第21章 一元二次函数 基础练习

合集下载

人教版九年级数学上册第21章一元二次方程的应用归类练习(无答案)

人教版九年级数学上册第21章一元二次方程的应用归类练习(无答案)

第21章一元二次方程的归类应用一、公式运用问题例1:某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有多少队?例2:怎样用一条长40cm的绳子围成一个面积为96cm的矩形?能围成一个面积为102cm的矩形吗?如果能,说明围法;如果不能,说明理由.练习:1.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?2.一块正方形钢板上截去3cm宽的长方形钢条,剩下的面积是,则原来这块钢板的面积是多少?3.世界杯小组赛阶段一共比赛48场,来自全世界的参赛球队通过抽签分为八个小组,每个小组的每支球队都必须和其余的球队进行且只进行一场比赛,求世界杯有多少支参赛队伍?4.一条长的铁丝被剪成两段,每段均折成正方形.若两个正方形的面积和等于,则两个正方形的边长分别为多少?二、数字问题例:一个两位数,十位上的数字比个位上的数字的平方少9.如果把十位上的数字与个位上的数字对调,得到的两位数比原来的两位数小27,则原来的两位数是多少?练习:一个两位数,它的个位数与十位数的和是12,而这两个数的积比这个两位数少16 ,这个两位数是多少?三、平均变化率问题〖增长率〗例:某省为解决农村饮用水问题,省财政部门共投资10亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2016年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2018年该市计划投资“改水工程”864万元.(1)求A市投资“改水工程”费用的年平均增长率;(2)从2016年到2018年,A市三年共投资“改水工程”多少万元?〖降低率〗例:某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是多少?254cm2cm64cm2160cm练习:1.某养猪专业户每年的养猪成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养猪专业户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率.2.汽车产业是我市支柱产业之一,产量和效益逐年增加. 据统计,2016年我市某种品牌汽车的年产量为6.4万辆,到2018年,该品牌汽车的年产量达到10万辆. 若该品牌汽车年产量的年平均增长率从2016年开始五年内保持不变,则该品牌汽车2019年的年产量将为多少万辆?3.2016年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)4.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若2018年保持前两年利润的年平均增长率不变,该企业2018年的利润能否超过3.4亿元?四、传播问题例:“埃博拉”病毒是一种能引起人类和灵长类动物产生“出血热”的烈性传染病毒,传染性极强,一日本游客在非洲旅游时不慎感染了“埃博拉”病毒,经过两轮传染后,共有121人受到感染,(1)问每轮传染中平均一个人传染了几个人?(2)如果得不到控制,按如此的传播速度,经过三轮后将有多少人受到感染?1.有一人患了流感,经过两轮传染后共有64人患了流感。

《一元二次方程》【同步练习1

《一元二次方程》【同步练习1

九年级数学第21章《一元二次方程》同步练习一、选择题1.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围是()A.k≤﹣1且k≠0B.k<﹣1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠02.若一元二次方程9x2-12x-39996=0的两根为a,b,且a<b,则a+3b 的值为()A.136 B.268 C.7963 D.39233.现定义运算“★”,对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是()A、-1B、4C、-1或4D、1或-44.一元二次方程x2+2x-c=0中,c>0,该方程的解的情况是()A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.不能确定5.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解是()A.x1=-6,x2=-1 B.x1=0,x2=5C.x1=-3,x2=5 D.x1=-6,x2=26.对于任意实数a、b,定义f(a,b)=a2+5a-b,如:f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是()A.1或-6 B.-1或6 C.-5或1 D.5或-17.用配方法解一元二次方程x2+4x-5=0,此方程可变形为()A.(x-2)2=9 B.(x+2)2=9 C.(x+2)2=1 D.(x-2)2=18.为了让山更绿、水更清,确保到实现全省森林覆盖率达到63%的目标,已知2013年全省森林覆盖率为6005%,设从2013年起全省森林覆盖率的年平均增长率为x,则可列方程()A.60.05(1+2x)=63%B.60.05(1+3x)=63C.60.05(1+x)2=63%D.60.05%(1+x)2=63%二、填空题9.网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x,则依题意可得关于x的一元二次方程为 .10.已知(x-1)2=ax2+bx+c,则a+b+c的值为 . 11.根据图中的程序,当输入一元二次方程x2﹣2x=0的解x时,输出结果y= .12.某公司2012年的利润为160万元,到了2014年的利润达到了250万元.设平均每年利润增长的百分率为x,则可列方程为.13.方程x 2﹣x ﹣=0的判别式的值等于 .14.已知直角三角形两边x 、y 的长满足|x 2256y y -+,则第三边长为 . 三、解答题15.(本题10分)已知:关于x 的方程kx 2-(3k-1)x+2(k-1)=0, (1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个实数根x 1,x 2,且|x 1-x 2|=2,求k 的值. 16.(9分)李明准备进行如下操作实验:把一根长40cm 的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm ,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm .你认为他的说法正确吗?请说明理由.17.已知关于x 的方程24310x x a -+-=有两个实数根. (1)求实数a 的取值范围; (2)若a 为正整数,求方程的根.18.解方程(1)2230x x --=(2)、2(3)4(3)0x x x -+-=19.关于x 的一元二次方程kx 2﹣(2k ﹣2)x+(k ﹣2)=0(k ≠0). (1)求证:无论k 取何值时,方程总有两个不相等的实数根. (2)当k 取何整数时方程有整数根. 20.先化简,再求值:231(1)221x xx x x x --÷-+++,其中x 满足x 2-x-1=0. 21.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月份的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?22.“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?参考答案1.D 2.A . 3.C . 4.B . 5.B . 6.A . 7.B. 8.D .9.1.26(1+x )2=2.8. 10.0. 11.﹣4或212.160×(1+x )2=250 13.414.15.(1)证明详见解析;(2) 1或13-. 16.(1)12cm 和28cm ;(2)正确.17.(1)53a ≤;(2)1222x x =+=.18.(1) x 1=3,x 2=-1.(2) x 1=3,x 2=35. 19. 20.1.21.(1) 二、三这两个月的月平均增长率为25%;(2) 商品降价5元时,商品获利4250元.22.该班共有35名同学参加了研学旅游活动.周周练(21.2.3~21.3)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.小新在学习解一元二次方程时,做了下面几个填空题:(1)若x2=9,则x=3;(2)方程mx2+m2x=0(m≠0),则x=-m;(3)方程2x(x+1)=x+1的解为x=-1.其中,答案完全正确的有( )A.0个 B.1个C.2个 D.3个2.已知α,β满足α+β=5,αβ=6,则以α,β为根的一元二次方程是( )A.x2-5x+6=0B.x2-5x-6=0C.x2+5x+6=0D.x2+5x-6=03.(衡阳中考)若关于x的方程x2+3x+a=0有一个根为-1,则另一个根为( )A.-2 B.2C.4 D.-34.解方程3(x-1)2=6(x-1),最适当的方法是( )A.直接求解 B.配方法C.因式分解法 D.公式法5.多项式a2+4a-10的值等于11,则a的值为( )A.3或7 B.-3或7C.3或-7 D.-3或-76.经计算整式x+1与x-4的积为x2-3x-4,则一元二次方程x2-3x-4=0的所有根是( )A.x1=-1,x2=-4B.x1=-1,x2=4C.x1=1,x2=4D.x1=1,x2=-47.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为( ) A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=1208.(哈尔滨中考改编)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600 m2,那么扩大后的正方形绿地边长为( )A.120 mB.100 mC.85 mD.80 m二、填空题(每小题4分,共24分)9.(聊城中考)一元二次方程x2-2x=0的解是______________.10.一元二次方程x2+bx+c=0的两根互为倒数,则c=________.11.设一元二次方程x2-7x+3=0的两个实数根分别为x1和x2,则x1+x2=_______,x1x2=_______.12.(南昌中考)已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=________.13.已知:如图所示的图形是一无盖长方体的铁盒平面展开图.若铁盒的容积为3 m3,则根据图中的条件,可列出方程:____________.14.(巴彦淖尔中考)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请___个队参赛.三、解答题(共44分)15.(20分)用适当的方法解下列方程:(1)(徐州中考)x 2-2x -3=0;(2)(x +2)2=2x +4;(3)(3x +1)2-4=0;(4)4x 2-12x +5=0;(5)4(x -1)2-9(3-2x)2=0.16.(6分)当x 为何值时,32x 2+14(x -1)和13(x -2)互为相反数?17.(8分)向阳村2013年的人均收入为12 000元,2015年的人均收入为14 520元.求人均收入的年平均增长率.18.(10分)(淮安中考)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元.请问她购买了多少件这种服装?参考答案1.A2.A3.A4.C5.C6.B7.D8.D9.x 1=0,x 2=2 10.1 11.7 3 12.25 13.x(x +1)=3 14. 515.(1)x 1=-1,x 2=3.(2)x 1=0,x 2=-2.(3)x 1=13,x 2=-1.(4)x 1=52,x 2=12.(5)x 1=74,x 2=118. 16.∵32x 2+14(x -1)和13(x -2)互为相反数,∴32x 2+14(x -1)+13(x -2)=0.解得x 1=-1,x 2=1118.∴当x 为-1或1118时,32x 2+14(x -1)和13(x-2)互为相反数.17.设人均收入的年平均增长率为x ,根据题意得12 000(1+x)2=14 520.解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去).答:人均收入的年平均增长率为10%.18.设购买了x 件这种服装,根据题意,得[80-2(x -10)]x =1 200.解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不合题意,舍去.∴x =20.答:她购买了20件这种服装.章末复习(一) 一元二次方程基础题 知识点1 一元二次方程的有关概念1.(诏安模拟)已知m 是方程x 2-x -1=0的一个根,则代数式m 2-m 的值等于( )A .-1B .0C .1D .22.方程(a -2)xa 2-2+3x =0是关于x 的一元二次方程,则a 的值为________.知识点2 一元二次方程的解法3.(宁夏中考)一元二次方程x(x -2)=2-x 的根是( )A .-1B .2C .1和2D .-1和24.(随州中考)用配方法解一元二次方程x 2-6x -4=0,下列变形正确的是( )A .(x -6)2=-4+36B .(x -6)2=4+36C .(x -3)2=-4+9D .(x -3)2=4+95.(深圳校级模拟)一元二次方程4x 2-x =1的解是( )A .x =0B .x 1=0,x 2=4C .x 1=0,x 2=14D .x 1=1+178,x 2=1-1786.解下列一元二次方程:(1)(2x +3)2-81=0;(2)x 2-6x -2=0;(3)5x(3x +2)=6x +4.知识点3 一元二次方程根的判别式及根与系数的关系 7.(湘西中考)下列方程中,没有实数根的是( )A .x 2-4x +4=0B .x 2-2x +5=0C .x 2-2x =0D .x 2-2x -3=08.(张家界中考)若关于x 的一元二次方程kx 2-4x +3=0有实数根,则k 的非负整数值是( )A.1 B.0,1C.1,2 D.1,2,39.(怀化中考)设x1,x2是方程x2+5x-3=0的两个根,则x21+x22的值是( )A.19 B.25 C.31 D.3010.(内江中考)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.知识点4 用一元二次方程解决实际问题11.(佛山中考)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是( )A.7 mB.8 mC.9 mD.10 m12.(东营中考)2013年东营市某楼盘以每平方米6 500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米 5 265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)中档题13.(安顺中考)三角形两边的长是3和4,第三边的长是方程x2-12x +35=0的根,则该三角形的周长为( )A.14 B.12C.12或14 D.以上都不对14.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过第象限( )A.四 B.三C.二 D.一15.已知x=1是关于x的方程(1-k)x2+k2x-1=0的根,则常数k 的值为________.16.(随州中考)观察下列图形规律:当n=________时,图形“●”的个数和“△”的个数相等.17.(毕节中考)一个容器盛满纯药液40 L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10 L ,则每次倒出的液体是________L.18.(日照中考)如果m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3,那么代数式2n 2-mn +2m +2 015=________.19.(乌鲁木齐中考)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?20.阅读下列例题的解答过程:解方程:3(x -2)2+7(x -2)+4=0.解:设x -2=y ,则原方程化为:3y 2+7y +4=0. ∵a =3,b =7,c =4,∴b 2-4ac =72-4×3×4=1. ∴y =-7±12×3=-7±16.∴y 1=-1,y 2=-43.当y =-1时,x -2=-1,∴x =1;当y =-43时,x -2=-43,∴x =23.∴原方程的解为:x 1=1,x 2=23.请仿照上面的例题解一元二次方程:2(x -3)2-5(x -3)-7=0. 综合题21.(广元中考)李明准备进行如下操作实验:把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积和等于58 cm 2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm 2.你认为他的说法正确吗?请说明理由.参考答案基础题1.C2.-23.D4.D5.D6.(1)(2x +3)2=81.x 1=3,x 2=-6. (2)x 1=3+11,x 2=3-11.(3)(3x +2)(5x -2)=0.x 1=-23,x 2=25.7.B 8.A 9.C 10.2 11.A12.(1)设平均每年下调的百分率为x ,根据题意,得6 500(1-x)2=5 265.解得x 1=0.1=10%,x 2=1.9(不合题意,舍去).答:平均每年下调的百分率为10%.(2)如果下调的百分率相同,2016年的房价为:5 265×(1-10%)=4 738.5(元/m 2).则100平方米的住房的总房款为:100×4 738.5=473 850(元)=47.385(万元).∵20+30>47.385,∴张强的愿望可以实现.中档题13.B 14.D 15.0或1 16.5 17.20 18.2 02619.设降价x 元,则售价为(60-x)元,销售量为(300+20x)件,根据题意,得(60-x -40)(300+20x)=6 080,解得x 1=1,x 2=4,又因为顾客得实惠,故取x =4,即定价为56元.答:应将销售单价定为56元.20.设x -3=y.则原方程化为:2y 2-5y -7=0.∵a =2,b =-5,c =-7,∴b 2-4ac =(-5)2-4×2×(-7)=81.∴y =5±812×2=5±94.∴y 1=-1,y 2=72.当y =-1时,x -3=-1,∴x =2;当y =72时,x-3=72,∴x =132.∴原方程的解为:x 1=2,x 2=132.综合题21.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm ,由题意得x 2+(10-x)2=58.解得x 1=3,x 2=7,∴这两个正方形的周长分别为4×3=12(cm),4×7=28(cm),∴李明应该把铁丝剪成12 cm 和28 cm 的两段.(2)李明的说法正确.设其中一个正方形的边长为y cm ,则另一个正方形的边长为(10-y)cm ,由题意得y 2+(10-y)2=48,整理得y 2-10y +26=0,∵Δ=(-10)2-4×1×26=-4<0,∴此方程无实数根.即这两个正方形的面积之和不能等于48 cm 2.∴李明的说法是正确的.。

人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷含答案解析(33)

人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷含答案解析(33)

人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷(共22题)一、选择题(共10题)1.若不等式x2+mx+1>0的解集为R,则m的取值范围是()A.R B.(−2,2)C.(−∞,−2)∪(2,+∞)D.[−2,2]2.某公司一年购买某种货物600吨,每次都购买x吨,运费为3万元/次,一年的总存储费用为2x万元,若要使一年的总运费与总存储费用之和最小,则每次需购买( )吨.A.20B.30C.40D.153.已知a,b∈R,且a−3b+6=0,则2a+18b的最小值为( )A.14B.4C.52D.34.若关于x的不等式kx2−kx<1的解集是全体实数,则实数k的取值范围是( )A.(−4,0)B.(−4,0]C.(−∞,−4)∪(0,+∞)D.(−∞,−4)∪[0,+∞)5.在R上定义运算“⊙”: a⊙b=ab+2a+b,则满足x⊙(x−2)<0的实数x则的取值范围为( )A.(0,2)B.(−2,1)C.(−∞,−2)∪(1,+∞)D.(−1,2)6.当1≤x≤4时,若关于x的不等式2x2−8x−4−a>0有解,则实数a的取值范围是( )A.{a∣ a<−4}B.{a∣ a>−4}C.{a∣ a>−12}D.{a∣ a<−12}7.为不断满足人民日益增长的美好生活需要,实现群众对舒适的居住条件、更优美的环境、更丰富的精神文化生活的追求,某大型广场正计划进行升级改造.改造的重点工程之一是新建一个长方形音乐喷泉综合体A1B1C1D1,该项目由长方形核心喷泉区ABCD(阴影部分)和四周绿化带组成.规划核心喷泉区ABCD的面积为1000m2,绿化带的宽分别为2m和5m(如图所示).当整个项目占地A1B1C1D1面积最小时,则核心喷泉区BC的长度为( )A . 20 mB . 50 mC . 10√10 mD . 100 m8. 已知 x >0,y >0,满足 x 2+2xy −1=0,则 2x +y 的最小值是 ( ) A .√22B . √2C .√32D . √39. 不等式组 {−2(x −3)>10,x 2+7x +12≤0 的解集为 ( )A . [−4,−3]B . [−4,−2]C . [−3,−2]D . ∅10. 已知 x ,y 为正实数,则 4xx+3y +3y x的最小值为 ( )A . 53B .103C . 32D . 3二、填空题(共6题) 11. 已知 m =a +1a−2(a >2),n =22−b 2(b ≠0),则 m n .12. 已知 a <b ,若二次不等式 ax 2+bx +c ≥0 对任意实数 x 恒成立,则 M =a+2b+4c b−a的最小值为 .13. 已知 a >0,b >−1,且 a +b =1,则 a 2+2a+b 2b+1的最小值为 .14. 已知 a,b,c ∈R +,且 ab +2ac =4,则 2a +2b+2c +8a+b+2c的最小值是 .15. 已知 a >0,b >0,则 22a+√2b的最小值为 .16. 若正实数 a ,b 满足 a +b =4,则 1a+1+4b+1 的最小值是 .三、解答题(共6题)17.已知a>0,b>0,且2a+b=1.求S=2√ab−4a2−b2的最大值.18.(1) 若a∈R,解关于x的不等式:(x+a−2)(x+2a2−4a)≥0.(2) 若−1≤a≤2时,不等式(x+a−2)(x+2a2−4a)≥0恒成立,求x的取值范围.19.已知函数f(x)=mx2−mx−1.若对于x∈[1,3],存在x,使f(x)<5−m成立,如何求m的取值范围?20.已知不等式ax2−3x+b<0的解集为(1,2),设函数f(x)=ax2+(c−b)x−bc.(1) 求a,b的值;(2) 求f(x)<0的解集.21.某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙用砖,每米长造价45元,顶部每平方米造价20元.计算:(1) 仓库底面积S的最大允许值是多少?(2) 为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?22.解下列关于x的不等式.(1) log2(x2−4x)<5.(2) ax2−(a+1)x+1<0(a∈R).答案一、选择题(共10题) 1. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x 2+mx +1>0的解集为R ,∴△=m 2−4<0,解得−2<m <2. ∴m 的取值范围是(−2,2). 故选:B .【点评】熟练掌握一元二次不等式的解法是解题的关键.2. 【答案】B【知识点】均值不等式的实际应用问题3. 【答案】C【知识点】均值不等式的应用4. 【答案】B【解析】当 k =0 时,0<1 恒成立,当 k ≠0 时,要使 kx 2−kx −1<0 的解集是全体实数, 只需满足 {k <0,Δ=(−k )2+4k <0,解得 −4<k <0.故实数 k 的取值范围是 (−4,0]. 【知识点】二次不等式的解法5. 【答案】B【解析】根据给出的定义得 x ⊙(x −2)=x (x −2)+2x +(x −2)=x 2+x −2=(x +2)(x −1),由 x ⊙(x −2)<0 得 (x +2)(x −1)<0,解得 −2<x <1,故该不等式的解集是 (−2,1). 【知识点】二次不等式的解法6. 【答案】A【解析】原不等式 2x 2−8x −4−a >0 可化为 a <2x 2−8x −4,由题意,可知只需当 1≤x ≤4 时,a 小于 y =2x 2−8x −4 的最大值,易得当 1≤x ≤4 时,y =2x 2−8x −4 的最大值是 −4,所以 a <−4. 【知识点】二次不等式的解法7. 【答案】B【解析】设 BC =x ,则 CD =1000x,所以,S平行四边形A1B1C1D1=(x+10)(1000x+4)=1040+(4x+10000x)≥1040+2√4x⋅10000x =1440,当且仅当4x=10000x,即x=50时,取“=”号,所以当x=50时,S平行四边形A1B1C1D1最小.【知识点】均值不等式的实际应用问题8. 【答案】D【解析】因为正实数x,y满足x2+2xy−1=0,所以y=12x −x2,所以2x+y=2x+12x −x2=32x+12x=12(3x+1x)≥12×2√3x⋅1x=√3,当且仅当x=√33时取等号,所以2x+y的最小值为√3,故选D.【知识点】均值不等式的应用9. 【答案】A【解析】{−2(x−3)>10,x2+7x+12≤0⇒{x−3<−5,(x+3)(x+4)≤0⇒{x<−2,−4≤x≤−3⇒−4≤x≤−3.【知识点】二次不等式的解法10. 【答案】D【解析】因为x,y为正实数,所以4xx+3y +3yx=41+3yx+(1+3yx)−1≥2⋅√41+3yx⋅(1+3yx)−1=3,当且仅当41+3yx =1+3yx时,即“x=3y”时“=”成立.【知识点】均值不等式的应用二、填空题(共6题)11. 【答案】>【解析】因为a>2,所以a−2>0,又因为m=a+1a−2=(a−2)+1a−2+2≥2√(a−2)⋅1a−2+2=4,当且仅当a−2=1a−2,即(a−2)2=1,又a−2>0,所以a−2=1,即a=3时取等号.所以m≥4.因为b≠0,所以b2≠0,所以2−b2<2,所以22−b2<4,即n<4,所以m>n.【知识点】均值不等式的应用12. 【答案】8【解析】由条件知a>0,b−a>0.由题意得Δ=b2−4ac≤0,解得c≥b24a,所以M=a+2b+4cb−a≥a+2b+4⋅b2 4ab−a=a2+2ab+b2a(b−a)=[2a+(b−a)]2a(b−a)=(b−a)2+4a(b−a)+4a2a b−a=b−aa +4ab−a+4≥2√b−aa ⋅4ab−a+4=4+4=8,当且仅当b=3a时等号成立,所以M的最小值为8.【知识点】均值不等式的应用13. 【答案】3+2√22【解析】a2+2a+b2b+1=a+2a+(b+1)2−2(b+1)+1b+1=a+2a+b+1−2+1b+1,又a+b=1,a>0,b+1>0,所以a+2a +b+1−2+1b+1=2a+1b+1=(2a+1b+1)(a2+b+12)=32+b+1a+a2(b+1)≥32+2√b+1a⋅a2(b+1)=3+2√22,当且仅当b+1a =a2(b+1)即a=4−2√2,b=2√2−3时取等号,所以a 2+2a+b2b+1的最小值为3+2√22.【知识点】均值不等式的应用14. 【答案】4【知识点】均值不等式的应用15. 【答案】2【知识点】均值不等式的应用16. 【答案】 32【解析】因为 a >b ,b >0,且 a +b =4, 则 a +1+b +1=6, 所以 a+16+b+16=1,所以1a+1+4b+1=(1a+1+4b+1)(a+16+b+16)=16+23+2(a+1)3(b+1)+b+16(a+1)≥56+2√2(a+1)3(b+1)⋅(b+1)6(a+1)=32,当且仅当 2(a+1)3(b+1)=b+16(a+1) 时,等号成立, 即 b +1=2(a +1),即 a =1,b =3 时,1a+1+4b+1取得最小值为 32.【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】因为 a >0,b >0,2a +b =1,所以 4a 2+b 2=(2a +b )2−4ab =1−4ab ,且 1=2a +b ≥2√2ab , 即 √ab ≤√24,ab ≤18,所以 S =2√ab −4a 2−b 2=2√ab −(1−4ab )=2√ab +4ab −1≤√2−12, 当且仅当 a =14,b =12 时,等号成立.因此,当 a =14,b =12 时,S 的最大值为 √2−12. 【知识点】均值不等式的应用18. 【答案】(1) 原不等式即:[x −(2−a )]×[x −(4a −2a 2)]≥0,方程 [x −(2−a )]×[x −(4a −2a 2)]=0 的二根为 2−a ,4a −2a 2, 令 2−a <4a −2a 2 即 2a 2−5a +2<0,解得 12<a <2,所以当 12<a <2 时,原不等式解集为 {x∣ x ≥4a −2a 2或x ≤2−a}.令 2−a =4a −2a 2 即 2a 2−5a +2=0,解得 a =12 或 a =2, 所以当 a =12 或 a =2 时,原不等式解集为 R .令 2−a >4a −2a 2 即 2a 2−5a +2>0,解得 a <12或 a >2,所以当 a <12或 a >2 时,原不等式解集为 {x∣ x ≥2−a 或x ≤4a −2a 2}.(2) 因为 −1≤a ≤2, 所以 0≤2−a ≤3,因为 4a −2a 2=−2(a −1)2+2, 所以 −6≤4a −2a 2≤2,所以当 −1≤a ≤2 时,2−a ,4a −2a 2 二式的最小值为 −6,最大值为 3. 所以欲使 −1≤a ≤2 时,不等式 [x −(2−a )]×[x −(4a −2a 2)]≥0 恒成立, 应有 x ≤−6 或 x ≥3.【知识点】恒成立问题、二次不等式的解法19. 【答案】由题意知 f (x )<5−m 有解,即 m <6x 2−x+1有解,则 m <(6x 2−x+1)max,又 x ∈[1,3],得 m <6,即 m 的取值范围为 (−∞,6). 【知识点】二次不等式的解法20. 【答案】(1) 因为不等式 ax 2−3x +b <0 的解集为 (1,2), 所以 1 和 2 是关于 x 的方程 ax 2−3x +b =0 的两个根, 由根与系数的关系得 {1+2=−−3a,1×2=ba ,所以 a =1,b =2.(2) 由(1)知 f (x )=ax 2+(c −b )x −bc =x 2+(c −2)x −2c , f (x )=(x −2)(x +c )<0,不等式对应的方程的两根为 2 和 −c . 当 c >−2,即 −c <2 时,−c <x <2; 当 c =−2,即 −c =2 时,(x −2)2<0 无解; 当 c <−2,即 −c >2 时,2<x <−c .综上所述,当 c >−2 时,不等式的解集为 {x∣ −c <x <2}; 当 c =−2 时,不等式的解集为 ∅;当 c <−2 时,不等式的解集为 {x∣ 2<x <−c }. 【知识点】二次不等式的解法21. 【答案】(1) 设正面铁栅长 x m ,侧面长为 y m ,总造价为 z 元,则 z =40x +2×45y +20xy =40x +90y +20xy ,仓库底面积 S =yx m 2.由题意知 z ≤3200,即 4x +9y +2xy ≤320. 因为 x >0,y >0,所以 4x +9y ≥2√4x ⋅9y =12√xy , 当且仅当 4x =9y 时,等号成立,所以 6√S +S ≤160,即 (√S)2+6√S −160≤0, 所以 0<√S ≤10, 所以 0<S ≤100.故 S 的最大允许值为 100 m 2.(2) 当 S =100 m 2 时,4x =9y ,且 xy =100. 解得 x =15,y =203.故正面铁栅长应设计为 15 m . 【知识点】均值不等式的实际应用问题22. 【答案】(1) 因为 log 2(x 2−4x )<5,所以 {x 2−4x >0,x 2−4x <32 即 {x <0或x >4,−4<x <8,解得 −4<x <0 或 4<x <8,故不等式 log 2(x 2−4x )<5 的解集为 (−4,0)∪(4,8). (2) ax 2−(a +1)x +1<0 等价于 (ax −1)(x −1)<0, 当 a >0 时,若 0<a <1,则 1a >1,此时 1<x <1a ; 若 a =1,则不等式为 (x −1)2<0,此时无解; 若 a >1,则1a<1,此时1a<x <1,当 a =0 时,不等式为 −x +1<0,此时 x >1; 当 a <0 时,1a<0,此时,x <−1a或 x >1,综上,当 0<a <1 时,解集为 (1,1a );当 a =1 时,解集为 ∅; 当 a >1 时,解集为 (1a ,1); 当 a =0 时,解集为 (1,+∞);)∪(1,+∞).当a<0时,解集为(−∞,−1a【知识点】简单的对数方程与不等式(沪教版)、二次不等式的解法11。

人教版2020-2021学年九年级数学上册第二十一章一元二次方程单元测试题(含答案)

人教版2020-2021学年九年级数学上册第二十一章一元二次方程单元测试题(含答案)

第二十一章一元二次方程单元测试卷[时间:120分钟 分值:120分]一、选择题(本大题共6小题,每小题3分,共18分) 1.下列方程是一元二次方程的是( ) A.x 2=2x +3 B .x 2+1=2xy C.x 2+1x=3D .2x +y =12.若方程4x 2=81-9x 化成一般形式后,二次项系数为4,则一次项是( ) A.9 B .-9x C.9xD .-93.用配方法解一元二次方程x 2-2x -1=0时,下列配方正确的是( ) A.(x -1)2+1=0 B .(x +1)2+1=0 C.(x -1)2-1=0D .(x -1)2-2=04.若方程x 2+9x +9=0的两根为x 1,x 2,则x 1+x 2-x 1x 2的值为( ) A.-18B .18C.9D .05.学校组织一次乒乓球赛,要求每两队之间都要比赛一场.若共比赛了28场,则有几个球队参赛?设有x 个球队参赛,则列方程为( )A.12x (x +1)=28B.12x (x -1)=28 C.x (x +1)=28D .x (x -1)=286.若方程x 2-9x +18=0的两个根分别是等腰三角形的底边长和腰长,则这个等腰三角形的周长为( )A.12或15 B .12 C.15D .20二、填空题(本大题共6小题,每小题3分,共18分) 7.方程x 2=9x 的解是______________.8.若关于x 的方程(a +2)xa 2-2+3x -5=0是一元二次方程,则a =________. 9.若a 是方程2x 2-4x -6=0的一个根,则代数式a 2-2a 的值是________.10.若关于x 的一元二次方程(m -1)x 2-4x +1=0有两个不相等的实数根,则m 的取值范围为____________.11.设a ,b 是方程x 2+x -2020=0的两个实数根,则a 2+2a +b 的值为________.12.对于实数a ,b ,规定a *b =⎩⎪⎨⎪⎧a 2-ab (a ≥b ),ab -a 2(a <b ).例如2*3,因为2<3,所以2*3=2×3-22=2.若x 1,x 2是方程x 2-2x -3=0的两根,则x 1*x 2=__________.三、解答题(本大题共5小题,每小题6分,共30分) 13.解方程:(1)x 2-4x +2=0; (2)x (x -1)=2(x -1).14.当x 为何值时,代数式(x -1)2与(3-2x )2的值相等?15.已知关于x 的一元二次方程(k +1)x 2-3x -3k -2=0有一个根为-1,求k 的值及方程的另一个根.16.某公司今年1月份的生产成本是400万元,由于改进生产技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2,3,4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.17.已知关于x的一元二次方程x2+(2m-1)x+m2-1=0有实数根.(1)求实数m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.四、解答题(本大题共3小题,每小题8分,共24分)18.已知关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:该方程总有两个实数根;(2)若该方程有一个根小于1,求k的取值范围.19.如图,要设计一幅宽20 cm,长30 cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2∶1,如果要使彩条所占的面积是图案面积的1975,应如何设计彩条的宽度?20.阅读下面的材料,解答后面的问题. 解方程:x 4-3x 2+2=0.解:设x 2=y ,则原方程变为y 2-3y +2=0,解得y 1=1,y 2=2. 当y =1时,x 2=1,解得x =±1; 当y =2时,x 2=2,解得x =± 2.综上所述,原方程的解为x 1=1,x 2=-1,x 3=2,x 4=- 2. 问题:(1)上述解答过程采用的数学思想方法是( ) A.加减消元法 B .代入消元法 C.换元法D .待定系数法(2)采用类似的方法解方程:(x 2-2x )2-x 2+2x -6=0.五、解答题(本大题共2小题,每小题9分,共18分)21.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元.经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和每台售价x(单位:万元)成一次函数关系.(1)求年销售量y与每台售价x之间的函数关系式(不要求写自变量的取值范围);(2)根据相关规定,每台设备的售价不得高于70万元,若该公司想获得10000万元的年利润,则每台设备的售价应是多少万元?22.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2-6x+8=0的根是x1=2,x2=4,则方程x2-6x+8=0是“倍根方程”.(1)根据上述定义,一元二次方程2x2+x-1=0________(填“是”或“不是”)“倍根方程”;(2)若一元二次方程x2-3x+c=0是“倍根方程”,求c的值;(3)若(x-2)(mx-n)=0(m≠0)是“倍根方程”,求代数式4m2-5mn+n2的值.六、解答题(本大题共12分)23.如图所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm.点P从点A开始沿AB边向点B以1 cm/s 的速度移动,同时点Q从点B开始沿BC边向点C以2 cm/s的速度移动.(1)经过几秒,点P,Q之间的距离为 6 cm?(2)经过几秒,△PBQ的面积等于8 cm2?(3)若点P沿射线AB方向从点A出发以1 cm/s的速度移动,同时点Q沿射线CB方向从点C出发以2 cm/s 的速度移动,几秒后,△PBQ的面积为1 cm2?参考答案1.A 2.C 3.D 4.A 5.B 6.C 7.x 1=0,x 2=9 8.2 9.310.m<5且m ≠1 11.2019 12.12或-4 13.解:(1)移项,得x 2-4x =-2, (x -2)2=2,x -2=±2, ∴x 1=2+2,x 2=2- 2.(2)x(x -1)=2(x -1),x(x -1)-2(x -1)=0, (x -1)(x -2)=0, x -1=0或x -2=0, ∴x 1=1,x 2=2.14.解:(x -1)2=(3-2x)2,∴x -1=±(3-2x),∴x -1=3-2x 或x -1=-(3-2x),∴x =43或x =2.即当x 的值为43或2时,代数式(x -1)2与(3-2x)2的值相等.15.解:将x =-1代入(k +1)x 2-3x -3k -2=0,解得k =1,∴原方程为2x 2-3x -5=0.设方程的另一个根为x 1,由根与系数的关系可知:-x 1=-52,∴x 1=52.即k 的值为1,方程的另一个根为52.16.解:(1)设每个月生产成本的下降率为x.根据题意,得400(1-x)2=361.解得x 1=0.05=5%,x 2=1.95(不合题意,舍去). 答:每个月生产成本的下降率为5%. (2)361×(1-5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.17.解:(1)根据题意,得Δ=(2m -1)2-4(m 2-1)≥0,解得m ≤54.(2)m 的最大整数值为1,则方程为x 2+x =0,解得x 1=-1,x 2=0. 18.解:(1)证明:∵在方程x 2-(k +3)x +2k +2=0中, Δ=[-(k +3)]2-4×1×(2k +2)=k 2-2k +1=(k -1)2≥0, ∴该方程总有两个实数根.(2)∵x =k +3±(k -1)22=k +3±(k -1)2,∴x 1=2,x 2=k +1.∵该方程有一个根小于1,∴k +1<1,解得k<0,∴k 的取值范围为k<0.19.解:设竖彩条的宽为x cm ,则横彩条的宽为2x cm.由题意,得(30-2x)(20-4x)=30×20×(1-1975),整理,得x 2-20x +19=0,解得x 1=1,x 2=19(不合题意,舍去).∴竖彩条的宽为1 cm ,横彩条的宽为2 cm. 20.解:(1)C(2)设x 2-2x =y ,则原方程变为y 2-y -6=0, 解得y 1=3,y 2=-2.当y =3时,x 2-2x =3,解得x 1=-1,x 2=3; 当y =-2时,x 2-2x =-2,此方程无解. 综上所述,原方程的解为x 1=-1,x 2=3.21.解:(1)∵此设备的年销售量y(单位:台)和每台售价x(单位:万元)成一次函数关系,∴可设y =kx +b.将数据代入可得⎩⎪⎨⎪⎧40k +b =600,45k +b =550,解得⎩⎪⎨⎪⎧k =-10,b =1000,∴年销售量y 与每台售价x 之间的函数关系式是y =-10x +1000. (2)∵每台设备的售价是x 万元,成本价是30万元, ∴每台设备的利润为(x -30)万元. 由题意得(x -30)(-10x +1000)=10000, 解得x 1=80,x 2=50.∵每台设备的售价不得高于70万元,即x ≤70, ∴x =80不合题意,故舍去,∴x =50.∴若该公司想获得10000万元的年利润,则每台设备的售价应是50万元. 22.解:(1)2x 2+x -1=0,(2x -1)(x +1)=0,解得x 1=12,x 2=-1,故一元二次方程2x 2+x -1=0不是“倍根方程”.故应填不是.(2)设方程x 2-3x +c =0的两个根为x 1,x 2,且x 1=2x 2,则x 1+x 2=3x 2=3, ∴x 2=1,∴x 1=2,∴c =x 1x 2=2.(3)由(x -2)(mx -n)=0(m ≠0)是“倍根方程”,且该方程的两根分别为x =2和x =n m ,可知n m =4或nm =1.当nm=4时,n =4m ,则原式=(m -n)(4m -n)=0;当nm =1时,n =m ,则原式=(m -n)(4m -n)=0. 综上所述,代数式4m 2-5mn +n 2的值为0.23.解:(1)设经过x 秒,点P ,Q 之间的距离为 6 cm , 则AP =x cm ,QB =2x cm.∵AB =6 cm ,BC =8 cm ,∴PB =(6-x)cm. ∵在△ABC 中,∠B =90°,∴由勾股定理,得(6-x)2+(2x)2=6,化简,得5x 2-12x +30=0. ∵Δ=b 2-4ac =(-12)2-4×5×30=144-600<0, ∴点P ,Q 之间的距离不可能为 6 cm.(2)设经过y 秒,△PBQ 的面积等于8 cm 2.由题意得12(6-y)·2y =8,解得y 1=2,y 2=4.经检验,y 1,y 2均符合题意. ∴经过2秒或4秒,△PBQ 的面积等于8 cm 2. (3)①当点P 在线段AB 上,点Q 在线段CB 上时,设移动时间为m 秒,则0<m ≤4,依题意得12(6-m)(8-2m)=1,∴m 2-10m +23=0,解得m 1=5+2(舍去),m 2=5-2; ②当点P 在线段AB 上,点Q 在线段CB 的延长线上时, 设移动时间为n 秒,则4<n ≤6,依题意得12(6-n)(2n -8)=1,∴n 2-10n +25=0,解得n 1=n 2=5;③当点P 在线段AB 的延长线上,点Q 在线段CB 的延长线上时,设移动时间为k 秒,则k>6,依题意得12(k -6)(2k -8)=1,∴k 2-10k +23=0,解得k 1=5+2,k 2=5-2(舍去).综上,经过(5-2)秒或5秒或(5+2)秒,△PBQ 的面积为1 cm 2.1、人生如逆旅,我亦是行人。

一元二次函数经典题目带答案附解析

一元二次函数经典题目带答案附解析

一元二次函数经典题目带答案附解析一、单选题(共7题;共14分)1.如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C点,OA=OC则由抛物线的特征写出如下结论()A. abc>0B. 4ac-b2>0C. a-b+c>0D. ac+b+1=02.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A. abc<0B. b2﹣4ac<0C. a﹣b+c<0D. 2a+b=03.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.4.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为( )A. 27B. 23C. 22D. 185.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB 绕点O逆时针旋转90°,点B的对应点的坐标是()A. B. C. D.6.如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40m,点C是AB的中点,且CD=10m,则这段弯路所在圆的半径为()A. 25mB. 24mC. 30mD. 60m7.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A. B. 2 C. 2 D. (1+2 )二、填空题(共2题;共2分)8.柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:种子数n 30 75 130 210 480 856 1250 2300发芽数m 28 72 125 200 457 814 1187 21850.9333 0.9600 0.9615 0.9524 0.9521 0.9509 0.9496 0.9500发芽频率依据上面的数据可以估计,这种植物种子在该实验条件下发芽的概率约是________(结果精确到0.01). 9.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是________.三、作图题(共1题;共5分)10.已知:在平面直角坐标系中,的三个顶点的坐标分别为,,.①画出关于原点成中心对称的,并写出点的坐标;②画出将绕点按顺时针旋转所得的.四、综合题(共13题;共178分)11.如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,﹣5),对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.12.已知函数y=x2+bx+c(b,c为常数)的图象经过点(-2,4)(1)求b,c满足的关系式(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式(3)若该函数的图象不经过第三象限,当-5sx≤1时,函数的最大值与最小值之差为16,求b的值13.已知抛物线y=2x2-4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m与n的大小,并说明理由.14.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.(1)请写出与之间的函数表达式;(2)当为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?15.如图所示・二次函数的图像与一次函数的图像交于A、B两点,点B 在点A的右側,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图像的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由.16.如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标。

一元二次方程和一元二次函数真题及答案

一元二次方程和一元二次函数真题及答案

一元二次方程和一元二次函数一元二次方程:20(0)ax bx c a ++=≠(1) 若方程没有实根:判别式240b ac ∆=-< (2) 若方程有两个相等实根:判别式240b ac ∆=-=(3) 若方程有两个不等的实根:判别式240b ac ∆=->注:若方程有两个实根:判别式240b ac ∆=-≥ 若方程有两个实根,记为12x x 、则:12b x a -+=、22b x a--=2121222221212122212121240()22()()b ac c x x a b x x a b c x x x x x x a a x x x x x x ⎧∆=-≥⎪⎪=⎪⎪⎪+=-⎨⎪⎪⎛⎫+=+-=-⎪ ⎪⎝⎭⎪⎪-=+-⎩g g g g一元二次函数: 函数)0(2≠++=a c bx ax y 叫做一元二次函数。

配方写成顶点式:a b ac a b x a y 44)2(22-++=(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线ab x 2-=。

(2)当0>a ,函数图象开口向上,y 有最小值,ab ac y 442min-=,无最大值。

函数在区间)2,(a b --∞上是减函数,在),2(+∞-ab上是增函数。

2ba=-24)4ac b a-(3) 当0a <,函数图象开口向下,y 有最大值,ab ac y 442max-=,无最小值。

当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。

2ba-244ac b a-两点间距离公式:11(,)A x y 、22(,)B x yd =图像的移动:x 的系数为正先加后减 先左后右 先上后下例1:2(0)y ax a =≠怎么样变为)0(2≠++=a c bx ax y第一步:将被平移的二次函数的x 系数变为正,并化为顶点式。

2(0)0y a x =-+ 移动为: ab ac a b x a y 44)2(22-++=先左移2b a ,变为2()2b y a x a=+ 再上移244ac b a -,变为ab ac a b x a y 44)2(22-++=另:先上移244ac b a -,变为2244ac b y ax a -=+再左移2ba,变为a b ac a b x a y 44)2(22-++=例2:23y x =-+先向右平移3个单位,再向下平移2个单位。

专题21.1 一元二次方程基础解析版

专题21.1 一元二次方程目录一元二次方程的定义 (1)一元二次方程项数系数 (4)一元二次方程含参 (5)一元二次方程的解 (6)直接开平方法 (9)配方法 (11)一元二次方程判别式 (15)含参求根的辨别式 (16)根的辨别式综合运用 (17)因式分解法 (19)十字相乘 (21)根与系数的关系..............................................................................................................................22一元二次方程的定义【例1】下列方程中,不是一元二次方程的是( )A .21x x =+B .276x x -=C .24573x x -=-D .2650x --=【解答】解:A .根据一元二次方程的定义,21x x =+是一元二次方程,那么A 不符合题意.B .根据一元二次方程的定义,276x x -=是一元二次方程,那么B 不符合题意.C .根据一元二次方程的定义,24573x x -=-不是一元二次方程,那么C 符合题意.D .根据一元二次方程的定义,2650x --=是一元二次方程,那么D 不符合题意.故选:C .【变式训练1】下列方程中是一元二次方程的是( )A .22(2)4x x -+=B .2220x x ++=C .2130x x +-=D .21xy +=【解答】解:A .由22(2)4x x -+=,得40x =,那么22(2)4x x -+=不是一元二次方程,故A 不符合题意.B .根据一元二次方程的定义,2220x x ++=是一元二次方程,故B 符合题意.C .根据一元二次方程的定义,2130x x+-=不是一元二次方程,而是分式方程,故C 不符合题意.D .根据一元二次方程,21xy +=不是一元二次方程,故D 不符合题意.故选:B .【变式训练2】下列是一元二次方程的是( )A .20ax bx c ++=B .22x x -=C .22(2)x x x -=-D .11x x+=【解答】解:A 、当0a =时,不属于一元二次方程,故该选项不符合题意;B 、它符合一元二次方程的定义,故该选项符合题意;C 、化简后它不含有二次项,不属于一元二次方程,故该选项不符合题意;D 、是分式方程,不属于一元二次方程,故该选项不符合题意.故选:B .【变式训练3】下列方程是关于x 的一元二次方程的是( )A .211x x +=B .20ax bx c ++=C .(1)(2)1x x ++=D .22(3)4x x -+=【解答】解:A .该方程是分式方程,故本选项不合题意;B .当0a =时,20ax bx c ++=不是关于x 的一元二次方程,故本选项不合题意;C .该方程是一元二次方程,故本选项符合题意;D 、化简后不是一元二次方程,故此选项不符合题意;故选:C .【例2】已知关于x 的方程21(1)230mm x x +-+-=是一元二次方程.(1)求m 的值;(2)解该一元二次方程.【解答】解:(1)Q 关于x 的方程21(1)230m m x x +-+-=是一元二次方程,\21012m m -¹ìí+=î,解得1m =-;(2)方程为22230x x -+-=,即22230x x -+=,2a =Q ,2b =-,3c =,224(2)423424200b ac \-=--´´=-=-<,故原方程无解.【变式训练1】已知方程|3|4(2)610a a x ax -+++=是关于x 的一元二次方程,求a 的值.【解答】解:Q 方程|3|4(2)610a a x ax -+++=是关于x 的一元二次方程,|3|42a \-=且20a +¹,解得:2a =.【变式训练2】已知关于x 的方程21(3m m x x --=,试问:(1)m 为何值时,该方程是关于x 的一元一次方程?(2)m 为何值时,该方程是关于x 的一元二次方程?【解答】解:(1)由题意,得211m -=,解得m =,当m =时,该方程是一元一次方程;0m =,解得m =,当m =时,该方程是一元一次方程;210m -=,解得1m =±,1m =±时,该方程是一元一次方程;(2)由题意,得212m -=且0m ¹,解得m =,当m =时,该方程是关于x 的一元二次方程.【变式训练3】关于x 的方程21(43)5130k k k x x --+-+=能否为一元二次方程?若能,求出k 的值;若不能,请说明理由.【解答】解:若关于x 的方程21(43)5130k k k x x --+-+=是一元二次方程,则243012k k kì-+¹í-=î,k \无解,\关于x 的方程21(43)5130k k k x x --+-+=不能为一元二次方程.一元二次方程项数系数【例3】把一元二次方程(1)(1)3x x x +-=化成一般形式,正确的是( )A .2310x x --=B .2310x x -+=C .2310x x +-=D .2310x x ++=【解答】解:(1)(1)3x x x +-=,2130x x --=,即2310x x --=,故选:A .【变式训练1】一元二次方程2430x x +-=的一次项系数、二次项系数、常数项的和是( )A .1B .8C .7D .2【解答】解:关于x 的一元二次方程2430x x +-=的一次项系数、二次项系数、常数项分别为4、1和3-.所以一元二次方程2430x x +-=的一次项系数、二次项系数、常数项的和是4132+-=.故选:D .【变式训练2】方程2514x x -=化成一般形式后,二次项系数为正,其中一次项系数,常数项分别是( )A .4,1-B .4,1C .4-,1-D .4-,1【解答】解:2514x x -=化成一元二次方程一般形式是25410x x --=,它的一次项系数是4-,常数项是1-.故选:C .【变式训练3】把方程225(2)x x x +=-化成20ax bx c ++=的形式,则a ,b ,c 的值分别为( )A .1,3-,2B .1,7,10-C .1,5-,12D .1,3-,10【解答】解:225(2)x x x +=-,22510x x x +=-,225100x x x +-+=,23100x x -+=,则1a =,3b =-,10c =,故选:D .一元二次方程含参【例4】若关于x 的方程2(1)2a x -=为一元二次方程,则a 满足( )A .1a =B .1a ¹C .0a =D .0a ¹【解答】解:Q 方程2(1)2a x -=为一元二次方程,10a \-¹,解得1a ¹.故选:B .【变式训练1】若||1(3)(3)50m m x m x -+---=是关于x 的一元二次方程,则m 的值为( )A .3B .3-C .3±D .2±【解答】解:由题意可知:||1230m m -=ìí+¹î,解得:3m =,故选:A .【变式训练2】若方程||1(1)23m m x x +--=是关于x 的一元二次方程,则m 的值为( )A .1B .1-C .1±D .不存在【解答】解:由题意得:||12m +=,且10m -¹,解得:1m =-,故选:B .【变式训练3】已知关于x 的方程||(2)340m m x x ---=是一元二次方程,则( )A .2m ¹±B .2m =-C .2m =D .2m =±【解答】解:Q 关于x 的方程||(2)340m m x x ---=是一元二次方程,\20||2m m -¹ìí=î,解得2m =-,故选:B .一元二次方程的解【例5】已知m 为方程2320220x x +-=的根,那么32220252022m m m +-+的值为( )A .2022-B .0C .2022D .4044【解答】解:m Q 为方程2320220x x +-=的根,2320220m m \+-=,232022m m \+=,\原式3223320222022m m m m m =+---+22(3)(3)20222022m m m m m m =+-+-+2022202220222022m m =--+0=.【变式训练1】若a 是2320220x x --=的一个根,则231a a -+的值是( )A .2020B .2021C .2022D .2023【解答】解:a Q 是2320220x x --=的一个根,2320220a a \--=,232022a a \-=,231202212023a a \-+=+=.故选:D .【变式训练2】已知a 是方程2202210x x -+=的一个根,则22202220211a a a -++的值为( )A .12022B .2022C .2021D .无法计算【解答】解:a Q 是方程2202210x x -+=的一个根,2202210a a \-+=,即212022a a +=,220221a a =-,则2222022112021112022120211a a a a a a a +-+=-+=-=-=+.故选:C .【变式训练3】已知m 是一元二次方程2410x x -+=的一个根,则220214m m -+的值为( )A .2021-B .2021C .2020D .2022【解答】解:把x m =代入方程2410x x -+=得2410m m -+=,所以241m m -=-,所以22202142021(4)2021(1)2022m m m m -+=--=--=.故选:D .一元二次方程与三角形【例6】已知关于x 的方程2(1)4120a x x a ---+=,其中3x =是方程的一个根.(1)求a 的值及方程的另一个根;(2)若ABC D 的三条边长都是此方程的根,求ABC D 的周长.【解答】解:(1)把3x =代入方程得9(1)43120a a --´-+=,\原方程为2430x x -+=,(1)(3)0x x --=,11x \=,23x =,故它的另一个根是1;(2)由题意知,三角形的三边中至少有两条边相等,则有下列两种情形:①三边相等,边长为1,1,1;或3,3,3,那么三角形的周长是3或9;②仅有两边相等,1123+=<Q ,\三角形的边长只能为3,3,1,那么三角形的周长是7;由①、②知,三角形的周长可以是3或7或【变式训练1】已知2x =是关于x 的方程2(4)40x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 的两条边长.(1)求m 的值;(2)求ABC D 的周长.【解答】解:(1)把2x =代入方程2(4)40x m x m -++=得42(4)40m m -++=,解得2m =;(2)方程化为2680x x -+=,解得12x =,24x =,224+=Q ,\等腰三角形ABC 的腰长为4,底边长为2,ABC \D 的周长为44210++=.【变式训练2】已知关于x 的方程2(2)20x m x m -++=.(1)判断方程根的情况;(2)若两根异号,且正根的绝对值较大,求整数m 的值;(3)若等腰ABC D 的一边长为3,另两边的长恰好是方程的两个根,求ABC D 的周长.【解答】解:(1)Q △22(2)42(2)0m m m =+-×=-…,\方程有两个实数根;(2)2(2)2m m x +±-=,所以12x =,2x m =,Q 两根异号,正根的绝对值较大,20m \-<<,\整数m 的值为1-;(3)当2m =时,三角形三边为2、2、3,则三角形的周长为2237++=;当3m =时,三角形三边为2、3、3,则三角形的周长为2338++=.综上所述,三角形的周长为7或【变式训练3】已知2是关于x 的方程2230x mx m -+=的一个根,而这个方程的两个根恰好是等腰ABC D 的两条边长.(1)求m 的值;(2)求ABC D 的周长.【解答】解:(1)把2x =代入方程得4430m m -+=,解得4m =;(2)当4m =时,原方程变为28120x x -+=,解得12x =,26x =,Q 该方程的两个根恰好是等腰ABC D 的两条边长,且不存在三边为2,2,6的等腰三角形ABC \D 的腰为6,底边为2,ABC \D 的周长为66214++=.直接开平方法【例7】方程2(1)9x +=的解为( )A .2x =,4x =-B .2x =-,4x =C .4x =,2x =D .2x =-,4x =-【解答】解:方程2(1)9x +=,开方得:13x +=或13x +=-,解得:12x =,24x =-.故选:A .【变式训练1】一元二次方程2160x -=的根是( )A .4B .4-C .4±D .16【解答】解:2160x -=Q ,216x \=,4x \=±,故选:C .【变式训练2】解方程22(1)160x --=.【解答】解:22(1)160x --=,22(1)16x -=,2(1)8x -=,1x -=±11x \=-,21x =+.【变式训练3】解方程:24(3)250x --=.【解答】解:24(3)250x --=,24(3)25x -=,225(3)4x -=,532x \-=±,1112x \=,212x =.【例8】解方程:22(23)(32)x x +=+.【解答】解:方程:22(23)(32)x x +=+,开方得:2332x x +=+或2332x x +=--,解得:11x =,21x =-.【变式训练1】解方程:22(21)(3)x x -=-.【解答】解:21(3)x x -=±-,213x x -=-或213x x -=-+,所以143x =,22x =-.【变式训练2】用适当的方法解一元二次方程:22(1)4(1)x x -=+.【解答】解:12(1)x x -=±+,所以13x =-,213x =-.【变式训练3】解方程:22(21)(1)x x +=-.【解答】解:21(1)x x +=±-,所以12x =-,20x =.配方法【例9】一元二次方程2220x x --=配方后可化为( )A .2(1)3x +=B .2(1)3x -=C .2(1)2x +=D .2(1)2x -=【解答】解:2220x x --=,222x x -=,22121x x -+=+,2(1)3x -=,故选:B .【变式训练1】把一元二次方程2240x x --=配方后,下列变形正确的是( )A .2(2)5x -=B .2(2)3x -=C .2(1)5x -=D .2(1)3x -=【解答】解:2240x x --=,224x x -=,22141x x -+=+,2(1)5x -=,故选:C .【变式训练2】方程2460x x --=经配方后,可化为( )A .2(2)10x -=B .2(2)10x +=C .2(2)8x -=D .2(2)8x +=【解答】解:2460x x --=Q ,246x x \-=,则24464x x -+=+,即2(2)10x -=,故选:A .【变式训练3】下列配方中,变形正确的是( )A .222(1)x x x +=+B .2243(2)1x x x --=-+C .222432(1)1x x x ++=++D .222(1)1x x x -+=-+-【解答】解:22x x+2211x x =++-2(1)1x =+-,A 错误.243x x --24443x x =-+--2(44)(43)x x =-++--2(2)7x =--.B 错误.2243x x ++22(2)3x x =++22(211)3x x =++-+22(21)213x x =++-´+22(1)23x =+-+22(1)1x =++.C 正确.22x x-+2(211)x x =--+-2(21)1x x =--++2(1)1x =-++D 错误.故选:C .【例10】用配方法解一元二次方程:22410x x -+=.【解答】解:方程整理得:2122x x -=-,配方得:21212x x -+=,即21(1)2x -=,开方得:1x -=解得:11x =+,21x =.【变式训练1】解一元二次方程:22460x x --=.【解答】解:22460x x --=Q ,2230x x --=,223x x -=,则22131x x -+=+,即2(1)4x -=,12x \-=±,11x \=-,23x =.【变式训练2】用配方法解方程:24x -=.【解答】解:Q 24x -=,2545x \-+=+,即2(9x =,3x \=或3x =-,13x \=+23x =-+【变式训练3】用配方法解方程:21090x x -+=.【解答】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.一元二次方程判别式【例11】方程2450x x --=的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判定【解答】解:方程2450x x --=,Q △2(4)41(5)1620360=--´´-=+=>,\方程有两个不相等的实数根.故选:A .【变式训练1】一元二次方程2610x ++=的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【解答】解:一元二次方程2610x ++=中,△24610=-´´=,2610x \++=有两个相等的实数根,故选:C .【变式训练2】一元二次方程2210x x -+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有无数个实数根【解答】解:对一元二次方程2210x x -+=,△2(2)4110=--´´=,2210x x \-+=有两个相等实数根,故选:B .【变式训练3】关于x 的一元二次方程24(1)(3)0x x m m ++--=,下列选项正确的是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .根的个数与m 的取值有关【解答】解:方程24(1)(3)0x x m m ++--=,△164(1)(3)m m =---2164(33)m m m =---+241628m m =-+24(44)12m m =-++24(2)12m =-+,2(2)0m -Q …,24(2)12120m \-+>…,则方程有两个不相等的实数根.故选:C .含参求根的辨别式【例12】关于x 的一元二次方程2320mx x -+=有实数根,则实数m 的取值范围是( )A .98m …B .98m <且0m ¹C .98m …且0m ¹D .98m …【解答】解:Q 关于x 的一元二次方程2320mx x -+=有实数根,\△2(3)80m =--…,且0m ¹,解得:98m …且0m ¹.故选:C .【变式训练1】若关于x 的一元二次方程260x x c ++=有两个相等的实数根,则c 的值是( )A .36B .9C .6D .9-【解答】解:Q 关于x 的一元二次方程260x x c ++=有两个相等的实数根,\△2640c =-=,解得9c =,故选:B .【变式训练2】若关于x 的方程220x x m --=没有实数根,则m 的最大整数值是( )A .2-B .1-C .0D .1【解答】解:Q 关于x 的方程220x x m --=没有实数根,2(2)41()440m m \--´´-=+<,解得:1m <-,则m 的最大整数值是2-.故选:A .【变式训练3】关于x 的一元二次方程2(1)210m x x -+-=有两个不相等的实数根,则m 的取值范围是( )A .1m <-B .0m >C .1m <且0m ¹D .0m >且1m ¹【解答】解:根据题意得10m -¹且△224(1)(1)0m =--->,解得0m >且1m ¹.故选:D .根的辨别式综合运用【例13】已知关于x 的方程22(23)10x k x k +-+-=有实数根.(1)求实数k 的取值范围.(2)若此方程有一个根为1,求k 的值.【解答】解:(1)Q 关于x 的方程22(23)10x k x k +-+-=有实数根,\△2224(23)41(1)0b ac k k =-=--´´-…,解得:1312k …;(2)Q 关于x 的方程22(23)10x k x k +-+-=的一个根为1,\把1x =代入方程得:21(23)10k k +-+-=,2230k k \+-=,解得:1k =或3-,故k 的值为1或3-.【变式训练1】已知关于x 的一元二次方程221(1)(2)04x m x m m --+-=.(1)求证:对于任意实数m ,该方程总有两个不相等实数根;(2)如果此方程有一个根为0,求m 的值.【解答】(1)证明:对关于x 的一元二次方程221(1)(2)04x m x m m --+-=,△22221[(1)]4(2)21214m m m m m m m =---´-=-+-+=,\△0>,\对于任意实数m ,一元二次方程221(1)(2)04x m x m m --+-=总有两个不相等实数根;(2)解:如果此方程有一个根为0,则2210(1)0(2)04m m m ´--´+-=,220m m \-=,解得0m =或2m =,答:m 的值为0或【变式训练2】已知关于x 的一元二次方程2(1)230x k x k -++-=.(1)当3k =时,求一元二次方程2(1)230x k x k -++-=的解;(2)求证:无论k 为何实数,方程总有两个不相等的实数根.【解答】(1)解:当3k =时,方程可化为2430x x -+=,(1)(3)0x x --=,11x \=,23x =;(2)证明:Q △222[(1)]4(23)613(3)4k k k k k =-+--=-+=-+,而2(3)0k -…,\△0>.\对任意实数k ,方程有两个不相等的实数根.【变式训练3】已知关于x 的方程2(3)30x k x k -++=.(1)求证:无论k 取任何实数值,方程总有两个实数根.(2)等腰ABC D 的底边长为2,另两边的长恰好是这个方程的两个根,求ABC D 的周长.【解答】(1)证明:△22(3)43(3)0k k k =+-´=-…,故不论k 取何实数,该方程总有实数根;(2)解:依题意有△2(3)0k =-=,则3k =,将其代入方程2(3)30x k x k -++=,得2(33)330x x -++´=.解得123x x ==.故ABC D 的周长是2338++=.因式分解法【例14】方程24x x =的解是( )A.x =B .12x =,22x =-C .124x x ==D .10x =,24x =【解答】解:24x x =,240x x -=,(4)0x x -=,0x =或40x -=,10x =,24x =,故选:D .【变式训练1】方程2(2)3(2)x x -=-的解是( )A .5x =B .15x =,22x =C .11x =,22x =D .2x =【解答】解:2(2)3(2)x x -=-,2(2)3(2)0x x ---=,(2)(23)0x x ---=,20x -=或230x --=,所以12x =,25x =.故选:B .【变式训练2】方程(1)2x x x -=的解是( )A .3x =B .3x =-C .13x =,20x =D .13x =-,20x =【解答】解:(1)2x x x -=,(1)20x x x --=,(12)0x x --=,(3)0x x -=,10x =,23x =,故选:C .【变式训练3】如果220a a +=,那么a 的值是( )A .0B .2C .0,2D .0,2-【解答】解:220a a +=Q ,(2)0a a \+=,0a \=或20a +=,10a \=,22a =-,故选:D .十字相乘【例15】方程22240x x --=的根是( )A .16x =,24x =B .16x =,24x =-C .16x =-,24x =D .16x =-,24x =-【解答】解:22240x x --=,(6)(4)0x x -+=,60x -=或40x +=,解得16x =,24x =-,故选:B .【变式训练1】方程2430x x ++=的两个根为( )A .11x =,23x =B .11x =-,23x =C .11x =,23x =-D .11x =-,23x =-【解答】解:2430x x ++=,(3)(1)0x x ++=,30x +=或10x +=,13x =-,21x =-,故选:D .【变式训练2】方程220x x +-=的两个根为( )A .12x =-,21x =B .11x =-,22x =C .12x =-,21x =-D .11x =,22x=【解答】解:220x x +-=,(2)(1)0x x +-=,20x +=或10x -=,12x =-,21x =,故选:A .【变式训练3】下列各数是方程23100x x +-=的根的是( )A .2和5B .5-和3C .5和3D .5-和2【解答】解:方程23100x x +-=,分解因式得:(2)(5)0x x -+=,所以20x -=或50x +=,解得:2x =或5x =-.故选:D .根与系数的关系【例16】设方程2840x x -+=的两根分别是1x ,2x ,则12x x +的值为( )A .8B .8-C .4D .2【解答】解:由2840x x -+=可知,其二次项系数1a =,一次项系数8b =-,由根与系数的关系:12881b x x a -+=-=-=.故选:A .【变式训练1】下列一元二次方程两实数根和等于4-的是( )A .2340x x +-=B .2440x x -+=C .2450x x ++=D .2440x x ++=【解答】解:A 、两实数根的和等于3-,所以A 选项不符合题意;B 、两实数根的和等于4,所以B 选项不符合题意;C 、△2441540=-´´=-<,方程没有实数根,所以C 选项符合题意;D 、两实数根的和等于4-,所以D 选项不符合题意.故选:D .【变式训练2】设a ,b 是方程220210x x --=的两个实数根,则a b ab +-的值为( )A .2022B .2022-C .2020D .2020-【解答】解:根据题意,得1a b +=,2021ab =-,120212022a b ab \+-=+=,故选:A .【变式训练3】若矩形的长和宽是方程241230x x -+=的两个根,则该矩形的周长和面积分别为( )A .3和34B .34和3C .34和6D .6和34【解答】解:Q 矩形的长和宽是方程241230x x -+=的两个根,设长为a ,宽为b ,3a b \+=,34ab =,则该矩形的周长为2()6a b +=,面积为34ab =.故选:D .【例17】已知a 、b 分别是一元二次方程2450x x +-=的两个实数根,则11a b+的值为( )A .25B .45C .1D .65【解答】解:根据题意,可知4a b +=-,5ab =-,\1145b a a b ab ++==,故选:B .【变式训练1】关于x 的方程2(1)20x k x k -+++=的两个实数根分别为1x 和2x ,且22126x x +=,则k 的值是( )A .3-B .3±C .2-D .2±【解答】解:x Q 的方程2(1)20x k x k -+++=的两个实数根分别为1x 和2x ,121x x k \+=+,122x x k ×=+,Q 22126x x +=,\221212()2(1)2(2)6x x x x k k +-=+-+=,解得3k =±,根据题意,得△2[(1)]4(2)0k k =-+-+…,当3k =时,△162040=-=-<,不符合题意,当3k =-时,△4480=+=>,符合题意,3k \=-,故选:A .【变式训练2】已知1x 、2x 是一元二次方程270x x --=的两个实数根,则2211224x x x x ++的值是( )A .6-B .2-C .13-D .30-【解答】解:根据根与系数的关系得121x x +=,127x x =-,所以2222112212124()212(7)13x x x x x x x x ++=++=+´-=-.故选:C .【变式训练3】一元二次方程220x x --=的两个实数根为1x ,2x ,则21212x x x x ++的值是( )A .2-B .1-C .0D .1【解答】解:Q 一元二次方程220x x --=的两个实数根为1x ,2x ,\2112x x =+,121x x +=,122x x =-,\21212x x x x ++12122x x x x =+++12122x x x x =+++122=-+1=.故选:D .【例18】关于x 的一元二次方程2(4)20x m x m +++=.(1)求证:方程总有两个不相等的实数根;(2)若1x 、2x 是方程的两个实根,且212124x x x x m m ++=-,求m 的值.【解答】(1)证明:Q △2(4)42m m=+-´28168m m m =++-2160m =+>,\方程总有两个不相等的实数根;(2)解:根据题意得12(4)x x m +=-+,122x x m =,212124x x x x m m ++=-Q ,2(4)24m m m m \-++=-,解得1m =或4,即m 的值为1或4【变式训练1】已知关于x 的方程22290x mx m -+-=.(1)求证:此方程有两个不相等的实数根;(2)设此方程的两个根分别为1x ,2x ,若221236x x +=求m 的值.【解答】(1)证明:Q △22(2)4(9)360m m =---=>,\方程有两个不相等的实数根;(2)解:122x x m +=Q ,2129x x m ×=-,\22222121212()2421836x x x x x x m m +=+-=-+=,化简,得2218m =,解得3m =或3m =-.【变式训练2】若1x 、2x 是关于x 的一元二次方程2240kx x -+=的两个实数根.(1)求k 的取值范围;(2)若113x =,求12(1)(1)x x ++的值.【解答】解:(1)Q 关于x 的一元二次方程2240kx x -+=有两个实数根,0k \¹,且△2(2)440k =--´…,解得14k …且0k ¹;(2)由根与系数的关系可得122123x x x k +=+=,122143x x x k==,解得30k =-,225x =-.12115x x \+=-,12215x x =-,12(1)(1)x x \++1212()1x x x x =+++2111515=--+45=.【变式训练3】关于x 的一元二次方程22(21)20x m x m m --+-=有实数根.(1)求m 的取值范围;(2)若方程的两个实数根为1x ,2x ,且满足2212129x x x x +-=,求m 的值.【解答】解:(1)Q 关于x 的一元二次方程22(21)20x m x m m --+-=有实数根,\△2224[(21)]41(2)410b ac m m m m =-=---´´-=+…,解得:14m -….(2)Q 关于x 的一元二次方程22(21)20x m x m m --+-=的两个根分别为1x ,2x ,1221x x m \+=-,2122x x m m ×=-,2212129x x x x +-=Q ,21212()39x x x x \+-=,即22(21)3(2)9m m m ---=,整理得:2219m m ++=,2(1)9m \+=,解得:14m =-,22m =,14m -Q ….m \的值为21.下列方程中,属于一元二次方程的是( )A .2310x -=B .213x x +=C .2(2)(1)x x x =-+D .(2)(2)40x x -++=【解答】解:A .2310x -=,是一元一次方程,故A 不符合题意;B .213x x +=是分式方程,故B 不符合题意;C .方程整理可得20x +=,是一元一次方程,故C 不符合题意;D .(2)(2)40x x -++=是一元二次方程,故D 符合题意;故选:D .2.下列方程中,属于一元二次方程的是( )A .23x y +=B .230x x +=C .210x x-=D .210x +=【解答】解:A .是二元一次方程,故本选项不合题意;B .是一元二次方程,故本选项符合题意;C .是分式方程,故本选项不合题意;D .是一元一次方程,故本选项不合题意;故选:B .3.方程2232x x -=的一次项系数和常数项分别是( )A .2和2B .3-和2C .3和2-D .3-和2-【解答】解:2232x x -=Q ,22320x x \--=,\方程2232x x -=的一次项系数和常数项分别是3-和2-,故选:D .4.若1x =是关于x 的一元二次方程230x mx +-=的一个根,则m 的值是( )A .2-B .1-C .1D .2【解答】解:把1x =代入方程230x mx +-=得:130m +-=,解得:2m =.故选:D .5.对于方程2()ax b c +=下列叙述正确的是( )A .不论c 为何值,方程均有实数根B .方程的根是c b x a-=C .当0c …时,方程可化为:ax b +=ax b +=D .当0c =时,b x a=【解答】解:当0c <,方程没有实数解;当0c …时,方程有实数根,则ax b +=,解得1x =,2x =0c =时,解得12bx x a==-.故选:C .6.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .3-D .4-【解答】解:设另外一根为a ,由根与系数的关系可知:13a ´=,3a \=,故选:A .7.已知4a b ++=,则a b +的值是( )A .4B .5C .6D .7【解答】解:已知等式移项得:(1)(14)0a b -+--=,即221)2)0+-=,21)0Q …,22)0-…,\1=2=,解得:1a =,5b =,则6a b +=.故选:C .8.一元二次方程2250x -=的解为( )A .125x x ==B .15x =,25x =-C .125x x ==-D .1225x x ==【解答】解:2250x -=,则225x =,解得:15x =,25x =-.故选:B .9.如果关于x 的方程|1|(3)310m m x x ---+=是一元二次方程,则m = 1- .【解答】解:由题意得:|1|2m -=,且30m -¹,解得:1m =-,故答案为:1-.10.若关于x 的方程||(2)230m m x x ---=是一元二次方程,则m = 2- .【解答】解:由题意,得||2m =且20m -¹,解得2m =-,故答案是:2-.11.将方程(32)(1)83x x x -+=-化成一元二次方程的一般形式为 23710x x -+= .【解答】解:(32)(1)83x x x -+=-,2332283x x x x +--=-,232830x x x +--+=,23710x x -+=,故答案为:23710x x -+=.12.关于x 的方程220x x c -+=有一个根是3,那么实数c 的值是 3- .【解答】解:Q 关于x 的方程220x x c -+=有一个根是3,23230c \-´+=,即30c +=,解得3c =-.故答案是:3-.13.试说明关于x 的方程22(820)210a a x ax -+++=无论a 取何值,该方程都是一元二次方程.【解答】解:22820(4)4a a a -+=-+Q 又2(4)0a -Q …,28200a a \-+¹,\关于x 的方程22(820)210a a x ax -+++=无论a 取何值,该方程都是一元二次方程.14.已知方程|3|4(2)610a a x ax -+++=是关于x 的一元二次方程,求a 的值.【解答】解:Q 方程|3|4(2)610a a x ax -+++=是关于x 的一元二次方程,|3|42a \-=且20a +¹,解得:2a =.15.把下列方程化成一般形式,并写出它的二次项系数、一次项系数以及常数项.(1)2(21)(32)2x x x -+=+;(2)2)(3)x x x -+=+.【解答】解:(1)化简后为2540x x +-=,因此二次项系数为5;一次项系数为1;常数项为4-;(2)化简后为22610x x ++=,二次项系数为2;一次项系数为6;常数项为1.。

九年级数学一元二次函数练习题

九年级数学一元二次函数练习题考点:①二次函数性质②二次函数最值③二次函数图像④二次函数应用问题1、如图,□ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线经过x轴上的两点A,B.(1)求点A,B,C的坐标;(2)若抛物线向上平移后,恰好经过点D,试求平移后的抛物线的解析式.2、如图,一张边长为16㎝的正方形硬纸板,把它的四个角都剪去一个边长为x㎝的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为V㎝3,请回答下列问题:(1)若用含有X的代数式表示V,则V=(2)完成下表:(4分)x(㎝) 1 2 3 4 5 6 7V(㎝3) 196 288 180 96 28(3) 观察上表,容积V的值是否随x值得增大而增大?当x取什么值时,容积V的值最大?3、如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.(1)建立如图所示的直角坐标系,求此抛物线的解析式;(2)当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?4、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90销,价格每提高1元,平均每天少销售3箱.(1)写出平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式;(2)当销售价为多少元时,每天可获最大利润?最大利润是多少?5、某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(不需求出利润的最大值)(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)6、某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7、某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?8、我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(万元)⑴若不进行开发,求5年所获利润的最大值是多少?⑵若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?⑶根据⑴、⑵,该方案是否具有实施价值?9、已知抛物线与x轴分别交于(-1,0),(5,0),当x=1时,函数值为y1,当x=3时,函数值为y2,则y1,y2的大小为()A. y1>y2B. y1=y2C. y1<y2D.不能确定10、已知二次函数的图象如图,则下列5个代数式:ac,a+b+c,,2a+b,a+b中,值大于0的个数为()A.2个B.3个C.4个D.5个11、二次函数的图象如图所示,则一次函数的图象不经过 ()A.第一象限 B.第二象限 C.第三象限 D.第四象限12、二次函数y=ax2+bx十c的图像如下图所示,则下列结论正确的是A.a>-0,b<0,c>0 B.a<0,b<0,c>OC.a<0,b>0,c<0 D.a<0,b>0,c>013、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( ) A.a>0 B.b<0 C.c<0 D.a+b+c >014、抛物线可以由抛物线平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位15、已知反比例函数y =的图象如右图所示,则二次函数y =的图象大致为()(A)(B)(C)(D)16、抛物线的对称轴是,顶点坐标为,若将这条抛物线向左平移两个单位,再向上平移三个单位,则所得抛物线的解析式为 .17、如图所示,已知抛物线 (a≠0)经过原点和点(-2,0),则2a-3b 0.(>、<或=)18、嫦娥二号探月卫星于2010年10月1日发射成功。

人教版九年级上册 第21章 《一元二次方程实际应用》专项练习(三)

第21章《一元二次方程实际应用》专项练习(三)1.香果园大型水果超市的江安李子和山东烟台红富士苹果这两种水果很受欢迎,苹果售价24元/千克,李子售价18元/千克.(1)若第一周苹果的平均销量比李子的平均销量多200千克,要使这两种水果的总销售额不低于13200元,则第一周至少销售苹果多少千克?(2)若该水果超市第一周按照(1)中苹果和李子的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周苹果售价降低了a%,销量比第一周增加了a%.李子的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了a%,求a的值.2.如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从点A出发,以3cm/s的速度向点B 移动,一直到达点B为止;同时,点Q从点C出发,以2cm/s的速度向点D移动.当其中一个点停止移动时,另一个点也随之停止,设移动时间为ts,连接PQ.(1)当t=2时,求PQ的长;(2)当PQ=10cm时,求t的值.3.重庆两江国际影视城,是集影视拍摄、文化旅游、度假休闲、历史风貌观光为一体的大型综合性旅游景区,其厚重的文化底蕴和独特的历史场景深受广大人群喜爱景区陆续复原兴建了抗战胜利记功碑、群林市场等200多栋反映重庆开埠以来尤其是陪都时期的著名建筑和历史街区,广大游客也因此称其为“民国街”.某商家抓住商机,准备在“民国街”售卖中山装和旗袍.去年十一月,中山装的单价为每件120元,旗袍的单价为每件180元,商家售卖中山装的销售额比售卖旗袍的销售额少1200元.(1)若去年十一月中山装的销售量不超过旗袍的销售量,求售卖中山装的销售额最大为多少元?(2)受市场影响,与去年同期相比,今年十一月,同款中山装的单价上涨了0.5a%,同款旗袍的单价上涨了a%,若两款服装的销售量都比(1)问中中山装的销售额取最大值时对应的销售量少a%,则两款服装的总销售额只比去年十一月的最大销售额少300元,求a的值.4.十九大以来,为全面推进新农村建设,积极改革农村产业结构,增加农民收入,致富村村委会多方努力,共获得流转耕地1000亩,全部用于种植纽橙和蔬菜,其中种植蔬菜的面积不少于种植纽橙面积的4倍.(1)求该村种植蔬菜的面积至少为多少亩?(2)今年村里按(1)中蔬菜种植面积的最小值种植蔬菜,纽橙和蔬菜上市后,纽橙每亩获利800元,蔬菜每亩获利600元;明年在保持纽橙种植面积不变的情况下,纽橙亩产量将上涨,预计每亩利润将增加3a%;同时利用新增流转耕地,使蔬菜种植面积扩大α%,并改良蔬菜种植结构,蔬菜每亩利润将增加a%这样,明年纽橙和蔬菜的总利润将比今年的总利润增加a%.求a的值.5.某商店以40元/千克的单价新进一批茶叶,经调查发现:在一段时间内,这批茶叶的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为y=﹣2x+240(40≤x≤120).(1)商店想在销售成本(进价总额)不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?(2)在(1)中,该商店为了国庆期间促销这批新进茶叶,经过两次降价将销售价格定为81元/千克,求平均每次降价的百分比.6.某校在开展“校园献爱心”活动中,准备向某山区学校捐胎男、女两种款式的书包,共有200名学生参加活动,平均每人捐款15元,用全部的捐款购买这两种款式的书包各30个,捐赠给了该山区学校.已知购买一个男款书包比购买一个女款书包少20元.(1)购买一个男款书包、一个女款书包各需多少元?(2)经调查该山区学校共有男学生63名,女学生56名,为保证每一个男学生都有一个男款书包,每一个女学生都有一个女款书包,需要再次进行补充捐赠,在补充捐赠活动中,自愿参与的学生在200名的基础上增加了a%(其中a>0),平均每人需捐款的钱数在15元的基础上减少了a%,求a的值.7.“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了m%,香橙每千克的进价在11月份的基础上下降了m%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了m%,香橙购进的数量比11月份增加了2m%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m的值.8.如图,在长方形ABCD中,AB=10厘米,BC=6厘米,点P沿AB边从点A开始向点B以3厘米/秒的速度移动;点Q沿DA边从点D开始向点A以2厘米/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间,那么:(1)如图1,用含t的代数式表示AP=,AQ=,并求出当t为何值时线段AP=AQ.(2)如图2,在不考虑点P的情况下,连接QB,问:当t为何值时△QAB的面积等于长方形面积的.9.某市每年都举行“希望杯”篮球赛,去年初赛阶段,共15支队伍参赛,每两队之间都比赛一场,下表是去年初赛部分队伍的积分榜.队名比赛场次胜场负场积分A 14 10 4 24B 14 9 5 23C 14 4 10 18D 14 0 14 14(1)去年某队的总积分为20分,则该队在比赛中胜了多少场?(2)今年,参赛的队伍比去年有所增加,但因场地受限,组委会决定初赛阶段共安排40场比赛,并将参赛队伍平均分成4个小组,各小组每两队之间都比赛一场,求今年比去年增加了多少支队伍?10.某校八年级学生小阳,小杰和小凡到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为10元/千克,下面是他们在活动结束后的对话.小阳:如果以12元/千克的价格销售,那么每天可售出300千克.小杰:如果以15元/千克的价格销售,那么每天可获取利润750元.小凡:我通过调查验证发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式;(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?参考答案1.解:(1)设第一周销售苹果x 千克.则销售李子(x ﹣200)千克, 根据题意得:24x +18(x ﹣200)≥13200, 解得:x ≥400,答:第一周至少销售苹果400千克;(2)根据题意得:24(1﹣a %)×400(1+a %)+18×200(1+a %)=13200(1+a %), ∴a 1=,a 2=0(舍去).答:a 的值为2.解:(1)作QH ⊥AB ,垂足为H ,则QH =BC =6, 当t =2时,AP =3×2=6cm ,QC =2×2=4cm , ∴BH =QC =4cm ,∴PH =AB ﹣AP ﹣BH =16﹣6﹣4=6cm , ∵PQ 2=PH 2+QH 2, ∴PQ ==6;(2)设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm ,则QH =BC =6,PQ =10,HP =AB ﹣AP ﹣BH =16﹣5t .∵PQ 2=PH 2+QH 2,可得:(16﹣5t )2+62=102, 解得t 1=4.8,t 2=1.6.故当PQ =10cm 时,t 的值为1.6或4.8秒.3.解:(1)设售卖中山装的销售额为x 元,则售卖旗袍的销售额为(x +1200)元, 根据题意得:≤,解得:x ≤2400.答:售卖中山装的销售额最大为2400元.(2)去年十一月中山装、旗袍的销售量为2400÷120=20(件).根据题意得:120×(1+0.5a%)×20×(1﹣a%)+180×(1+a%)×20×(1﹣a%)=2400+2400+1200﹣300,令m=a%,原方程整理得:40m2+2m﹣3=0,解得:m1=0.25,m2=﹣0.3(不合题意),∴a=25.答:a的值为25.4.解:(1)设该村种植蔬菜的面积为x亩,则种植纽橙的面积为(1000﹣x)亩,根据题意得:x≥4(1000﹣x),解得:x≥800.答:该村种植蔬菜的面积至少为800亩.(2)根据题意得:800(1+3a%)×(1000﹣800)+600(1+a%)×800(1+a%)=[800×(1000﹣800)+600×800]×(1+a%),令m=a%,则原方程可整理得:m2﹣m=0,解得:m1=,m2=0(不合题意,舍去),∴a%=,∴a=20.答:a的值为20.5.解:(1)由题意得:(x﹣40)(﹣2x+240)=2400,解得:x1=60,x2=100,当x=60时,销售量为120千克,则销售成本为40×120=4800(元),超过了3000元,不合题意,舍去,当x=100时,销售量为40千克,则销售成本为40×40=1600(元),低于3000元,符合题意,所以销售单价应定为100元;(2)设平均每次减价的百分比是x,根据题意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.9(舍去),即平均每次减价的百分比为10%.6.解:(1)购买一个男款书包需x 元,则购买一个女款书包需(x +20)元, 根据题意得30(x +x +20)=200×15, 解得x =40, 则x +20=60,答:购买一个男款书包、一个女款书包分别需40元、60元;(2)根据题意得200×(1+a %)×15×(1﹣a %)=(63﹣30)×40+(56﹣30)×60, 整理得(a %)2=,解得a %=或a %=﹣(舍去), 所以a =20. 答:a 的值为20.7.解:(1)设11月份红桔的进价为每千克x 元,香橙的进价为每千克y 元,依题意有,解得.答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元; (2)依题意有8(1﹣m %)×400(1+m %)+20(1﹣m %)×600(1+2m %)=15200, 解得m 1=0(舍去),m 2=49.6. 故m 的值为49.6.8.解:(1)由题意得:AP =3t ,DQ =2t ,则AQ =6﹣2t , 当AP =AQ 时,3t =6﹣2t ,t =1.2;故答案为:3t ,6﹣2t ; (2)∵,∴,得:t =19.解:(1)设胜一场积x 分,负一场积y 分,由表格数据中知,解得:,设胜m场,则负(14﹣m)场,列方程得:2m+(14﹣m)=20,解得:m=6,答:该队胜6场;(2)由题意可得,每个组比赛场数:40÷4=10场,设每个小组有n支队伍,列方程得:n(n﹣1)=10,解得:n1=5,n2=﹣4(不合题意舍去),所以5×4﹣15=5(支),答:今年比去年增加了5支队伍.10.(1)解:当销售单价为15元/千克时,销售量为:=150(千克).设y与x的函数关系式为:y=kx+b(k≠0),把(12,300),(15,150)分别代入得:,解得,∴y与x的函数关系是:y=﹣50x+900.(2)由题意:(﹣50x+900)(x﹣10)=600,解得x=16或12.销售单价为每千克12元或16元时,每天获取利润600元.。

人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷含答案解析(1)

人教A 版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷(共22题)一、选择题(共10题)1. 已知关于 x 的不等式 (a 2−1)x 2−(a −1)x −1<0 的解集是 R ,则实数 a 的取值范围是 ( ) A . (−∞,−35)∪(1,+∞)B . (−35,1)C . [−35,1]D . (−35,1]2. 若不等式 ax 2−bx +c >0 的解集是 (−2,3),则不等式 bx 2+ax +c <0 的解集是 ( ) A . (−3,2)B . (−2,3)C . (−∞,−2)∪(3,+∞)D . (−∞,−3)∪(2,+∞)3. 已知 a >0,b >0,a +b =2,则 1a +4b 的最小值为 ( ) A . 72B . 4C . 92D . 54. 若 2x +2y =1,则 x +y 的取值范围是 ( ) A . [0,2] B . [−2,0] C . [−2,+∞)D . (−∞,−2]5. 若不等式x 2+mx +1>0的解集为R ,则m 的取值范围是( ) A .RB .(−2,2)C .(−∞,−2)∪(2,+∞)D .[−2,2]6. 不等式 x 2−ax −12a 2<0(其中a <0) 的解集为 ( ) A .(−3a,4a ) B .(4a,−3a ) C .(−3,4) D .(2a,6a )7. 气象学院用 32 万元购置了一台天文观测仪,已知这台观测仪从启动的第 1 天开始连续使用,第 n 天的维修保养费为 4n +46(n ∈N ∗) 元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器平均每天耗资最少)为止,则一共要使用 ( ) A . 300 天 B . 400 天 C . 600 天 D . 800 天8. 已知 x >0,y >0,x +2y +2xy =8,则 x +2y 的最小值是 A . 3 B . 4C . 92D .1129.若m2x−1mx+1<0(m≠0)对一切x≥4恒成立,则实数m的取值范围是( )A.{m∣ m<3}B.{m∣∣ m<−12}C.{m∣ m>2}D.{m∣ −2<m<3}10.已知集合A={x∣ x2−3x+2<0},B={x∣ x(x−m)>0},若A∩B=∅,则实数m的取值范围是( )A.{m∣ m≤0}B.{m∣ 0≤m≤2}C.{m∣ m≥2}D.{m∣ 0≤m≤1}二、填空题(共6题)11.不等式x2−x+1<0的解集为.12.设正实数x,y,z满足x2−xy+4y2−z=0,则当zxy 取得最小值时,2x+3y−6z的最大值为.13.二次函数y=x2−x−6的零点是.14.定义区间[a,b](a<b)的长度为b−a,若关于x的不等式x2−4x+m≤0的解集区间长度为2,则实数m的值为.15.已知集合A={x∣ x2−x−12<0},集合B={x∣ x2+2x−8>0},集合C={x∣ x2−4ax+3a2<0,a≠0},若C⊇(A∩B),则实数a的取值范围是.16.若不等式ax2+1x2+1≥2−3a3(a>0)恒成立,则实数a的取值范围是.三、解答题(共6题)17.求下列不等式的解集:(1) 13−4x2>0;(2) (x−3)(x−7)<0;(3) x2−3x−10>0;(4) −3x2+5x−4>0.18.已知a>0,b>0.(1) 求证:a3+b3≥a2b+ab2;(2) 若 a +b =3,求 1a +4b 的最小值.19. 已知 f (x )=(a −2)x 2+2(a −2)x −4(a ∈R ).(1) 当 x ∈R 时,恒有 f (x )<0,求 a 的取值范围;(2) 当 x ∈(1,3) 时,不等式 f (x )<mx −7(m ∈R ) 恰好成立,求 a ,m 的值.20. 阅读:已知 a,b ∈(0,+∞),a +b =1,求 y =1a+2b 的最小值.解法如下:y =1a +2b =(1a +2b )(a +b )=b a +2a b+3≥3+2√2,当且仅当 ba =2a b,即 a =√2−1,b =2−√2 时取到等号,则 y =1a+2b 的最小值为 3+2√2. 应用上述解法,求解下列问题:(1) 已知 a,b,c ∈(0,+∞),a +b +c =1,求 y =1a+1b+1c的最小值;(2) 已知 x ∈(0,12),求函数 y =1x +81−2x 的最小值;(3) 已知正数 a 1,a 2,a 3,⋯,a n ,a 1+a 2+a 3+⋯+a n =1,求证:S =a 12a1+a 2+a 22a2+a 3+a 32a 3+a 4+⋯+a n2an +a 1≥12.21. 请回答下列问题:(1) 已知 x >0,y >0,xy =4,求 2x +1y 的最小值; (2) 已知 x >0,y >0,x +2y =2,求 2x +1y 的最小值.22. 不等式性质(1) 如果 a >b >0,那么 a n >b n (n ∈N ∗,且 n >1).本性质根据 n 为奇数或偶数时,可以怎样的推广? (2) 如果 a >b >0,那么 (n ∈N ∗,且 n >1). (3) 如果 a >b 且 ab >0,那么 1a 1b . (4) 如何理解上述性质?答案一、选择题(共10题) 1. 【答案】D【解析】当 a =1 时,不等式为 −1<0,恒成立,满足题意; 当 a =−1 时,不等式为 2x −1<0,解得 x <12,不满足题意;当 a ≠±1 时,由 (a 2−1)x 2−(a −1)x −1<0 的解集为 R , 可知 {a 2−1<0,[−(a −1)]2+4(a 2−1)<0,解得 −35<a <1. 综上,−35<a ≤1. 【知识点】二次不等式的解法2. 【答案】D【解析】不等式 ax 2−bx +c >0 的解集是 (−2,3), 所以方程 ax 2−bx +c =0 的解是 −2 和 3,且 a <0; 即 {−2+3=ba ,−2×3=c a ,解得 b =a ,c =−6a ;所以不等式 bx 2+ax +c <0 化为 ax 2+ax −6a <0, 即 x 2+x −6>0, 解得 x <−3 或 x >2,所以所求不等式的解集是 (−∞,−3)∪(2,+∞). 【知识点】二次不等式的解法3. 【答案】C【知识点】均值不等式的应用4. 【答案】D【解析】因为 2x +2y ≥2√2x ⋅2y =2√2x+y (当且仅当 2x =2y 时等号成立), 所以 √2x+y ≤12,所以 2x+y ≤14,得 x +y ≤−2. 【知识点】均值不等式的应用5. 【答案】B【解析】【分析】利用一元二次不等式的解法即可得出.【解析】解:∵不等式x2+mx+1>0的解集为R,∴△=m2−4<0,解得−2<m<2.∴m的取值范围是(−2,2).故选:B.【点评】熟练掌握一元二次不等式的解法是解题的关键.6. 【答案】B【知识点】二次不等式的解法7. 【答案】B【解析】使用n天的平均耗资为320000+(50+4n+46)n2n=320000n+2n+48(元),当且仅当320000n=2n时取得最小值,此时n=400.【知识点】均值不等式的应用8. 【答案】B【知识点】均值不等式的应用9. 【答案】B【解析】依题意,对任意的x≥4,有y=(mx+1)⋅(m2x−1)<0恒成立,结合图象(图略)分析可知{m<0,−1m<4,1m2<4,由此解得m<−12,即实数m的取值范围是{m∣∣ m<−12}.【知识点】恒成立问题10. 【答案】C【解析】集合A={x∣ 1<x<2},若m<0,则集合B={x∣ x<m或x>0},不满足A∩B=∅,舍去;若m=0,则B={x∣ x≠0},不满足A∩B=∅,舍去;若m>0,则B= {x∣ x<0或x>m},要使A∩B=∅,则m≥2,综上可得m的取值范围是{m∣ m≥2},故选C.【知识点】二次不等式的解法、交、并、补集运算二、填空题(共6题)11. 【答案】∅【知识点】二次不等式的解法12. 【答案】4【解析】由已知z=x2−xy+4y2,得zxy =x2−xy+4y2xy=xy+4yx−1≥2√xy⋅4yx−1=3,当且仅当xy =4yx,即x=2y时等号成立,则z=6y2,2x +3y−6z=22y+3y−66y2=4y−(1y)2,当1y=2时,取最大值4.【知识点】均值不等式的应用13. 【答案】−2,3【解析】方法一:令x2−x−6=0.因为Δ=(−1)2−4×1×(−6)=25>0,所以方程x2−x−6=0有两个不相等的实数根,x1=−2,x2=3.所以函数y=x2−x−6的零点是x1=−2,x2=3.方法二:由x2−x−6=(x−3)(x+2)=0,得x1=−2,x2=3.所以函数y=x2−x−6的零点是x1=−2,x2=3.方法三:作出函数y=x2−x−6的图象,如图所示.因为函数的图象是一条开口向上的抛物线,且f(0)=−6<0,所以函数y=x2−x−6的图象与x轴有两个交点A(−2,0),B(3,0),故y=x2−x−6的零点是x1=−2,x2=3.【知识点】函数零点的概念与意义14. 【答案】3【知识点】二次不等式的解法15. 【答案】43≤a≤2【知识点】交、并、补集运算16. 【答案】{a∣ a≥19}【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】(1) {x∣∣∣−√132<x<√132}.(2) {x∣ 3<x<7}.(3) {x∣ x<−2或x>5}.(4) ∅.【知识点】二次不等式的解法18. 【答案】(1) 因为a>0,b>0,所以a3+b3−a2b−ab2=a2(a−b)+b2(b−a)=(a2−b2)(a−b)=(a−b)2(a+b)≥0,所以a3+b3≥a2b+ab2.(2) 因为a>0,b>0,a+b=3,所以1 a +4b=13(a+b)(1a+4b)=13(5+ba+4ab)≥13(5+2√ba⋅4ab) =3,当且仅当ba =4ab,即a=1,b=2时取等号,所以1a +4b的最小值为3.【知识点】均值不等式的应用、不等式的性质19. 【答案】(1) a∈(−2,2].(2) 将原不等式整理变形,可得(a−2)x2+(2a−4−m)x+3<0,则该不等式在1<x<3时恰好成立.不妨设g(x)=(a−2)x2+(2a−4−m)x+3,可知{a>2,g(1)=0, g(3)=0.所以 a =3,m =6.【知识点】二次函数的性质与图像、二次不等式的解法20. 【答案】(1)y =1a +1b +1c=(1a +1b +1c )(a +b +c )=3+(ba +ab +ca +ac +cb +bc),而 ba +ab +ca +ac +cb +bc ≥6,当且仅当 a =b =c =13 时取到等号,则 y ≥9, 即 y =1a+1b+1c的最小值为 9.(2)y =22x +81−2x=(22x +81−2x )⋅(2x +1−2x )=10+2⋅1−2x 2x+8⋅2x1−2x ,而 x ∈(0,12),2⋅1−2x 2x+8⋅2x1−2x ≥2√16=8,当且仅当 2⋅1−2x 2x =8⋅2x1−2x ,即 x =16∈(0,12) 时取到等号,则 y ≥18,所以函数 y =1x+81−2x的最小值为 18.(3) 2S=(a 12a1+a 2+a 22a2+a 3+⋯+a n2an +a 1)[(a 1+a 2)+(a 2+a 3)+⋯+(a n +a 1)]=(a 12+a 22+⋯+a n 2)+a 12a1+a 2⋅(a 2+a 3)+a 22a2+a 3⋅(a 1+a 2)+⋯+a n2an +a 1⋅(a 1+a 2)+a 12a1+a 2⋅(a n +a 1)≥(a 12+a 22+⋯+a n 2)+(2a 1a 2+2a 2a 3+⋯+2a n a 1)=(a 1+a 2+⋯+a n )2=1.当且仅当 a 1=a 2=⋯=a n =1n时取到等号,则 S ≥12.【知识点】均值不等式的应用21. 【答案】(1) 因为 xy =4,且 x >0,y >0, 所以 2x +1y ≥2√2xy =2√12=√2, 当且仅当 x =2√2,y =√2 时取等号,即 2x+1y的最小值为 √2.(2) 因为 x >0,y >0,x +2y =2, 所以 2(2x +1y )=(x +2y )(2x +1y )=4+4y x+xy ≥4+4=8,所以 2x +1y ≥4, 当且仅当4y x=xy ,即 x =2y =1 时取等号,即 2x +1y 的最小值为 4. 【知识点】均值不等式的应用22. 【答案】(1) 当 n 为奇数时,如果 a >b ,那么 a n >b n (n ∈N ∗,n 为奇数);当 n 为偶数时,如果 a >b >0,那么 a n >b n ,如果 0>a >b ,那么 a n <b n (n ∈N ,n 为偶数). (2) √a n>√b n(3) <(4) 上述性质称为倒数的性质,注意 ab <0 时,此性质不成立(此时 1a >1b ). 【知识点】不等式的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第21章 一元二次方程》(1)
2018-10-17
一、填空题

1. (5分)方程:①2x2﹣=1 ②2x2﹣5xy+y2=0 ③7x2+1=0 ④=0中,一元二次方程是 .
2. (5分)若关于x的方程2x2﹣3x+c=0的一个根是1,另一根及c的值分别是 .
3. (5分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于 .
4. (5分)填空:x2﹣4x+3=(x﹣ )2﹣1.
5. (5分)关于x的方程kx2+3x﹣1=0有两个实数根,则k的取值范围是 .
6. (5分)关于x的方程是一元二次方程,那么m= .
二、解方程
(1)(x+2)2﹣25=0(2)x2+4x﹣5=0

(3)x2﹣5x+6=0(4)2x2﹣7x+3=0.
《第21章 一元二次方程》(1)
2018-10-17
一、填空题

7. (5分)方程:①2x2﹣=1 ②2x2﹣5xy+y2=0 ③7x2+1=0 ④=0中,一元二次方程是 .
8. (5分)若关于x的方程2x2﹣3x+c=0的一个根是1,另一根及c的值分别是 .
9. (5分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于 .
10. (5分)填空:x2﹣4x+3=(x﹣ )2﹣1.
11. (5分)关于x的方程kx2+3x﹣1=0有两个实数根,则k的取值范围是 .
12. (5分)关于x的方程是一元二次方程,那么m= .
二、解方程
(1)(x+2)2﹣25=0(2)x2+4x﹣5=0

(3)x2﹣5x+6=0(4)2x2﹣7x+3=0.

相关文档
最新文档