(数列)上海财经大学附属中学高二第一学期数学期中考试试卷
上海市上海财经大学附属北郊高级中学2024-2025学年高三上学期期中考试数学试题

上海市上海财经大学附属北郊高级中学2024-2025学年高三上学期期中考试数学试题一、填空题1.已知全集R U =,集合{}|A x x a =<,{}|13B x x =-<<,且B A ⊆,则实数a 的取值范围是.2.若i z =(i 为虚数单位),则2z 的共轭复数为.3.已知函数()221f x x =+,则()()Δ01Δ1limΔx f x f x→--=.4.用简单随机抽样的方法从含n 个个体的总体中,逐个抽取一个样本量为3的样本,若其中个体a 在第一次就被抽取的可能性为18,那么n =.5.在ABC V 中,若60B ︒=,2AB =,AC =ABC V 的面积是.6.二项式()613x +的展开式中含3x 的系数为.7.设平面向量()sin ,1a θ= ,(cos b θ= ,若a ,b 不能组成平面上的一个基底,则tan θ=.8.已知椭圆C 的焦点1F 、2F 都在x 轴上,P 为椭圆C 上一点,12PF F 的周长为6,且1PF ,12F F ,2PF 成等差数列,则椭圆C 的标准方程为.9.已知函数()102,0x f x x x -<<=≥⎪⎩若实数a 满足f (a )=f (a -1),则1f a ⎛⎫⎪⎝⎭=.10.已知())()sin cos 0f x x x ωωω=+>,集合5π0,4A ⎡⎤=⎢⎥⎣⎦,若存在ω,使得集合()()(){},|4,,B x y f x f y x y A ==∈恰有五个元素,则ω的范围取值为.11.在正方体1111ABCD A B C D -中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有个公共点.12.已知实数,,a b c 成公比为q 的等比数列,抛物线2x y =上每一点到直线0ax by c ++=的距离均大于98,则q 的取值范围是.二、单选题13.一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子两次,设事件M =“第一次朝上面的数字是奇数”,则下列事件中与M 相互独立的是()A .第一次朝上面的数字是偶数B .第一次朝上面的数字是1C .两次朝上面的数字之和是8D .两次朝上面的数字之和是714.已知AB 是圆O :222x y +=的直径,M ,N 是圆O 上两点,且120MON ∠=︒,则()OM ON AB +⋅的最小值为()A .0B .-2C .-4D .-15.已知等比数列{}n a 的前n 项和为n S ,若121a a a -<<,则()A .{}n a 为递减数列B .{}n a 为递增数列C .数列{}n S 有最小项D .数列{}n S 有最大项16.已知正方体1111ABCD A B C D -的棱长为2,点E 是上底面正方形1111D C B A 的中心,点F 是正方体棱上的点,以点A 为坐标原点,分别以AB ,AD ,1AA 所在的直线为x 轴、y 轴和z轴建立空间直角坐标系,若平面BEF 的一个法向量为()8,2,3n = ,则点F 所在的棱可以是()A .ADB .CDC .1CCD .1DD 三、解答题17.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,221cos sin 2B B -=-.(1)求角B ,并计算πsin 6B ⎛⎫+ ⎪⎝⎭的值;(2)若b =ABC V 是锐角三角形,求2ac +的最大值.18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,且CB BP CD DP ⊥⊥,,2PA =,点E F ,分别为PB PD ,的中点.(1)求证:PA ⊥平面ABCD ;(2)求点P 到平面AEF 的距离.19.在神舟十五号载人飞行任务取得了圆满成功的背景下.某学校高一年级利用高考放假期间组织1200名学生参加线上航天知识竞赛活动,现从中抽取200名学生,记录他们的首轮竞赛成绩并作出如图所示的频率分布直方图,根据图形,请回答下列问题:(1)若从成绩不高于60分的同学中按分层抽样方法抽取10人,求10人中成绩不高于50分的人数;(2)求a 的值,并以样本估计总体,估计该校学生首轮竞赛成绩的平均数以及中位数;(3)由首轮竞赛成绩确定甲、乙、丙三位同学参加第二轮的复赛,已知甲复赛获优秀等级的概率为23,乙复赛获优秀等级的概率为34,丙复赛获优秀等级的概率为12,甲、乙、丙是否获优秀等级互不影响,求三人中至少有两位同学复赛获优秀等级的概率.20.已知椭圆()2222:1043x y C a a a+=>的右焦点为F ,直线:40l x y +-=.(1)若F 到直线l 的距离为a ;(2)若直线l 与椭圆C 交于A ,B 两点,且ABO 的面积为487,求a ;(3)若椭圆C 上存在点P ,过P 作直线l 的垂线1l ,垂足为H ,满足直线1l 和直线FH 的夹角为π4,求a 的取值范围.21.定义:如果函数()y f x =和()y g x =的图像上分别存在点M 和N 关于x 轴对称,则称函数()y f x =和()y g x =具有C 关系.(1)判断函数()()22log 8f x x =和()12log g x x =是否具有C 关系;(2)若函数()f x =和()1g x x =--不具有C 关系,求实数a 的取值范围;(3)若函数()e xf x x =和()()sin 0g x m x m =<在区间()0,π上具有C 关系,求实数m 的取值范围.。
上海高二上学期期中考试数学试卷含答案(共5套)

上海市杨浦区高二上学期数学期中试卷(含答案)一、选择题1.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A. B. C. D.2.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. B. C. D.与a的值有关联3.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为,方差为,则A. B.C. D.4.一个盒子里装有大小相同的10个黑球、12个红球、4个白球,从中任取2个,其中白球的个数记为X,则下列概率等于的是()A.P(0<X≤2)B.P(X≤1)C.P(X=1)D.P(X=2)5.设样本数据的均值和方差分别为1和4,若为非零常数,,则的均值和方差分别为()A. B. C. D.6.从区间随机抽取个数,构成个数对,,…,,其中两数的平方和小于的数对有个,则用随机模拟的方法得到的圆周率疋的近似值为()A. B. C. D.7.某学校位同学组成的志愿者组织分别由李老师和张老师负责,每次献爱心活动均需该组织位同学参加.假设李老师和张老师分别将各自活动通知的信息独立,随机地发给位同学,且所发信息都能收到.则甲同学收到李老师或张老师所发活动通知的信息的概率为()A. B. C. D.8.将20名学生任意分成甲、乙两组,每组10人,其中2名学生干部恰好被分在不同组内的概率为()A. B. C. D.9.我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”.如右图所示的程序框图反映了对此问题的一个求解算法,则输出的值为()A. B. C. D.10.下列说法正确的是()A.若残差平方和越小,则相关指数越小B.将一组数据中每一个数据都加上或减去同一常数,方差不变C.若的观测值越大,则判断两个分类变量有关系的把握程度越小D.若所有样本点均落在回归直线上,则相关系数11.某产品的广告费用x与销售额y的统计数据如下表:广告费用(万元) 4 2 3 549 26 39 54销售额(万元)根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元12.已知P是△ABC所在平面内﹣点,,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC内的概率是()A. B. C. D.二、填空题13.有一批产品,其中有件次品和件正品,从中任取件,至少有件次品的概率为______.14.运行如图所示的流程图,则输出的结果S为_______.15.在长为的线段上任取一点,并以线段为边作正方形,这个正方形的面积介于与之间的概率为__________.16.为了防止职业病,某企业采用系统抽样方法,从该企业全体名员工中抽名员工做体检,现从名员工从到进行编号,在中随机抽取一个数,如果抽到的是,则从这个数中应抽取的数是__________.17.假设在5秒内的任何时刻,两条不相关的短信机会均等地进入同一部手机,若这两条短信进入手机的时间之差小于2秒,手机就会受到干扰,则手机受到干扰的概率为_________________18.为了在运行下面的程序之后得到输出y=25,键盘输入x应该是____________.INPUT xIF x<0 THENy=(x+1)*(x+1)ELSEy=(x-1)*(x-1)END IFPRINT yEND19.某学生每次投篮的命中概率都为.现采用随机模拟的方法求事件的概率:先由计算器产生0到9之间的整数值随机数,制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3个随机数为一组,代表三次投篮的结果.经随机模拟产生如下20组随机数:989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,据此统计,该学生三次投篮中恰有一次命中的概率约为__________.20.已知函数满足对任意的实数,都有成立,则实数的取值范围为______________;三、解答题21.某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.组号分组频率第1组[160,165)0.05第2组0.35第3组0.3第4组0.2第5组0.1合计 1.00(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.22.画出解关于的不等式的程序框图,并用语句描述.23.为检验两条生产线的优品率,现从两条生产线上各抽取件产品进行检测评分,用茎叶图的形式记录,并规定高于分为优品.前件的评分记录如下,第件暂不公布.(1)求所抽取的生产线上的个产品的总分小于生产线上的第个产品的总分的概率;(2)已知生产线的第件产品的评分分别为.①从生产线的件产品里面随机抽取件,设非优品的件数为,求的分布列和数学期望;②以所抽取的样本优品率来估计生产线的优品率,从生产线上随机抽取件产品,记优品的件数为,求的数学期望.24.(1)从区间[1,10]内任意选取一个实数,求的概率;(2)从区间[1,12]内任意选取一个整数,求的概率.25.某药厂为了了解某新药的销售情况,将今年2至6月份的销售额整理得到如下图表:(1)根据2至6月份的数据,求出每月的销售额关于月份的线性回归方程;(2)根据所求线性回归方程预测该药厂今年第三季度(7,8,9月份)这种新药的销售总额.(参考公式:,)26.某“双一流类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:(1)将同一组数据用该区间的中点值作代表,求这100人月薪收入的样本平均数;(2)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:方案一:设区间,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收取600元,月薪落在区间右侧的每人收取800元;方案二:每人按月薪收入的样本平均数的收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?【参考答案】一、选择题1.B解析:B【解析】设正方形边长为,则圆的半径为,正方形的面积为,圆的面积为.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是,选B.点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A区域的几何度量,最后计算.2.C解析:C【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为. 考点:几何概型,圆的面积公式.3.A解析:A【解析】【分析】分别根据数据的平均数和方差的计算公式,求得的值,即可得到答案.【详解】由题意,根据平均数的计算公式,可得,设收集的48个准确数据分别记为,则,,故.选A.【点睛】本题主要考查了数据的平均数和方差的计算公式的应用,其中解答中熟记数据的平均数和方差的公式,合理准确计算是解答的关键,着重考查了推理与运算能力,数基础题.4.B解析:B【解析】【分析】由题意知本题是一个古典概型,由古典概型公式分别求得P(X=1)和P(X=0),即可判断等式表示的意义.【详解】由题意可知,∴表示选1个白球或者一个白球都没有取得即P(X≤1),故选B.【点睛】本题是一个古典概型问题,这种问题在高考时可以作为文科的一道解答题,古典概型要求能够列举出所有事件和发生事件的个数,本题可以用组合数表示出所有事件数.5.A解析:A【解析】试题分析:因为样本数据的平均数是,所以的平均数是;根据(为非零常数,),以及数据的方差为可知数据的方差为,综上故选A.考点:样本数据的方差和平均数.6.B解析:B【解析】【分析】根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可.【详解】如下图:由题意,从区间随机抽取的个数对,,…,,落在面积为4的正方形内,两数的平方和小于对应的区域为半径为2的圆内,满足条件的区域面积为,所以由几何概型可知,所以.故选:B【点睛】本题主要考查几何概型,属于中档题.7.C解析:C【解析】【分析】甲同学收到李老师或张老师所发活动通知的信息的对立事件是甲同学既没收到李老师的信息也没收到张老师的信息,李老师的信息与张老师的信息是相互独立的,由此可计算概率.【详解】设甲同学收到李老师的信息为事件A,收到张老师的信息为事件B,A、B相互独立,,则甲同学收到李老师或张老师所发活动通知的信息的概率为.故选C.【点睛】本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.8.A解析:A【解析】【分析】由题意知本题是一个古典概型,先求出事件发生的总个数,再求出满足要求的事件个数,再根据古典概型的概率公式即可得出结果.【详解】由题意知本题是一个古典概型,试验发生的所有事件是20名学生平均分成两组共有种结果,而满足条件的事件是2名学生干部恰好被分在不同组内共有中结果,根据古典概型的概率公式得.故选:A.【点睛】本题主要考查古典概型和组合问题,属于基础题.9.B解析:B【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的的值.【详解】输出;;;;;,退出循环,输出,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.10.B解析:B【解析】【分析】由残差平方和越小,模型的拟合效果越好,可判断;由方差的性质可判断;由的随机变量的观测值的大小可判断;由相关系数的绝对值趋近于1,相关性越强,可判断.【详解】对于,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,相关指数越大,故错误;对于,将一组数据的每一个数据都加上或减去同一常数后,由方差的性质可得方差不变,故正确;对于,对分类变量与,它们的随机变量的观测值越大,“与有关系”的把握程度越大,故错误;对于,若所有样本点均落在回归直线上,则相关系数,故错误.故选:B.【点睛】本题考查命题的真假判断,主要是线性回归直线的特点和线性相关性的强弱、样本数据的特征值和模型的拟合度,考查判断能力,属于基础题.11.B解析:B【解析】【分析】【详解】试题分析:,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5考点:线性回归方程12.B解析:B【解析】【分析】推导出点P到BC的距离等于A到BC的距离的.从而S△PBC=S△ABC.由此能求出将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率.【详解】以PB、PC为邻边作平行四边形PBDC,则=,∵,∴,∴,∴P是△ABC边BC上的中线AO的中点,∴点P到BC的距离等于A到BC的距离的.∴S△PBC=S△ABC.∴将一粒黄豆随机撒在△ABC内,黄豆落在△PBC内的概率为:P==.故选B.【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.二、填空题13.【解析】【分析】利用古典概型概率公式求出事件至少有件次品的对立事件全都是次品的概率再利用对立事件的概率公式可计算出所求事件的概率【详解】记事件至少有件次品则其对立事件为全都是次品由古典概型的概率公式解析:.【解析】【分析】利用古典概型概率公式求出事件“至少有件次品”的对立事件“全都是次品”的概率,再利用对立事件的概率公式可计算出所求事件的概率.【详解】记事件至少有件次品,则其对立事件为全都是次品,由古典概型的概率公式可得,.因此,至少有件次品的概率为,故答案为.【点睛】本题考查古典概型概率公式以及对立事件概率的计算,在求事件的概率时,若问题中涉及“至少”,可利用对立事件的概率进行计算,可简化分类讨论,考查分析问题的能力和计算能力,属于中等题.14.【解析】【分析】【详解】由题设中提供的算法流程图中的算法程序可知当则执行运算;继续运行:;继续运行:;当时;应填答案解析:【解析】【详解】由题设中提供的算法流程图中的算法程序可知当,则执行运算;继续运行:;继续运行:;当时;,应填答案.15.【解析】若以线段为边的正方形的面积介于与之间则线段的长介于与之间满足条件的点对应的线段长为而线段的总长度为故正方形的面积介于与之间的概率故答案为:解析:【解析】若以线段为边的正方形的面积介于与之间,则线段的长介于与之间,满足条件的点对应的线段长为,而线段的总长度为,故正方形的面积介于与之间的概率.故答案为:.16.52【解析】由题意可知抽取的人数编号组成一个首项为7公差为15的等差数列则从这个数中应抽取的数是:故答案为52解析:52【解析】由题意可知,抽取的人数编号组成一个首项为7,公差为15的等差数列,则从这个数中应抽取的数是:.故答案为52.17.【解析】【分析】根据几何概型的概率公式求出对应的测度即可得到结论【详解】分别设两个互相独立的短信收到的时间为x y则所有事件集可表示为0≤x≤50≤y≤5由题目得如果手机受则到干扰的事件发生必有|x解析:【解析】【分析】根据几何概型的概率公式求出对应的测度,即可得到结论分别设两个互相独立的短信收到的时间为x,y.则所有事件集可表示为0≤x≤5,0≤y≤5.由题目得,如果手机受则到干扰的事件发生,必有|x-y|≤2.三个不等式联立,则该事件即为x-y=2和y-x=2在0≤x≤5,0≤y≤5的正方形中围起来的图形即图中阴影区域而所有事件的集合即为正方型面积52=25,阴影部分的面积,所以阴影区域面积和正方形面积比值即为手机受到干扰的概率为.【点睛】本题主要考查几何概型的概率的计算,分别求出对应区域的面积是解决本题的关键,比较基础.18.-6或6【解析】当x<0时25=(x+1)2解得:x=﹣6或x=4(舍去)当x≥0时25=(x﹣1)2解得:x=6或x=﹣4(舍去)即输入的x值为±6故答案为:﹣6或6点睛:根据流程图(或伪代码)写解析:-6或6【解析】当x<0时,25=(x+1)2,解得:x=﹣6,或x=4(舍去)当x≥0时,25=(x﹣1)2,解得:x=6,或x=﹣4(舍去)即输入的x值为±6故答案为:﹣6或6.点睛:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.19.【解析】这20组随机数中该学生三次投篮中恰有一次命中的有537 730 488 027 257 683 458 925共8组则该学生三次投篮中恰有一次命中的概率约为故填解析:【解析】这20组随机数中,该学生三次投篮中恰有一次命中的有537,730,488,027,257,683,458,925共8组,则该学生三次投篮中恰有一次命中的概率约为,故填.20.【解析】为单独递增函数所以点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性除注意各段的单调性外还要注意解析:【解析】为单独递增函数,所以点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围三、解答题21.(1)3人,2人,1人.(2)0.8.(3)第3组【解析】分析:(Ⅰ)由分层抽样方法可得第组:=人;第组:=人;第组:=人;(Ⅱ)利用列举法可得个人抽取两人共有中不同的结果,其中第组的两位同学至少有一位同学被选中的情况有种,利用古典概型概率公式可得结果;(Ⅲ)由前两组频率和为,中位数可得在第组.详解:(Ⅰ)因为第3,4,5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组学生人数分别为:第3组:=3人;第4组:=2人;第5组:=1人.所以第3,4,5组分别抽取3人,2人,1人.(Ⅱ)设第3组3位同学为A1,A2,A3,第4组2位同学为B1,B2,第5组1位同学为C1,则从6位同学中抽两位同学的情况分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).共有15种.其中第4组的两位同学至少有一位同学被选中的情况分别为:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),共有12种可能.所以,第4组中至少有一名学生被抽中的概率为0.8.答:第4组中至少有一名学生被抽中的概率为0.8.(Ⅲ)第3组点睛:本题主要考查分层抽样以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.22.见解析【解析】【分析】【详解】解:流程图如下:程序如下:INPUT a,bIF a=0 THENIF b<0 THENPRINT“任意实数”ELSEPRINT“无解”ELSEIF a>0 THENPRINT“x<“;﹣b/aELSEPRINT“x>“;﹣b/aENDIFENDIFENDIFEND点睛:解决算法问题的关键是读懂程序框图,明晰顺序结构、条件结构、循环结构的真正含义,本题巧妙而自然地将算法、不等式、交汇在一起,用条件结构来进行考查.这类问题可能出现的错误:①读不懂程序框图;②条件出错;③计算出错.23.(1);(2)①详见解析;②2.【解析】【分析】(1)根据生产线前件的总分为,生产线前件的总分为;则要使制取的生产线上的个产品的总分小于生产线上的个产品的总分,则第件产品的差要超过7.(2)①可能取值为,根据超几何分布求解概率,列出分布列,再求期望.②由样品估计总体,优品的概率为,可取且,代入公式求解.【详解】(1)生产线前件的总分为,生产线前件的总分为;要使制取的生产线上的个产品的总分小于生产线上的个产品的总分,则第件产品的评分分别可以是,,,故所求概率为.(2)①可能取值为,,,,随机变量的分布列为:.②由样品估计总体,优品的概率为,可取且,故.【点睛】本题主要考查茎叶图,离散型随机变量的分布列和期望,还考查了转化化归的思想和运算求解的能力,属于中档题.24.(1);(2).【解析】【分析】(1)求解不等式可得的范围,由测度比为长度比求得的概率;(2)求解对数不等式可得满足的的范围,得到整数个数,再由古典概型概率公式求得答案.【详解】解:(1),,又故由几何概型可知,所求概率为.(2),,则在区间内满足的整数为3,4,5,6,7,8,9共有7个,故由古典概型可知,所求概率为.【点睛】本题考查古典概型与几何概型概率的求法,正确理解题意是关键,是基础题.25.(1);(2)万元.【解析】【分析】(1)先计算出,,代入公式求出,结合线性回归方程的表达式求出结果(2)由线性回归方程计算出、、时的值,然后计算出结果【详解】(1)由题意得:,,,,故每月的销售额关于月份的线性回归方程.(2)因为每月的销售额关于月份的线性回归方程,所以当时,;当时,;当时,,则该药企今年第三季度这种新药的销售总额预计为万元.【点睛】本题考查了线性回归方程的实际应用,结合公式求出回归方程是本题关键,较为基础26.(1)2;(2)方案一能收到更多的费用.【解析】【分析】(1)每个区间的中点值乘以相应的频率,然后相加;(2)分别计算两方案收取的费用,然后比较即可.【详解】(1)这100人月薪收入的样本平均数是.(2)方案一:月薪落在区间左侧收活动费用约为(万元);月薪落在区间收活动费用约为(万元);月薪落在区间右侧收活动费用约为(万元);因此方案一,这50人共收活动费用约为3.01(万元);方案二:这50人共收活动费用约为(万元);故方案一能收到更多的费用.【点睛】本题考查频率分布直方图及其应用,属于基础题.上海市嘉定区高二上学期期中考试试卷数学试题考试时间: 120分钟满分: 150分一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.2213limx n n →∞+=____. 2.已知(1,),(2,3),a k b ==若a b 与平行,则k=_____.3.方程组2130x y x y +=⎧⎨-=⎩对应的增广矩阵为____.4.在等差数列{}n a 中,己知则该数列前11项和11S = ___.5.若1312,2433A -⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭,B 则2A-B=___.6.已知11111()1,234212f n n n=++++++-则f(n+1)-f(n)= ___. 7.已知△ABC 是边长为1的等边三角形, p 为边BC 上一点,满足2,PC BP =则BA AP ⋅=___. 8.已知数列n a 的前n 项和为2*,4,.n n S S n n N =+∈且则n a =___. 9.设无穷等比数列n a 的公比是q ,若1a =34lim(),n x a a a →∞+++则q =___.10.已知点12(1,1),(7,4),P P ==点P 分向量12PP 的比是1,2则向量1PP 在向量方向上的投影为____.11.在△ABC 中, , CB a CA b ==, ∠ACB=120°.若点D 为△ABC 所在平面内一点,且满足条件:①(1)(),(),CD CB CA R CD bCB CA λλλ=+-∈+②则||CD =____.(用a, b 表示)12. 设数列{}n a 的前n 项和为,n S 若存在实数A,使得对任意的*1,n N ∈都有||n S A <,则称数列{}n a 为“T 数列”,则以下{}n a 为“T 数列”的是_______.①{}n a 是等差数列,且10,a >公差d<0; ②若{}n a 是等比数列, 且公比q 满足|q|<1;③若2(1)2n nn a n n +=+;④若120,(1)0n n n a a a +=+-=.二、选择题(本大题共有4题,每题5分,满分20分)13.已知a b c d ⎛⎫⎪⎝⎭为单位矩阵,则向量(,)m a b =的模为()A.0B.1C.2D 14. 已知,a b 为两个非零向量,命题甲: ||||||a b a b -=+,命题乙:向量a 和b 共线,则甲是乙的() A 充分不必要条件B.必要不充分条件C.充要条件D.非充分非必要条件15.标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E ”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的1010倍,若视力4.1的视标边长为a,则视力4.9的视标边长为()45.10A a 109.10B a 45.10C a -910.10D a -16.在△ABC 中, H 是边AB 上一定点,满足AB= 4HB,且对于边AB 上任一点P,恒有PB PC HB HC ⋅≥⋅,则()A ∠ABC= 90° B.∠BAC= 90° C.AB= AC D.AC= BC三、解答题(本大题共有5题,满分76分)解答时必须在答题纸的相应位置写出必要的步骤. 17.(本题14分,第1小题6分,第2小题8分) 已知A(2,1), B=(3,2), D=(-1,4)(1)若四边形A BCD 是矩形,试确定点C 的坐标;(2)已知O 为坐标原点,求.OA OB OC ⋅-。
高二第一学期期中考试数学试卷含答案

高二数学第一学期期中考试试卷一、选择题(本大题共10小题,每小题4分,共40分)(每小题给出的四个选项中,只有一项是符合题目要求的把答案写在题号前) 1. 已知数列{a n }的通项公式为n n a n -=2,则下列各数中不是数列中的项的是( ) A.2 B.40 C.56 D.90 2. 等差数列{a n }的前n 项和为S n ,若12231a ==S ,,则a 6等于( ) A.8 B.10 C.12 D.14 3. 若0<<b a ,则下列不等式一定成立的是( ) A.b a22> B.a 2ab > C.ab b 2> D.b <a4. 等差数列{a n }中,a 1,a 2,a 4这三项构成等比数列,则公比q=( ) A.1 B.2 C.1或2 D.1或21 5. 已知数列{a n }的前n 项和为S n ,且3a 1=,a n n 2a 1=+,则S 5=( ) A.32 B.48 C.62 D.93 6. 若椭圆122=+kyx 的离心率是21,则实数k 的值为( ) A.3或31 B.34或43 C.2或21 D.32或237. 已知双曲线C :12222=-bya x ()0,0a >>b 的一条渐近线方程为x 3y =,一个焦点坐标为(2,0),则双曲线方程为( )A.16222=-y x B.12622=-y x C.1322x=-y D.13yx 22=-8. 若关于x 的不等式a xx ≥+4对于一切∈x (0,+∞)恒成立,则实数x 的取值范围是( )A.(-∞,5]B.(-∞,4]C.(-∞,2]D.(-∞,1] 9. 已知椭圆12222=+bya x ()0a >>b 的两个焦点分别为F F 21,,若椭圆上存在点P 使得∠PFF 21是钝角,则椭圆离心率的取值范围是( )A.(0,22) B.(22,1) C.(0,21) D.(21,1)10. 设O 为坐标原点,P 是以F 为焦点的抛物线()02y 2>=p px 上任意一点,M 是线段PF 的中点,则直线OM 的斜率的最大值为( ) A.22B.1C.2D.2 二、填空题(本大题共8小题,每小题5分,共40分)11. 在数列0,41,83,…,2n 1-n ,…中,94是它的第______项.12. 在等差数列{a n }中,542a =+a ,则=a 3______.13. 请写出一个与1322=-yx 有相同焦点的抛物线方程:____________.14. 椭圆14222=+ayx 与双曲线12222=-y a x 有相同的焦点,则实数a=______. 15. 函数()()111>-+=x x x x f 的最小值是______;此时x=______. 16. 要使代数式01a 2<-+ax x 对于一切实数x 都成立,则a 的取值范围是______.17. 已知椭圆的两个焦点1222=+yxFF 21,,点P 在椭圆上,且PF PF21⊥,则PF2=______.18. 在数列{a n }中,5,12113-==a a ,且任意连续三项的和均为11,则a 2019=______;设S n 是数列{a n }的前n 项和,则使得100≤S n 成立的最大整数n=______.三、解答题(本大题共5小题,共70分)19. 设{a n }是等差数列,-101=a ,且a a a a a a 6483102,,+++成等比数列. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值.20. 已知数列{a n }的前n 项和n n S n +=2,其中N n +∈. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)设12+=nn b ,求数列{b n }的前n 项和T n .21. 已知函数()R a ax x f x ∈-=,22.(Ⅰ)当a=1时,求满足()0<x f 的x 的取值范围; (Ⅱ)解关于x 的不等式()a x f 32<.22. 已知抛物线C :()022>=p px y ,经过点(2,-2). (Ⅰ)求抛物线C 的方程及准线方程;(Ⅱ)设O 为原点,直线02=--y x 与抛物线相交于B A ,两点,求证:OA ⊥OB .23. 已知椭圆C :的右焦点为12222=+by a x (),且经过点,01F ().10,B (Ⅰ)求椭圆C 的方程;(Ⅱ)直线()2:+=x k y l 与椭圆C 交于两个不同的点N M ,,若线段MN 中点的横坐标为32-,求直线l的方程及ΔFMN的面积.。
上海高二高中数学期中考试带答案解析

上海高二高中数学期中考试班级:___________ 姓名:___________ 分数:___________一、填空题1.设复数满足,则____________。
2.三个平面最多把空间分割成个部分。
3.若圆锥的侧面展开图是半径为2、圆心角为180°的扇形,则这个圆锥的体积是。
4.如图,在正三棱柱中,,异面直线与所成角的大小为,该三棱柱的体积为。
5.的展开式中的常数项是。
6.6名同学争夺3项冠军,获得冠军的可能性有种。
7.将三个1、三个2、三个3填入3×3的方格中,要求每行、每列都没有重复数字,则不同的填写方法共有种。
8.用4种颜色给一个正四面体的4个顶点染色,若同一条棱的两个端点不能用相同的颜色,那么不同的染色方法共有_____________种。
9.从个正整数中任意取出两个不同的数,若取出的两数之和等于的概率为,则。
10.用0、1、2、3、4、5组成一个无重复数字的五位数,这个数是偶数的概率为。
11.设复数,,在复平面上所对应点在直线上,则= 。
12.如图是一个正方体的表面展开图,A、B、C均为棱的中点,D是顶点,则在正方体中,异面直线AB和CD的夹角的余弦值为。
13.在直三棱柱中,底面ABC为直角三角形,,. 已知G与E分别为和的中点,D与F分别为线段和上的动点(不包括端点). 若,则线段的长度的最小值为。
14.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.二、选择题1.已知为异面直线,平面,平面.平面α与β外的直线满足,则()A.,且B.,且C.与相交,且交线垂直于D.与相交,且交线平行于2.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A .B .C .D .3.三个人乘同一列火车,火车有10节车厢,则至少有2人上了同一车厢的概率为( ) A .B .C .D .4.除以100的余数是( ) A .1 B .79C .21D .81三、解答题1.如图,AB 是底面半径为1的圆柱的一条母线,O 为下底面中心,BC 是下底面的一条切线。
上海高二数学上学期期中试卷含答案(共3套)

上海高二年级第一学期期中考试数学试卷(考试时间:120分钟 满分:150分)一.填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1. 直线230x y --= 关于x 轴对称的直线方程为________.2. 向量(3,4)a =在向量(1,0)b =方向上的投影为____ __.3. 已知向量(1,2),(,2)a b x =-=,若a b ⊥,则b =________.4. 已知一个关于y x ,的二元一次方程组的增广矩阵为112012-⎛⎫⎪⎝⎭,则x y -=_______.5. 若2021310x y -⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,则x y += .6. 若a 、b 、c 是两两不等的三个实数,则经过(,)P b b c +、(,)Q a c a +两点的直线的倾斜角 为__ ____.(用弧度制表示)7. 若行列式212410139xx =-,则=x .8. 直线Ax +3y +C =0与直线2x -3y +4=0的交点在y 轴上,则C 的值为________. 9. 已知平行四边形ABCD 中,点E 为CD 的中点,AM mAB =,AN nAD = (0m n ⋅≠), 若//MN BE ,则nm=______________. 10. 已知直线022=-+y x 和01=+-y mx 的夹角为4π,则m 的值为 .11. 下面结论中,正确命题的个数为_____________.①当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2. ②如果两条直线l 1与l 2垂直,则它们的斜率之积一定等于-1.③已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1、B 1、C 1、A 2、B 2、C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.④点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.⑤直线外一点与直线上一点的距离的最小值就是点到直线的距离.⑥若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k,且线段AB 的中点在直线l 上.12. 直线023cos =++y x θ的倾斜角的取值范围是_____________. 13. 如图,△ABC 的外接圆的圆心为O ,AB =2,AC =3,BC =7, 则AO →·BC →=________.14.设A 是平面向量的集合,a 是定向量,对A x ∈, 定义a x a x x f⋅⋅-=)(2)(.现给出如下四个向量:①)0,0(=a ,②⎪⎪⎭⎫ ⎝⎛=42,42a ,③⎪⎪⎭⎫ ⎝⎛=22,22a ,④⎪⎪⎭⎫ ⎝⎛-=23,21a . 那么对于任意x 、A y ∈ ,使y x y f x f ⋅=⋅)()(恒成立的向量a的序号是_______(写出满足条件的所有向量a的序号).二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的.必须用2B 铅笔将正确结论的代号涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分.15. “2a =”是“直线210x ay +-=与直线220ax y +-=平行”的【 】 (A )充要条件(B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件16.已知关于x y 、的二元一次线性方程组的增广矩阵为111222a b c a b c ⎛⎫ ⎪⎝⎭,记12121(,),(,),(,)a a a bb bc c c ===,则此线性方程组有无穷多组解的充要条件是【 】 (A) 0a b c ++= (B) a b c 、、两两平行 (C) a b // (D) a b c 、、方向都相同 17.如图所示是一个循环结构的算法,下列说法不正确的是【 】 (A )①是循环变量初始化,循环就要开始 (B )②为循环体(C )③是判断是否继续循环的终止条件(D )输出的S 值为2,4,6,8,10,12,14,16,18.18.如图,由四个边长为1的等边三角形拼成一个边长为2的等边三角形,各顶点依次为6321,,,,A A A A ,则j i A A A A ⋅21,(}6,,3,2,1{, ∈j i )的值组成的集合为【 】)(A {}21012、、、、-- )(B ⎭⎬⎫⎩⎨⎧---212102112、、、、、、 )(C ⎭⎬⎫⎩⎨⎧---23121021123、、、、、、)(D ⎭⎬⎫⎩⎨⎧----2231210211232、、、、、、、、 三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤,答题务必写在答题纸上规定位置. 19.(本题满分12分)中秋节前几天,小毛所在的班级筹划组织一次中秋班会,热心的小毛受班级同学委托,去一家小礼品店为班级的三个小组分别采购三种小礼物:中国结、记事本和笔袋(每种礼物的品种和单价都相同). 三个小组给他的采购计划各不相同,各种礼物的采购数量及价格如下表所示:为了结账,小毛特意计算了各小组的采购总价(见上表合计栏),可是粗心的小毛却不慎抄错了其中一个数字.第二天,当他按照自己的记录去向各小组报销的时候,有同学很快发现其中有错.发现错误的同学并不知道三种小礼物的单价,那么他是如何作出判断的呢?请你用所学的行列式的知识对此加以说明.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知ABC ∆的顶点(1,3)A ,AB 边上的中线所在的直线方程是1y =,AC 边上的高所在的直线方程是210x y -+=.求:(1)AC 边所在的直线方程; (2)AB 边所在的直线方程.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.在直角坐标系中,已知两点),(11y x A ,),(22y x B ;1x ,2x 是一元二次方程042222=-+-a ax x 两个不等实根,且A 、B 两点都在直线a x y +-=上. (1)求OA OB ;(2)a 为何值时与夹角为3π. 22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第,3小题满分6分. 已知O 为ABC ∆的外心,以线段OB OA 、为邻边作平行四边形,第四个顶点为D ,再以OD OC 、为邻边作平行四边形,它的第四个顶点为H .(1) 若,,,OA a OB b OC c OH h ====,试用a 、b 、c 表示h ; (2) 证明:AH BC ⊥;(3) 若ABC ∆的60A ∠=,45B ∠=,外接圆的半径为R ,用R 表示h .23.(本题满分18分)本题共有3个小题,每小题满分6分.如图,射线OA 、OB 所在的直线的方向向量分别为),1(1k d =、),1(2k d -=(0>k ),点P 在AOB∠内,OA PM ⊥于M ,OB PN ⊥于N . (1)若1=k ,⎪⎭⎫⎝⎛21,23P ,求||OM 的值; (2)若()1,2P ,△OMP 的面积为56,求k 的值; (3)已知k 为常数,M 、N 的中点为T ,且kS MON1Δ=, 当P 变化时,求||OT 的取值范围.x参考答案(考试时间:120分钟 满分:150分)一.填空题(本大题满分56分)本大题共有14题,只要求直接填写结果,每个空格填对得4分,否则一律得零分.1. 230x y +-=2. 33.. 2 5. 2 6. 4π7. 2或3- 8.-4 9. 2 10. 31-或3 11. 3 12. 50,[,)66πππ⎡⎤⎢⎥⎣⎦. 13. 52 14. ①③④ 二.选择题(本大题满分20分)本大题共有4题,每题都给出代号为A 、B 、C 、D 的四个结论,其中有且只有一个结论是正确的.必须用2B 铅笔将正确结论的代号涂黑,选对得5分,不选、选错或者选出的代号超过一个,一律得零分. 15. B 16. B 17.18. D三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤,答题务必写在答题纸上规定位置. 19.(本题满分12分)解:设中国结每个x 元,记事本每本y 元,笔袋每个z 元,由题设有2103105230x y x y z y z +=⎧⎪++=⎨⎪+=⎩,因为2101310052D == ,则方程组有无穷多组解或无解, 又101010312003052x D ==≠,210011014000302y D ==-≠,2110131010000530z D ==≠,从而该方程组无解。
上海师范大学附属中学高二数学上学期期中试题含解析

,
动直线 , 不全为零)化为: ,变形为 ,
令 ,解得 .
动直线 过定点: .
点 在以 为直径的圆上,
圆心为线段 的中点: ,半径 .
线段 长度的最大值 .
故答案 : .
【点睛】本题综合考查了直线系、等差数列的性质、圆的性质、点与圆的位置关系、两点之间的距离公式,考查了推理能力与计算能力,属于难题.
A。 存在唯一的实数δ,使点N在直线 上
B. 若 ,则过M,N两点的直线与直线l平行
C. 若 ,则直线经过线段M,N的中点;
D。 若 ,则点M,N在直线l的同侧,且直线l与线段M,N的延长线相交;
【答案】A
【解析】
【分析】
根据题意对 一一分析,逐一验证。
【详解】解:对于 , 化为: ,即点 , 不在直线 上,因此 不正确.
【答案】(1) , (2)
【解析】
【分析】
(1)对斜率存在与否分类讨论,利用圆心到切线的距离等于半径列方程求系数即可;
(2)可先利用 可用 点到圆心的距离与半径来表示) ,求出 点的轨迹(求出后是一条直线),然后再将求 的最小值转化为求直线上的点到原点的距离 之最小值;
【详解】解:(1)圆
①切线过原点,且斜率存在
15.如图,在平面四边形ABCD中,
若点E为边CD上的动点,则 的最小值为 ( )
A. B。 C. D。
【答案】A
【解析】
【详解】分析:由题意可得 为等腰三角形, 为等边三角形,把数量积 分拆,设 ,数量积转化为关于t的函数,用函数可求得最小值。
详解:连接BD,取AD中点为O,可知 为等腰三角形,而 ,所以 为等边三角形, 。设
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海财经大学附属中学高一第二学期数学期中考试试卷 (满分100分,时间90分钟) 成绩___________________ 一、填空题(每题3分,共36分) 1、在1,7之间插入三个数,使它们顺次成等差数列,则公差d_ 。2
2、等差数列na的公差不为零,12a,124aaa,,成等比数列,则8a_______。16
3、等比数列na的前三项依次为1a,1a,4a,则通项na 。1342n 4、等差数列na中,78,24201918321aaaaaa,则此数列前20项和 20S_________。180
5、数列na的前n项和为2nSn,则其通项通项na 。21n 6、等比数列na的前n项和为nS,若2412,120SS,则6S_________。1092
7、若数列na满足:12nna,则其前n项和nS_____________。2(21)nn
8、化循环小数为分数:0.234__________。61495 9、某工厂去年产量为a,计划今后五年每年比前一年产量增长%10,则今后5年的总产量为_________________。511(1)9aa
10、已知数列na中, 11a且122nnnaaa,则9a________。15 11、数列na中,111,32nnaaa,则通项na_____________。1231n 12、下列四个命题 ①若na是等差数列,则122nnnaaa对一切*nN成立
②数列na满足:1 21 3nnnnan,为奇数,为偶数 ,则limnna存在; ③设na是等比数列,则“123aaa”是“数列na是递增数列”的充要条件; ④若数列na的前n项和1(0,1)nnSkakk,则na是等比数列。 其中正确的序号是_____________。①②③④ 二、选择题(每题3分,共24分) 13、在等比数列na中,*(,,,)mnpqmnpqN是mnpqaaaa的--------( B ) A、充分必要条件 B、充分且不必要条件 C、必要且不充分条件 D、既不充分又不必要条件 14、在等差数列40,37,34,中第一个负数项是---------------------------------------------( C ) A、第13项 B、第14项 C、第15项 D、第16项 15、常数列一定是------------------------------------------------------------------------------------------( A ) A、等差数列 B、等比数列 C、既是等差数列又是等比数列 D、既不是等差数列又不是等比数列
16、数列na,nb都是公差不为0的等差数列,且2limnnnba,则nnnnabbb3221lim
等于---------------------------------------------------------------------------------------------------------- ( C ) A、1 B、 21 C、31 D、41 17、设A和G分别是,ab等差中项和等比中项,则ab22的值为-----------------------------( D ) A、222AG B、422AG C、2222AG D、4222AG 18、数列na中,111,21nnaaan,依次计算432,,aaa后,猜想na的表达式是( B )
A、32n B、2n C、13n D、43n 19、设na是正数等差数列,nb是正数等比数列,且11ab,2121nnab,则--------( B ) A、11nnab B、11nnab C、11nnab D、11nnab
20、如图,已知正111ABC的边长是1,面积是1P,取111ABC各边的
中点222,,ABC,222ABC的面积为2P,再取222ABC各边的中点
333,,ABC,333ABC的面积为3P,依此类推。记12nnSPPP,
则limnnS----------------------------------------------------------------------------------------------------( A )
A、33 B、3 C、23 D.43 三、解答题(共40分) 21、(本题7分)已知等比数列na中,142,16aa,若35,aa分别为等差数列nb的第3项和第5项,求数列nb的通项公式及前n项和nS。 解:设na的公比为q 33412162aaqqq,2nna----------------------------3分
得358,32aa, 设nb的公差为d,则有
31
1
51
828163243212bbdbbbdd
1612(1)1228nbnn-------------------------------------2分
2(161228)6222nnnSnn-------------------------------2分
22、(本题7分)已知数列na是一个首项为1a,公比0q的等比数列,前n项和为nS,记12321nnTaaaa,求limnnnST的值。
解:当1q时,11,nnSnaTna--------------------------------------2分 11limlim1nnnn
Sna
Tna
--------------------------------------------------1分
当0,1qq时,211(1)(1),11nnnnaqaqSTqq-----------1分
A1
B1C1A
2
B2C
2
A3
B3C
31||11limlim0||11nnnnnqSqTq
----------------------------------2分
综上:101lim01nnnqSqT ------------------------------------------1分
23、(本题8分)数列na的前n项和为nS,且1111,3nnaaS,求 ⑴数列na的通项公式; ⑵2462naaaa的值。 解:⑴由1111,3nnaaS得:1111(),(2)33nnnnnaaSSan 即:14,(2)3nnaan----------------------------------------------------------------2分
213a,214(),(2)33nnan----------------------------------------------------2分
21114()233nnnan
------------------------------------------------------------------1分
⑵由⑴可知242,,,naaa是首项为13,公比为24()3,项数为n的等比数列, 2224622141()3433()14731()3nnnaaaa
--------------------------3分
24、(本题8分)已知二次函数)(100619)310(2)(*22Nnnnxnxxf ⑴设函数)(xfy的图像顶点的横坐标构成数列na,求证:na是等差数列; ⑵若函数)(xfy的图像顶点到y轴的距离构成数列nb,求数列nb的前n项和nS 解:⑴22()2(103)961100fxxnxnn2[(103)]xnn 顶点坐标为(103,)nn,103nan----------------------------------------1分 当2n时,13nnaa,17a----------------------------------------------1分 所以数列na是以7为首项,以3为公差的等差数列---------------------1分
⑵1033|||103|3104nnnnbannn
当3n时,2(7103)317222nnnSnn------------------------------2分 当4n时,23(3)(2310)31724222nnnSSnn-------------2分
综上:2231732231724422nnnnSnnn--------------------------------------------1分