12=0①,∵无论为k 何值时,它的根总是1,∴把x =1代入①,4k−1+2a +bk−12=0,则当k =0,k =1时,可得方程组:12120412120a a b --⎧⎨--⎩+=++=, 解得:a=132,b=﹣4 当a=132,b=﹣4时,无论为k 何值时,它的根总是1. ∴a=132,b=﹣4 【点睛】本题主要考查了一元一次方程的解,理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.本题利用方程的解求未知数a 、b .14.解方程:(1)3x ﹣4=2x +5;(2)253164x x --+=. 解析:(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 15.小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解:(小明提出问题)利用一元一次方程将0.7⋅化成分数.(小明的解答)解:设0.7⋅=x .方程两边都乘以10,可得100.7⋅⨯=10x .由0.7⋅=0.777…,可知100.7⋅⨯=7.777…=7+0.7⋅,即7+x =10x .(请你体会将方程两边都乘以10起到的作用)可解得x 79=,即0.779⋅=. (小明的问题)将0.4⋅写成分数形式.(小白的答案)49.(正确的!) 请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73⋅⋅;②0.432⋅.解析:①0.737399⋅⋅=,过程见解析;②0.433892900⋅=,过程见解析. 【分析】 ①设0. 73⋅⋅=m ,程两边都乘以100,转化为73+m=100m ,求出其解即可.②设0.432⋅=n ,程两边都乘以100,转化为43+0.2⋅=100n ,求出其解即可.【详解】解:①设0.73⋅⋅=m ,方程两边都乘以100,可得100×0.73⋅⋅=100m .由0.73⋅⋅=0.7373…,可知100×0.73⋅⋅=73.7373…=73+0.73⋅⋅;即73+m =100m ,可解得m 7399=,即0.737399⋅⋅=. ②设0.432⋅=n ,方程两边都乘以100,可得100×0.432⋅=100n .∴43.2⋅=100n .∵0.229⋅=,∴4329+=100n n 389900= ∴0.433892900⋅=. 【点睛】 本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.16.在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与爸爸的对话(如图),请根据图中的信息,解答下列问题:(1)他们共去了几个成人,几个学生?(2)请你帮他们算算,用哪种方式购票更省钱?解析:(1)他们一共去了8个成人,4个学生;(2)按团体票购票更省钱【分析】(1)本题有两个相等关系:学生人数+成人人数=12人,成人票价+学生票价=400元,据此设未知数列方程组求解即可;(2)计算出按照团体票购买需要的钱数,然后与400元作对比即得答案.【详解】解:(1)设去了x 个成人,y 个学生,依题意得,1240400.5400x y x y +=⎧⎨+⨯=⎩,解得84x y =⎧⎨=⎩, 答:他们一共去了8个成人,4个学生;(2)若按团体票购票,共需16×40×0.6=384(元),∵384<400,∴按团体票购票更省钱.【点睛】本题主要考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.17.阅读下列解题过程,指出它错在哪一步?为什么?2(1)13(1)1x x --=--. 两边同时加上1,得2(1)3(1)x x -=-.第一步两边同时除以(1)x -,得23=.第二步所以原方程无解.第三步解析:第二步出错,见解析【分析】根据等式的基本性质判断即可.【详解】解题过程在第二步出错理由如下:等式两边不能同时除以1x -,1x -可能为0.【点睛】此题考查了等式的性质,熟练掌握等式的性质是解本题的关键.利用等式的性质2进行化简时,一定要注意等式两边不能同时除以一个可能为0的式子,否则容易导致类似本题中出现的错解.18.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由;(2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗?解析:(1)王聪的说法不正确,见解析;(2)4x =【分析】(1)根据等式的性质进行判断即可.(2)利用代入法求解即可.【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 19.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积;方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可;【详解】解:(1)该户型商品房的面积为: 2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元; 按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元);方案二总金额为2280009500247000x +=(元).方案二比方案一优惠2500002470003000-=(元).所以方案二更优惠,优惠3000元.【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积.20.如表是中国电信两种“4G 套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收费,主叫超时和上网流量超出部分加收超时费和超流量费)(1)若小萱某月主叫通话时间为220分钟,上网流量为800MB ,则她按套餐1计费需________元,按套餐2计费需________元;若小花某月按套餐2计费需129元,主叫通话时间为240分钟,则上网流量为________MB .(2)若上网流量为540MB ,是否存在某主叫通话时间t (分),按套餐1和套餐2计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)若上网流量为540MB ,直接写出当主叫通话时间t (分)满足什么条件时,选择套餐1省钱;当主叫通话时间t (分)满足什么条件时,选择套餐2省钱.解析:(1)143,109,900;(2)若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【分析】(1)根据表中数据分别计算两种计费方式,第三空求上网流量时,可设上网流量为xMB ,列方程求解即可;(2)分0≤t <200时,当200≤t≤250时,当t >250时,三种情况分别计算讨论即可; (3)由(2)中结果直接得出.【详解】(1)143,109,900套餐1:490.2(220200)0.3(800500)+⨯-+⨯-490.2200.3300=+⨯+⨯49490=++143=(元).套餐2:690.2(800600)+⨯-690.2200=+⨯6940=+109=(元)设上网流量为x MB ,则690.2(600)129x +-=.解得900x =.故答案为:143;109;900.(2)存在.当0200t 时,490.3(540500)6169+-=≠,所以此时不存在这样的t ,按套餐1和套餐2计费相等;当200250t <时,490.2(200)0.3(540500)69t +-+-=.解得240t =;当250t >时,490.2(200)0.3(540500)690.15(250)t t +-+-=+-.解得210t =,不合题意,舍去.综上,若上网流量为540MB ,当主叫通话时间为240分钟时,按套餐1和套餐2计费相等;(3)由(2)可知,当240t <时,选择套餐1省钱;当240t >时,选择套餐2省钱.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 21.解方程:41(7)6(7)55x x -=--. 解析:13x =【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解;【详解】 解:移项,得41(7)(7)655x x -+-=. 将(7)x -看作一个整体,合并同类项,得76x -=.移项及合并同类项,得13x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.解方程:121(2050)(52)(463210)0x x x ++++=-. 解析:52x =- 【分析】方程去括号,移项合并,把x 系数化为1,即可求出解.【详解】 解:原方程可化为52(25)(25)(2335)0x x x ++-+=+.将(25)x +看作一个整体,合并同类项,得521(25)033x ⎛⎫+-+=⎪⎝⎭. 整理,得4(25)03x +=. 故250x +=.移项,得25x =-.系数化为1,得52x =-. 【点睛】本题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.解方程32324343x x -=-. 解析:1x =【分析】方程去分母,去括号,移项合并,将y 系数化为1即可求出解.【详解】 解:原方程可化为332204433x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即32(1)(1)043x x -+-=. 将(1)x -看作一个整体进行合并,得32(1)043x ⎛⎫+-=⎪⎝⎭,所以10x -=,移项,得1x =.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.24.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?解析:存活期用了1600元,买债券用了3200元【分析】设存活期用了x 元,则买债券用了(4800)x -元,由题意列式求解即可.【详解】解:设存活期用了x 元,则买债券用了(4800)x -元由题意,得0.35%0.6%(4800)24.8x x +-=.解得1600x =.48003200x -=.答:大明存活期用了1600元,买债券用了3200元.【点睛】本题主要考查了实际问题与一元一次方程,根据题意找出未知量,列方程是解题的关键. 25.解方程:(1)3(26)17x x +=--;(2)4(2)13(1)x x --=-;(3)4(1)5(3)11x x +--=;(4)14(1)(26)112x x --+=. 解析:(1)5x =-;(2)6x =;(3)8x =;(4)6x =【分析】(1)去括号,移项及合并同类项,系数化为1即可求解.(2)去括号,移项及合并同类项,系数化为1即可求解.(3)去括号,移项及合并同类项,系数化为1即可求解.(4)去括号,移项及合并同类项,系数化为1即可求解.【详解】(1)去括号,得61817x x +=--.移项及合并同类项,得735x =-.系数化为1,得5x =-.(2)去括号,得48133x x --=-.移项,得43381x x -=-++.合并同类项,得6x =.(3)去括号,得4451511x x +-+=.移项,得4511415x x -=--.合并同类项,得8x -=-.系数化为1,得8x =.(4)去括号,得44311x x ---=.移项,得41143x x -=++.合并同类项,得318x =.系数化为1,得6x =.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 26.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底?(2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?解析:(1)80个(2)15张(3)6张;9张【分析】(1)列方程求解即可得到结果;(2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可;【详解】解:(1)设一张这样的铝片可做x 个瓶底.根据题意,得9001200(20)x x =-.解得80x =.2060x -=.答:一张这样的铝片可做80个瓶底.(2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-.解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多.【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.27.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下: 设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=. 例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 解析:(1)①59;②25699;③518999;(2)见解析 【分析】(1)根据题目中的转化方法进行转化即可.(2)根据题目中的转化方法进行转化,并写出过程.【详解】 (1)①59;②25699;③518999.(2)从①②③中任选一个转化即可.①设0.5x =,则10 5.5555x =⋯,所以105x x -=,解方程,得59x =,所以50.59=. ②设0.58x =,则10058.5858x =⋯,所以10058x x -=,解方程,得5899x =,所以58256 2.5829999=+=. ③设0.518x =,则1000518.518518x =⋯,所以1000518x x -=,解方程,得518999x =,所以5180.518999=. 【点睛】 本题考查了一元一次方程的其他实际应用问题,掌握题目中的转化方法、解一元一次方程的方法是解题的关键.28.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题: ()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?解析:(1)小明原计划购买文具袋17个;(2)小明购买了钢笔20支,签字笔30支.【分析】(1)设未知数后可以根据等量关系“实际购买文具袋(比原计划多1个)的花费×0.85=原计划购买文具袋的花费-17”列方程求解;(2)设未知数后可以根据等量关系“钢笔和签字笔的总价×0.8(或80%)=272”列方程求解.【详解】解:()1设小明原计划购买文具袋x 个,则实际购买了()x 1+个,由题意得:()10x 108510x 17+⨯=-..解得:x 17=;答:小明原计划购买文具袋17个;()2设小明购买了钢笔y 支,则购买签字笔()50y -支,由题意得:()8y 650y 80%272⎡⎤+-⨯=⎣⎦,解得:y 20=,则:50y 30-=.答:小明购买了钢笔20支,签字笔30支.【点睛】本题考查一元一次方程的应用,根据题目中的等量关系设未知数列方程求解是解题关键. 29.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.解析:大正方形的面积是36cm 2【分析】设小正方形的边长为x ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】设小正方形的边长为x ,则大正方形的边长为4+(5−x )cm 或(x +1+2)cm , 根据题意得:4+(5−x )=(x +1+2),解得:x =3,∴4+(5−x )=6,∴大正方形的面积为36cm 2.答:大正方形的面积为36cm 2.【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.30.一项工程,由甲队独做需12个月完工,由乙队独做需15个月完工.现决定由两队合作,且为了加快进度,甲、乙两队都将提高工作效率.若甲队的工作效率提高40%,乙队的工作效率提高25%,,则两队合作,几个月可以完工?解析:5【分析】设两队合作x个月完成,甲队原来的工作效率为112,将工作效率提高40%以后为112(1+40%),乙队原来的工作效率为115,将工作效率提高25%以后为115(1+25%),根据工作效率×工作时间=工作总量1,列出方程,解方程即可【详解】解:设两队合作x个月完成,由题意,得[112(1+40%)+115(1+25%)]x=1,解得x=5.答:两队合作,5个月可以完工.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.。
《易错题》七年级数学上册第三单元《一元一次方程》-填空题专项经典习题(含解析)
一、填空题1.已知222a b c k b c a c a b===+++,则k =______.1或-2【分析】分类讨论:①当时将等式变形即可求出k 的值;②当时则代入原等式即可求出k 的值【详解】解:①当时∵∴∴∴∴∴;②当时则∴故答案为:1或-2【点睛】此题考查的是等式的基本性质根据等式的基本解析:1或-2【分析】分类讨论:①当0a b c ++≠时,将等式变形,即可求出k 的值;②当0a b c ++=时,则a b c +=-,代入原等式即可求出k 的值.【详解】解:①当0a b c ++≠时, ∵222a b c k b c a c a b===+++, ∴()()()2,2,2a k b c b k a c c k a b =+=+=+,∴()222a b c k b c a c a b ++=+++++,∴()()22a b c k a b c ++=++,∴22k =,∴1k =;②当0a b c ++=时,则a b c +=-. ∴222c c k a b c===-+- 故答案为:1或-2【点睛】 此题考查的是等式的基本性质,根据等式的基本性质将等式变形是解决此题的关键. 2.在甲处工作的有27人,在乙处工作的有19人,现另外调20人去支援,使在甲处工作的人数是乙处的2倍,则往甲处调_____人,乙处调_____人.3【解析】【分析】设调往甲处的人数为x 则调往乙处的人数为20-x 根据甲处的人数是在乙处人数的2倍列方程求解【详解】设应调往甲处x 人依题意得:27+x=2(19+20−x)解得:x=17∴20−x=3解析:3【解析】【分析】设调往甲处的人数为x ,则调往乙处的人数为20-x ,根据甲处的人数是在乙处人数的2倍列方程求解.【详解】设应调往甲处x人,依题意得:27+x=2(19+20−x),解得:x=17,∴20−x=3,答:应调往甲处17人,调往乙处3人【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.3.要使代数式154t+与15()4t-的值互为相反数,则t的值是_________.【解析】【分析】只有符号不同的两个数是互为相反数且互为相反数的两个数的和等于0根据相反数的性质可列方程求解【详解】因为代数式与的值互为相反数所以+=0解得:t=【点睛】本题主要考查列方程解方程解决本解析:1 10【解析】【分析】只有符号不同的两个数是互为相反数,且互为相反数的两个数的和等于0,根据相反数的性质可列方程求解.【详解】因为代数式154t+与15()4t-的值互为相反数,所以154t++15()4t-=0,解得:t=1 10,【点睛】本题主要考查列方程解方程,解决本题的关键是要熟练根据相反数的性质列出方程即可求解. 4.将一个底面直径是10cm、高为40cm的圆柱锻压成底面直径为16cm的圆柱,则锻压后圆柱的高为________cm.625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积根据圆柱的体积计算公式表示出体积列出方程解答即可【详解】解:设锻压后圆柱的高为x厘米由题意得:解得:x=15625答:锻压后解析:625【解析】【分析】利用等量关系:锻压前的圆柱的体积=锻压后的圆柱的体积,根据圆柱的体积计算公式表示出体积列出方程解答即可.【详解】解:设锻压后圆柱的高为x 厘米,由题意得:221016()40()22x ππ⨯=解得:x=15.625.答:锻压后圆柱的高为15.625厘米.故答案为:15.625.【点睛】此题考查一元一次方程的实际运用,关键是掌握体积公式,并找准题中的等量关系. 5.某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.赚了8元【解析】【分析】根据题意设一个价钱为x 元另一个价钱为y 元列出方程求出未知数的值再计算即可【详解】解:设两种计算器进价分别为x 元y 元则x 解得(元)所以赚了8元【点睛】本题主要考查列一元一次方程解析:赚了8元【解析】【分析】根据题意设一个价钱为x 元,另一个价钱为y 元,列出方程,求出未知数的值,再计算即可.【详解】解:设两种计算器进价分别为x 元,y 元,则x (160%)=64+,(120%)64y -=.解得40x =,80y =.4080120x y +=+=. 6421201281208⨯-=-=(元), 所以赚了8元.【点睛】本题主要考查列一元一次方程解决实际问题,解决本题的关键是要熟练掌握根据进价、售价与利润率之间的关系分别求出两种计算机的进价.6.一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________.【解析】【分析】等量关系为:圆柱体的体积=长方体的体积把相关数值代入即可求解【详解】设长方体的高为xcm 故答案为:【点睛】此题考查一元一次方程的应用解题关键在于找到等量关系解析:2π2016208x ⨯⨯=⨯【解析】【分析】等量关系为:圆柱体的体积=长方体的体积,把相关数值代入即可求解.【详解】设长方体的高为xcm ,2π2016208x ⨯⨯=⨯,故答案为:2π2016208x ⨯⨯=⨯.【点睛】此题考查一元一次方程的应用,解题关键在于找到等量关系.7.在某张月历表上,若前三个星期日的数字之和是42,则第一个星期_______号.【解析】【分析】根据题意先设中间一个的数字为x 即可解答【详解】设中间一个的数字为x 其他两个为x+7x-7则x+7+x+x-7=42解答x=14所以第一个是14-7=7日故答案为:7【点睛】此题考查一解析:7【解析】【分析】根据题意先设中间一个的数字为x ,即可解答.【详解】设中间一个的数字为x ,其他两个为x+7,x-7,则x+7+x+x-7=42,解答x=14,所以第一个是14-7=7日,故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于找出等量关系.8.在公式5(32)9c f =-中,已知20c =,则f =_____________.68【解析】【分析】把C=20代入C 与f 之间的关系式解方程就可以求出f 的值【详解】由题意得当C=20时20=180=5f−160−5f=−340f=68故答案为:68【点睛】本题考查解一元一次方程熟解析:68【解析】【分析】把C=20代入C 与f 之间的关系式5(32)9c f =-,解方程就可以求出f 的值. 【详解】由题意,得当C=20时, 20=5(32)9f -, 180=5f−160,−5f=−340,f=68.故答案为:68.【点睛】本题考查解一元一次方程,熟练掌握运算法则是解题关键.9.如果代数式453m -的值等于5-,那么m 的值是_________.【解析】【分析】根据题意列出方程求出方程的解即可得出m 的值【详解】由题意得:=去分母得:4m-5=-15解得m=【点睛】本题考查解一元一次方程熟练掌握计算法则是解题关键 解析:52-【解析】【分析】根据题意列出方程,求出方程的解即可得出m 的值.【详解】 由题意得:453m -=5- 去分母得:4m-5=-15 解得m=52-【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.10.在方程431=-x 的两边同时_________,得x =___________.乘-12【解析】【分析】根据等式的性质2方程的两边乘即可【详解】方程的两边同时乘得:x =-1故答案为:乘;-12【点睛】本题考查了对等式的性质的应用主要检查学生对所学知识的掌握情况解析:乘3- -12【解析】【分析】根据等式的性质2,方程的两边乘3-即可.【详解】 方程431=-x 的两边同时乘3-得:x =-1, 故答案为:乘3-;-12. 【点睛】本题考查了对等式的性质的应用,主要检查学生对所学知识的掌握情况.11.喜欢集邮的小惠共有中、外邮票145张,其中中国邮票的张数比外国邮票的张数的2倍少5张,问小惠有中国邮票______张,外国邮票_____张.50【解析】【分析】据题意可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数设外国邮票x 张把未知数和相关数据代入等量关系式进行解答即可得到答案【详解】解:设外国邮票x张2x-5=145-x3x解析:50【解析】【分析】据题意,可得到等量关系式:外国邮票的张数×2-5=中国邮票的张数,设外国邮票x张,把未知数和相关数据代入等量关系式进行解答即可得到答案.【详解】解:设外国邮票x张,2x-5=145-x3x=150x=50中国邮票:145-50=95答:中国邮票95张,外国邮票有50张.【点睛】解答此题的关键是确定等量关系式,然后再列方程解答即可.12.某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元.5【解析】【分析】首先设乙班平均每人捐款x元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x元由题意得:50解析:5【解析】【分析】首先设乙班平均每人捐款x元,则甲班平均每人捐款(x-1)元,根据题意可得等量关系:甲班的捐款+乙班的捐款=425元,由等量关系列出方程即可.【详解】解:设乙班平均每人捐款x元,由题意得:50(x-1)+(50-5)x=425,解得:x=5,答:乙班平均每人捐款5元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出甲乙两班的捐款人数和人均捐款数,再根据捐款总数列出方程即可.13.有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是______.800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×15×超重公斤数根据题意列方程求解【详解】设他的飞机票价格是x 元可列方程x ⋅15×(30−20)=120解得:x=800则他的飞机解析:800元【分析】该题目中的等量关系:该旅客购买的行李票=飞机票价格×1.5%×超重公斤数,根据题意列方程求解.【详解】设他的飞机票价格是x 元,可列方程x ⋅1.5%×(30−20)=120解得:x=800则他的飞机票价格是800元.故答案为:800.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.14.有一位工人师傅要锻造底面直径为40cm 的“矮胖”形圆柱,可他手上只有底面直径是10cm 、高为80cm 的“瘦长”形圆柱,若不计损耗,则锻造出的“矮胖”形圆柱的高为________.5cm 【分析】设矮胖形圆柱的高是xcm 根据锻造前后圆柱体积相等建立方程求解即可【详解】解:设矮胖形圆柱的高是xcm 由题意得π×80=πx 解得:x=5故答案为5cm 【点睛】本题考查一元一次方程的应用熟解析:5cm【分析】设“矮胖”形圆柱的高是xcm ,根据锻造前后圆柱体积相等建立方程求解即可.【详解】解:设“矮胖”形圆柱的高是xcm ,由题意得,210()2π×80=240()2πx , 解得:x=5.故答案为5cm .【点睛】本题考查一元一次方程的应用,熟练掌握并准确计算是解题的关键.15.一般情况下2323m n m n ++=+不成立,但也有数可以使得它成立,例如:m =n =0.使得2323m n m n ++=+成立的一对数m 、n 我们称为“相伴数对”,记为(m ,n ).若(x ,1)是“相伴数对”,则x 的值为_____.﹣【分析】利用新定义相伴数对列出方程解方程即可求出x 的值【详解】解:根据题意得:去分母得:15x+10=6x+6移项合并得:9x =﹣4解得:x =﹣故答案为:﹣【点睛】本题考查解一元一次方程正确理解相解析:﹣49.【分析】利用新定义“相伴数对”列出方程,解方程即可求出x的值.【详解】解:根据题意得:11 235x x,去分母得:15x+10=6x+6,移项合并得:9x=﹣4,解得:x=﹣49.故答案为:﹣49.【点睛】本题考查解一元一次方程,正确理解“相伴数对”的定义是解本题的关键.16.我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程“.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程3x=a是“和解方程”,则a的值为_____;(2)已知关于x的一元一次方程﹣2x=ab+b是“和解方程“,并且它的解是x=b,则a+b 的值为_____.【详解】解:(1)解方程3x=a得x=∵关于x的一元一次方程3x=a是和解方程∴=3+a解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b∴﹣2b=ab+b∵方程﹣2x=ab+b是和解方程∴b=a解析:92-113-【详解】解:(1)解方程3x=a得x=,∵关于x的一元一次方程3x=a是“和解方程”,∴=3+a,解得a=﹣;(2)∵方程﹣2x=ab+b的解是x=b,∴﹣2b=ab+b,∵方程﹣2x=ab+b是“和解方程“,∴b=ab+b﹣2,即b=﹣2b﹣2,解得b=﹣,∴a=﹣3,∴a+b=﹣3﹣=﹣.故答案为﹣,﹣.17.某商品每件标价为150元,若按标价打8折后,仍可获利20%,则该商品每件的进价为______元.100【分析】根据利润率(售价进价)进价先利用售价标价折数10求出售价进而代入利润率公式列出关于进价的方程即得【详解】商品每件标价为150元按标价打8折后售价为:(元/件)设该商品每件的进价为元由题解析:100【分析】根据利润率=(售价-进价) ÷进价100%⨯,先利用售价=标价⨯折数÷10求出售价,进而代入利润率公式列出关于进价的方程即得.【详解】商品每件标价为150元∴按标价打8折后售价为:1500.8120⨯=(元/件)∴设该商品每件的进价为x 元由题意得:()120100%20%-⨯=x x解得:100x =答:该商品每件的进价为100元.故答案为:100【点睛】本题考查一元一次方程应用中的销售问题,通常利润率计算公式为销售问题等量关系是解题关键点.18.对于实数a ,b ,c ,d ,规定一种运算 a bc d =ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.22【分析】由题中的新定义可知此种运算为对角线乘积相减的运算化简所求的式子得到关于x 的方程然后解方程即可求出x 的值【详解】解:∵=27∴(x+1)(x-1)-(x+2)(x-3)=27∴x2-1-(解析:22【分析】由题中的新定义可知,此种运算为对角线乘积相减的运算,化简所求的式子得到关于x 的方程,然后解方程即可求出x 的值.【详解】解:∵(1)(2)(3)(1)x x x x ++--=27,∴(x +1)(x -1)-(x +2)(x -3)=27,∴x 2-1-(x 2-x -6)=27,∴x 2-1-x 2+x +6=27,∴x =22;故答案为:22.【点睛】本题考查了新定义运算,及灵活运用新定义的能力,根据新定义把所给算式转化为一元一次方程是解答本题的关键.19.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.45【分析】取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0分别求出mn 的值即可【详解】解:取一切有理数时均成立则化简以后方程的一次项系数以及常熟项都是0移项得:合并同类项得:∴∴m= 解析:45【分析】x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,分别求出m ,n 的值即可.【详解】解:x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则化简以后方程的一次项系数以及常熟项都是0,移项得:(23)251(3)+-=+-m x x m n ,合并同类项得:(222)13-=+-m x m n ,∴222=0-m ,13=0+-m n ,∴m=11,n=34,∴m+n=45,故答案为:45.【点睛】本题考查了解一元一次方程,理解若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立的条件是解决本题的关键.20.购买某原料有如下优惠方案:①一次性购买金额不超过1万元不享受优惠;②一次性购买金额超过1万元但不超过3万元给予9折优惠;③一次性购买金额超过3万元,其中3万元给予9折优惠,超过部分给予7折优惠.(1)若某人购该原料付款9900元,则他购买的原料原价是________元;(2)某人分两次购买该原料,第1次付款8000元,第2次付款25200元,若他一次性购买同样数量的原料,可比分两次购买少付________元.9900或110002000【分析】(1)分两种情况讨论可求解;(2)设第2次原料款为x 元列出方程可求x 的值可求两次原料款总额由③方案可求一次性购买同样数量的原料的付款金额即可求解【详解】(1)99解析:9900或11000 2000.【分析】(1)分两种情况讨论,可求解;(2)设第2次原料款为x 元,列出方程可求x 的值,可求两次原料款总额,由③方案可求一次性购买同样数量的原料的付款金额,即可求解.【详解】(1)9900或11000若购买金额不超过1万元,则购买的原料原价为9900元;若购买金额超过1万元但不超过3万元,则99000.911000÷=(元).故答案为:9900或11000.(2)2000设第2次原料原价为x 元.根据题意,可得0.925200x =,解得28000x =.所以两次原料总价为28000800036000+=(元),按照方案③,一次性购买同样数量的原料付款为(3000090%)600070%31200⨯+⨯=(元),所以一次性购买同样数量的原料可比分两次购买少付800025200312002000+-=(元)【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 21.桐桐的爸爸三年前在银行办理了一份3000元的定期存款,今年到期时的本息和为3243元,请你帮桐桐的爸爸算一算这种储蓄的年利率,若设年利率为x%,则可列方程为________________.(前一年的利息不计入下一年本金)【分析】本利和=本金+利息=本金+本金×年利率×年数把相关数值代入即可【详解】本题相等关系为本金+利息=本息和其中利息=本金×年数×年利率故可列方程为故答案为:【点睛】本题考查了列一元一次方程得到本解析:300030003%3243x +⨯⨯=【分析】本利和=本金+利息=本金+本金×年利率×年数,把相关数值代入即可.【详解】本题相等关系为“本金+利息=本息和”,其中利息=本金×年数×年利率,故可列方程为300030003%3243x +⨯⨯=.故答案为:300030003%3243x +⨯⨯=.【点睛】本题考查了列一元一次方程,得到本利和的等量关系是解决本题的关键.注意本题的利息应算三年的利息.22.已知方程2224m x m +-+=是关于x 的一元一次方程,则方程的解是________.【分析】先求出m 的值再代入求出x 的值即可【详解】因为原方程是关于x 的一元一次方程所以移项得合并同类项得把代入原方程得移项得合并同类项得系数化为1得故答案为:【点睛】本题考查了解一元一次方程的问题掌握解析:3x =-【分析】先求出m 的值,再代入求出x 的值即可.【详解】因为原方程是关于x 的一元一次方程,所以21+=m ,移项,得12m =-.合并同类项,得1m =-.把1m =-代入原方程,得224x --=.移项,得242x -=+.合并同类项,得26x -=.系数化为1,得3x =-.故答案为:3x =-.【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 23.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.28【解析】设这种电子产品的标价为x 元由题意得:09x−21=21×20解得:x=28所以这种电子产品的标价为28元故答案为28 解析:28【解析】设这种电子产品的标价为x 元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.24.一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x ﹣2=127解得:x =43可得3x ﹣2=43解得:x =15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理解析:15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x ﹣2=127,解得:x =43,可得3x ﹣2=43,解得:x =15,则输入的数是15,故答案为15【点睛】考核知识点:解一元一次方程.理解程序意义是关键.25.已知一个角的补角是这个角的4倍,那么这个角的度数是_________.36°【分析】设这个角的度数为根据补角的性质列出方程求解即可【详解】设这个角的度数为可得解得故答案为:36°【点睛】本题考查了一元一次方程的应用掌握解一元一次方程的解法补角的性质是解题的关键解析:36°【分析】设这个角的度数为x,根据补角的性质列出方程求解即可.【详解】设这个角的度数为x,可得1804x x︒-=解得36x=︒故答案为:36°.【点睛】本题考查了一元一次方程的应用,掌握解一元一次方程的解法、补角的性质是解题的关键.26.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.4【解析】8个班进行友谊赛也就是说每个班级要和其余7个班级比赛根据总比赛场数为7设赢了x场则3x+(7-x)=15解得x=4故答案为:4解析:4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x+(7-x)=15,解得x=4,故答案为:4.27.解方程213412208x x x-+-=-1,去分母时,方程两边应都乘____,得______________________,这一变形的依据是________________.10x-6(2x-1)=15(3x +4)-120等式的性质2【分析】找出方程两边分母的最小公倍数根据等式的性质2即可得答案【详解】∵12208的最小公倍数是120∴去分母时方程两边应都乘120得10解析:10x-6(2x-1)=15(3x+4)-120 等式的性质2【分析】找出方程两边分母的最小公倍数,根据等式的性质2即可得答案.【详解】∵12、20、8的最小公倍数是120,∴去分母时,方程两边应都乘120,得10x -6(2x -1)=15(3x +4)-120,这一变形的依据是:等式的性质2故答案为:120,10x -6(2x -1)=15(3x +4)-120,等式的性质2【点睛】本题考查解一元一次方程及等式的性质,等式的性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等;熟练掌握相关知识是解题关键.28.为了创建宜居城市,某单位积极响应植树活动,由一人植树要80小时完成.现由一部分人植树5小时,由于单位有紧急事情,再增加2人,4小时后完成植树任务.若这些人的工作效率相同,则先植树的有________人.8【分析】理解题意根据工作总量等于各分量之和设先植树的有x 人可得【详解】设先植树的有x 人可得解得x =8故答案为:8【点睛】考核知识点:一元一次方程应用根据工作量关系列出方程是关键解析:8【分析】理解题意,根据工作总量等于各分量之和,设先植树的有x 人,可得()42518080x x ++=. 【详解】设先植树的有x 人,可得 ()42518080x x ++=, 解得x =8.故答案为:8【点睛】考核知识点:一元一次方程应用.根据工作量关系列出方程是关键.29.若关于x 的方程2mx+3m=-1与3x+6x=-3的解相同,则m 的值为_____.【分析】分别解出两方程的解两解相等就得到关于m 的方程从而可以求出m 的值【详解】解:由3x+6x=-3可得:x=-由2mx+3m=-1可得:x=所以可得:解得:故答案为:【点睛】本题考查了同解方程本题 解析:37- 【分析】分别解出两方程的解,两解相等,就得到关于m 的方程,从而可以求出m 的值.【详解】解:由3x+6x=-3可得:x=-13, 由2mx+3m=-1可得:x=132m m--,所以可得:131 23mm--=-,解得:37m=-,故答案为:37 -.【点睛】本题考查了同解方程,本题解决的关键是能够求解关于x的方程,要正确理解方程解的含义.30.若4a+9与3a+5互为相反数,则a的值为_____.-2【分析】利用相反数的性质求出a的值即可【详解】解:根据题意得:4a+9+3a+5=0移项合并得:7a=﹣14解得:a=﹣2故答案为﹣2【点睛】本题考查了解一元一次方程以及相反数熟练掌握运算法则是解析:-2【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.。
初一解一元一次方程易错疑难辨析
初一解一元一次方程易错疑难辨析
易错点一:去括号时漏乘某些项导致错误
例1:解方程3(X -7)-2(9-3X )=﹣12
疑难点二:漏乘不含分母的整数项或者是含有未知数的整式项
例2:解方程312-X -6
13+X =1 易错点三:分子如果是一个多项式,那么去分母时要把分子作为一个整体添加括号 例3:解方程
31+X -62-X =2-4X -2 易错辨析:分子是多项式,在去分母时,忽略整数项或者是含有未知数的整式项,避免方法是正确运用等式性质2,即方程两边同时乘一个数字,用这个数字乘方程两边的每一项,去分母通常两边同乘的数字是所有分母的最小公倍数。
易错点四:分母是小数,在化系数为整数的过程中与去分母混淆
例4:解方程2.04+X -5
.03-X =0.2 把方程分母上的小数变化为整数,得
2410)(+X -53-10)(X =0.2 即5(X +4)-2(X -3)=0.2
易错辨析:在化为整数时,2.04+X 与5
.03-X 运用分数的基本性质,分子、分母都扩大到原来的10倍,不是两边同乘10,因此分数自身变化与等号右边的数字无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解方程和方程的解的易错题:一元一次方程的解法:重点:等式的性质,同类项的概念及正确合并同类项,各种情形的一元一次方程的解法;难点:准确运用等式的性质进行方程同解变形(即进行移项,去分母,去括号,系数化一等步骤的符号问题,遗漏问题);学习要点评述:对初学的同学来讲,解一元一次方程的方法很容易掌握,但此处有点类似于前面的有理数混合运算,每个题都感觉会做,但就是不能保证全对。
从而在学习时一方面要反复关注方程变形的法则依据,用法则指导变形步骤,另一方面还需不断关注易错点和追求计算过程的简捷。
易错范例分析:例1.(1)下列结论中正确的是( )A.在等式3a-6=3b+5的两边都除以3,可得等式a-2=b+5B.在等式7x=5x+3的两边都减去x-3,可以得等式6x-3=4x+6C.在等式-5=0.1x的两边都除以0.1,可以得等式x=0.5D.如果-2=x,那么x=-2(2)解方程20-3x=5,移项后正确的是()A.-3x=5+20B.20-5=3xC.3x=5-20D.-3x=-5-20(3)解方程-x=-30,系数化为1正确的是( )A.-x=30B.x=-30C.x=30D.(4)解方程,下列变形较简便的是( )A.方程两边都乘以20,得4(5x-120)=140B.方程两边都除以,得C.去括号,得x-24=7D.方程整理,得解析:(1) 正确选项D。
方程同解变形的理论依据一为数的运算法则,运算性质;一为等式性质(1)、(2)、(3),通常都用后者,性质中的关键词是“两边都”和“同一个”,即对等式变形必须两边同时进行加或减或乘或除以,不可漏掉一边、一项,并且加减乘或除以的数或式完全相同。
选项A错误,原因是没有将“等号”右边的每一项都除以3;选项B错误,原因是左边减去x-3时,应写作“-(x-3)”而不“-x-3”,这里有一个去括号的问题;C亦错误,原因是思维跳跃短路,一边记着是除以而到另一边变为乘以了,对一般象这样小数的除法可以运用有理数运算法则变成乘以其倒数较为简捷,选项D正确,这恰好是等式性质③对称性即a=b b=a。
(2) 正确选项B。
解方程的“移项”步骤其实质就是在“等式的两边同加或减同一个数或式”性质①,运用该性质且化简后恰相当于将等式一边的一项变号后移到另一边,简单概括就成了“移项”步骤,此外最易错的就是“变号”的问题,如此题选项A、C、D 均出错在此处。
解决这类易错点的办法是:或记牢移项过程中的符号法则,操作此步骤时就予以关注;或明析其原理,移项就是两边同加或减该项的相反数,使该项原所在的这边不再含该项----即代数和为0。
(3)正确选项C。
选项B、D错误的原因虽为计算出错,但细究原因都是在变形时,法则等式性质指导变形意识淡,造成思维短路所致。
(4)等式性质及方程同解变形的法则虽精炼,但也很宏观,具体到每一个题还需视题目的具体特点灵活运用,解一道题目我们不光追求解出,还应有些简捷意识,如此处的选项A、B、D所提供方法虽然都是可行方法,但与选项C相比,都显得繁。
例2.(1)若式子 3nx m+2y4和 -mx5y n-1能够合并成一项,试求m+n的值。
(2)下列合并错误的个数是( )①5x6+8x6=13x12②3a+2b=5ab③8y2-3y2=5④6a n b2n-6a2n b n=0(A)1个 (B)2个 (C)3个 (D)4个解析:(1)3nx m+2y4和-mx5y n-1能够合并,则说明它们是同类项,即所含字母相同,且相同字母的指数也相同。
此题两式均各含三个字母n、x、y和m、x、y,若把m、n分别看成2个字母,则此题显然与概念题设不合,故应该把m、n看作是可由已知条件求出的常数,从而该归并为单项式的系数,再从同类项的概念出发,有:解得m=3 ,n=5从而m+n=8评述:运用概念定义解决问题是数学中常用的方法之一,本题就是准确地理解了“同类项”、“合并”的概念,认真进行了逻辑判断;确定了m、n为可确定值的系数。
(2)“合并”只能在同类项之间进行,且只对同类项间的系数进行加减运算化简,这里的实质是逆用乘法对加法的分配律,所以4个合并运算,全部错误,其中②、④就不是同类项,不可合并,①、②分别应为:5x6+8x6=13x68y2-3y2=5y2例3.解下列方程(1)8-9x=9-8x(2)(3)(4)解:(1)8-9x=9-8x-9x+8x=9-8-x=1x=1易错点关注:移项时忘了变号;(2)法一:4(2x-1)-3(5x+1)=248x-4-15x-3=24-7x=31易错点关注:两边同乘兼约分去括号,有同学跳步急赶忘了, 4(2x-1)化为8x-1,分配需逐项分配,-3(5x+1)化为-15x+3忘了去括号变号;法二:(就用分数算)此处易错点是第一步拆分式时将,忽略此处有一个括号前面是负号,去掉括号要变号的问题,即;(3)6x-3(3-2x)=6-(x+2)6x-9+6x=6-x-212x+x=4+913x=13x=1易错点关注:两边同乘,每项均乘到,去括号注意变号;(4)2(4x-1.5)-5(5x-0.8)=10(1.2-x)8x-3-25x+4=12-10x-7x=11评述:此题首先需面对分母中的小数,有同学会忘了小数运算的细则,不能发现,而是两边同乘以0.5×0.2进行去分母变形,更有思维跳跃的同学认为0.5×0.2=1,两边同乘以1,将方程变形为:0.2(4x-1.5)-0.5(5x-0.8)=10(1.2-x)概述:无论什么样的一元一次方程,其解题步骤概括无非就是“移项,合并,未知数系数化1”这几个步骤,从操作步骤上来讲很容易掌握,但由于进行每个步骤时都有些需注意的细节,许多都是我们认识问题的思维瑕点,需反复关注,并落实理解记忆才能保证解方程问题――做的正确率。
若仍不够自信,还可以用检验步骤予以辅助,理解方程“解”的概念。
例4.下列方程后面括号内的数,都是该方程的解的是( )A.4x-1=9B.C.x2+2=3x (-1,2)D.(x-2)(x+5)=0 (2,-5)分析:依据方程解的概念,解就是代入方程能使等式成立的值,分别将括号内的数代入方程两边,求方程两边代数式的值,只有选项D中的方程式成立,故选D。
评述:依据方程解的概念,解完方程后,若能有将解代入方程检验的习惯将有助于促使发现易错点,提高解题的正确率。
例5.根据以下两个方程解的情况讨论关于x的方程ax=b(其中a、b为常数)解的情况。
(1)3x+1=3(x-1)(2)解:(1)3x+1=3(x-1)3x-3x=-3-10·x=-4显然,无论x取何值,均不能使等式成立,所以方程3x+1=3(x-1)无解。
(2)0·x=0显然,无论x取何值,均可使方程成立,所以该方程的解为任意数。
由(1)(2)可归纳:对于方程ax=b当a≠0时,它的解是;当a=0时,又分两种情况:①当b=0时,方程有无数个解,任意数均为方程的解;②当b≠0时,方程无解。
二、从实际问题到方程(一)本课重点,请你理一理列方程解应用题的一般步骤是:(1)“找”:看清题意,分析题中及其关系,找出用来列方程的____________;(2)“设”:用字母(例如x)表示问题的_______;(3)“列”:用字母的代数式表示相关的量,根据__________列出方程;(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答(6)“答”:答出题目中所问的问题。
(二)易错题,请你想一想1.建筑工人浇水泥柱时,要把钢筋折弯成正方形.若每个正方形的面积为400平方厘米,应选择下列表中的哪种型号的钢筋?的值是否正确和符合实际情形,因为钢筋的长为正数,所以取x=80,故应选折C型钢筋.2.你在作业中有错误吗?请记录下来,并分析错误原因.三、行程问题(一)本课重点,请你理一理1.基本关系式:_________________ __________________ ;2.基本类型:相遇问题; 相距问题; ____________ ;3.基本分析方法:画示意图分析题意,分清速度及时间,找等量关系(路程分成几部分).4.航行问题的数量关系:(1)顺流(风)航行的路程=逆流(风)航行的路程(2)顺水(风)速度=_________________________逆水(风)速度=_________________________(二)易错题,请你想一想1.甲、乙两人都以不变速度在400米的环形跑道上跑步,两人在同一地方同时出发同向而行,甲的速度为100米/分乙的速度是甲速度的3/2倍,问(1)经过多少时间后两人首次遇(2)第二次相遇呢?思路点拨:此题是关于行程问题中的同向而行类型。
由题可知,甲、乙首次相遇时,乙走的路程比甲多一圈;第二次相遇他们之间的路程差为两圈的路程。
所以经过8分钟首次相遇,经过16分钟第二次相遇。
2.你在作业中有错误吗?请记录下来,并分析错误原因.四、调配问题(一)本课重点,请你理一理初步学会列方程解调配问题各类型的应用题;分析总量等于_________一类应用题的基本方法和关键所在.(二)易错题,请你想一想1.. 为鼓励节约用水,某地按以下规定收取每月的水费:如果每月每户用水不超过20吨,那么每吨水按1.2元收费;如果每月每户用水超过20吨,那么超过的部分按每吨2元收费。
若某用户五月份的水费为平均每吨1.5元,问,该用户五月份应交水费多少元?2.. 甲种糖果的单价是每千克20元,乙种糖果的单价是每千克15元,若要配制200千克单价为每千克18元的混合糖果,并使之和分别销售两种糖果的总收入保持不变,问需甲、乙两种糖果各多少千克?五、工程问题(一)本课重点,请你理一理工程问题中的基本关系式:工作总量=工作效率×工作时间各部分工作量之和 = 工作总量(二)易错题,请你想一想1.一项工程,甲单独做要10天完成,乙单独做要15天完成,甲单独做5天,然后甲、乙合作完成,共得到1000元,如果按照每人完成工作量计算报酬,那么甲、乙两人该如何分配?思路点拨:此题注意的问题是报酬分配的根据是他们各自的工作量。
所以甲、乙两人各得到800元、200元.2.你在作业中有错误吗?请记录下来,并分析错误原因.六、储蓄问题(一)本课重点,请你理一理1.本金、利率、利息、本息这四者之间的关系:(1)利息=本金×利率(2)本息=本金+利息(3)税后利息=利息-利息×利息税率2.通过经历“问题情境——建立数学模型——解释、应用与拓展”的过程,理解和体会数学建模思想在解决实际问题中的作用.(二)易错题,请你想一想1.一种商品的买入单价为1500元,如果出售一件商品获得的毛利润是卖出单价的15%,那么这种商品出售单价应定为多少元?(精确到1元)思路点拨:由“利润=出售价-买入价”可知这种商品出售单价应定为2000元.2.你在作业中有错误吗?请记录下来,并分析错误原因。