高二数学立体几何空间直线选择题4
高二数学立体几何试题及答案

【模拟试题】一. 选择题〔每题5分,共60分〕 1. 给出四个命题:①各侧面都是正方形的棱柱肯定是正棱柱;②各对角面是全等矩形的平行六面体肯定是长方体; ③有两个侧面垂直于底面的棱柱肯定是直棱柱; ④长方体肯定是正四棱柱。
其中正确命题的个数是〔 〕 A. 0 B. 1C. 2D. 32. 以下四个命题:①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的全部面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。
正确的命题有________个A. 1B. 2C. 3D. 43. 长方体的一个顶点处的三条棱长之比为1:2:3,它的外表积为88,那么它的对角线长为〔 〕 A. 12B. 24C. 214D. 4144. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm ,深为8cm 的空穴,那么该球的半径是〔 〕 A. 8cmB. 12cmC. 13cmD. 82cm5. 一个圆柱的侧面绽开图是一个正方形,这个圆柱的全面积为侧面积的比是〔 〕A. 122+ππB. 144+ππC.12+ππD. 142+ππ6. 直线l m ⊥⊂平面,直线平面αβ,有下面四个命题:①αβ//⇒⊥l m ;②αβ⊥⇒l m //;③l m //⇒⊥αβ;④l m ⊥⇒αβ//。
其中正确的两个命题是〔 〕A. ①②B. ③④C. ②④D. ①③7. 假设干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,假设将这些水倒入轴截面是正三角形的倒圆锥形器皿中,那么水面的高度是〔 〕 A. 63cmB. 6cmC. 2182D. 31238. 设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是〔 〕A.63πcmB. 3233πcmC. 833πcmD. 433πcm9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是〔 〕 A. m n m n ⊥,,////αβ B. m n m n ⊥=⊂,,αβα C. m n n m //,,⊥⊂βαD. m n m n //,,⊥⊥αβ10. 假如直线l 、m 与平面αβγ、、满意:l l m m =⊂⊥βγααγ ,,,//,那么必有〔 〕A. αγ⊥⊥和l mB. αγβ////,和mC. m l m //β,且⊥D. αγαβ⊥⊥且11. 正方体的八个顶点中,有四个点恰好为正四面体的顶点,那么该正四面体的体积与正方体的体积之比为〔 〕 A. 13:B. 12:C. 2:3D. 1:312. 向高为H 的水瓶中注水,注满为止,假如注水量V 与水深h 的函数关系的图象如下图,那么水瓶的形态是〔 〕二. 填空题〔每题4分,共16分〕13. 正方体的全面积是a 2,它的顶点都在球面上,这个球的外表积是__________。
25学年高二数学上学期第三次月考卷(新高考专用,空间向量与立体几何+直线与圆+圆锥曲线+数列)全解析

2024-2025学年高二数学上学期第三次月考卷(新高考地区专用)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:空间向量与立体几何25%+直线圆20%+圆锥曲线35%+数列20%。
5.难度系数:0.63。
第一部分(选择题 共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线l 与直线2310x y -+= 平行,则直线l 的斜率为( )A .32B .32-C .23-D .232.已知向量(,2,1),(2,4,2)a x b =-=-,若//a b ,则x =( )A .1-B .1C .5-D .5故选:B.3.已知抛物线2:2C y x =,则抛物线C 的焦点到准线的距离是( )A .4B .14C .2D .124.已知圆22:330C x y mx y +-++=关于直线:0l mx y m +-=对称,则实数m =( )A .1或3-B .1C .3D .1-或35.等比数列{}n a 的前n 项和为n S ,已知2532a a a =,且4a 与72a 的等差中项为54,则5S =( )A .29B .31C .33D .366.已知双曲线2222:1(0,0)x yC a ba b-=>>的一条渐近线被圆22(3)9x y-+=所截得的弦长为2a,则双曲线C的焦距是()A.2B.3C.4D.67.平行六面体1111ABCD A B C D-的底面ABCD是边长为2的正方形,且1160A AD A ABÐ=Ð=°,13AA=,M 为11A C,11B D的交点,则线段BM的长为()A.3B C D.8.已知点P为椭圆22:11612x yC+=上任意一点,直线l过22:430M x y x+-+=e的圆心且与Me交于,A B两点,则PA PB×uuu r uuu r的取值范围是()A .[]3,35B .[]2,34C .[]2,36D .[]4,36二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法不正确的是( )A .“直线210a x y -+=与直线20x ay --=互相垂直”是“1a =-”的充分不必要条件B .直线sin 20x y a ++=的倾斜角q 的取值范围是π3π0,,π44éùé⎫È⎪êúêëûë⎭C .若圆()222:(4)(4)0M x y r r -+-=>上恰有两点到点()1,0N 的距离为1,则r 的取值范围是()4,6D .设b 为实数,若直线y x b =+与曲线x =11b -<£当直线y x b =+过点(0,1)A 时,b 当直线y x b =+过点(1,0)B 和点C 当直线y x b =+与半圆相切于点由圆心O 到直线0x y b -+=的距离为10.设12,F F 是椭圆2211612x y+=的两个焦点,P 是椭圆上一点,且122PF PF -=.则下列说法中正确的是( )A .125,3PF PF ==B .离心率为12C .12PF F V 的面积为6D .12PF F V 的面积为12因为P 是椭圆上一点,所以因为122PF PF -=,所以11.对于数列{}n a ,定义:1n n n a a a +=D -,21n n n a a a +D =D -D ,*n ÎN ,则下列说法正确的是( )A .若n a n =,则20n a D =B .若2n a n =,则1n na a +D >D C .若3n a n =,数列{}nb 的前n 项和为n a D ,则6n b n =D .若(2)2n n a n D =+×,12a =,则22n n na a a D =+D三、填空题:本题共3小题,每小题5分,共15分.12.已知n S 为等差数列{}n a 的前n 项和,若3724S S +=,则31119a a += .【答案】48【详解】解:由数列前n 项和的性质可知:3724137102424S S a a a d +=+=+=,即151212a d +=,则()31111192048451248a a a d a d +=+=+=.故答案为:4813.在正方体1111ABCD A B C D -中,F 是BC 的中点,点E 在棱11C D 上,且11114=D E C D ,则直线EF 与平面1D AC 所成角的正弦值为.以D 为坐标原点,分别以DA 设正方体的边长为4,则D 所以()(12,3,4,EF D A =-=uuu r uuuu r 设平面的一个法向量为n =r 14.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别是12,F F ,过点1F 的直线与C 交于,A B 两点,且12AB F F ^,现将平面12AF F 沿12F F 所在直线折起,点A 到达点P 处,使面12PF F ^面12BF F ,若25cos 9PF B =Ð,则双曲线C 的离心率为 .由题意,2,b A c a ⎛⎫- ⎪⎝⎭,所以211b PF BF a ==,12F F 因为12AB F F ^,所以112PF F F ^,112BF F F ^又平面12PF F ^平面12BF F ,平面12PF F I 平面1BF F 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知O 为坐标原点,动点P 到两个定点(0,0),(3,0)O A 的距离的比12,记动点P 的轨迹为曲线C ,(1)求曲线C 的方程;(2)若直线l 过点(0,2)B ,曲线C 截l所得弦长等于l 的方程.16.(15分)过抛物线()220y px p =>的焦点且斜率为1的直线交抛物线于A 、B 两点,已知16AB =.(1)求抛物线的方程;(2)O 为坐标原点,求AOB V 的面积.217.(15分)如图,在四棱锥P ABCD -中,平面PDC ^平面,,ABCD AD DC AB DC ^∥,11,2AB CD AD M ===为棱PC 的中点.(1)证明://BM 平面PAD ;(2)若1PC PD ==,(i )求二面角P DM B --(ii )在线段PA 上是否存在点Q ,使得点Q 到平面BDM ?若存在,求出PQ 的值;若不存在,说明理由.1,,2AB CD AB CD AB =\Q ∥∥∴四边形ABMN 是平行四边形,又BM Ì/平面,PAD AN Ì平面PAD(i)10,1,,(1,1,0)2DM DB⎛⎫==⎪⎝⎭uuuu r uuu r,设平面BDM的一个法向量为n=r则12n DM y zn DB x yì×=+=ïíï×=+=îuuuu rruuu rr,令2z=18.(17分)数列{}n a 的首项152a =,1341n n n a a a +-=-.(1)证明12n a ìüíý-îþ是等差数列,并求{}n a 的通项公式;(2)设()9210nn nn b a =-´,①当数列{}n b 的项取得最大值时,求n 的值;②求数列{}n b 的前n 项和n S .19.(17分)通过研究,已知对任意平面向量(),AB x y =,把AB 绕其起点A 沿逆时针方向旋转q 角得到向量()cos sin ,sin cos AP x y x y q q q q =-+uuu r ,叫做把点B 绕点A 逆时针方向旋转q 角得到点P ,(1)已知平面内点(A ,点B-,把点B 绕点A 逆时针旋转π3得到点P ,求点P 的坐标:(2)已知二次方程221+-=x y xy 的图像是由平面直角坐标系下某标准椭圆()222210+=>>x y a b a b 绕原点O 逆时针旋转π4所得的斜椭圆C ,(i )求斜椭圆C 的离心率;(ⅱ)过点Q 作与两坐标轴都不平行的直线1l 交斜椭圆C 于点M 、N ,过原点O 作直线2l 与直线1l 垂直,直线2l 交斜椭圆C 于点G 、H 理由.法二:将椭圆顺时针旋转点Q旋转后的坐标为233⎛⎝当直线1l旋转后斜率不存在时,。
高中高二数学练习卷平面与空间直线练习试题

高二数学同步检测一平面与空间直线说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答 .第Ⅰ卷(选择题)一、选择题(本大题共10 小题 ,在每题给出的四个选项中,选择一个切合题目要求的选项)1.列命题是真命题的是()A.空间不一样三点确立一个平面B.空间两两订交的三条直线确立一个平面C.四边形确立一个平面D.和同向来线都订交的三条平行线在同一平面内答案 :D分析 :依据公义3(经过不在同一条直线上的三点,有且只有一个平面)知不在同向来线上的三点,才能确立一个平面 ,因此 A 错 .如图 (1),a,b,c 三条直线两两订交,但 a,b,c 不共面 ,因此 B 错误 .如图 (2),明显四边形ABCD 不可以确立一个平面.2.已知 AB ∥PQ,BC ∥QR,∠ ABC=30 ° ,则∠ PQR 等于 ()A.30 °B.30 °或 150°° D.以上结论都不对答案 :B分析 :由等角定理可知∠PQR 与∠ ABC 相等或互补 ,即∠ PQR=30°或 150°.3.如右图 ,α∩ β =l,A ∈ β ,B∈ β ,AB ∩ l=D,C ∈α ,则平面 ABC 和平面α的交线是 ()A. 直线C.直线ACABB. 直线D.直线BCCD答案 :D分析 :CD 为平面 ABC 与平面α的交线 .应选 D.4.如图 ,点 P,Q,R,S 分别在正方体的四条棱上,而且是所在棱的中点,则直线PQ 与RS 是异面直的是 () 答案 :C分析 :A,B中的PQ与RS相互平行;D中的PQ与RS订交;由两条直异面的判断定理可知中的 PQ 与 RS 异面 .5.“ a,b 是异面直”的表达,正确的选项是()①a∩ b=且a不平行于b② a平面α ,b平面β 且α ∩β =③ a平面α,b α④不存在平面α,使a平面α 且b平面α 建立A. ①②B.①③C.①④D. ③④C 平面答案 :C分析 :依据“异面直是不一样在任何一个平面内的两条直”的定知,④正确.空不相交的两条直除平行外就是异面 ,故于① ,既然两直不平行 ,必定异面 .分在两个平面内的两条直可能平行 ,故②不正确 .平面内的一条直和平面外的一条直除异面外可能平行或订交 ,故③不正确 .上所述 ,只有①④正确 .6.右是一个无盖的正方体盒子睁开后的平面,体盒子中,∠ ABC 的⋯ ()A 、 B、 C 是睁开上的三点,在正方A.180 °°°°答案 :C分析 :把平面形原立体形,找准 A 、 B 、C 三点相地点,可知∠ABC 在等△ABC 内.7.在空四形ABCD 中,M,N 分是AB,CD 的中点, BC+AD=2a, MN 与 a 的大小关系是( )A.MN>aB.MN=aC.MN<aD.不可以确立答案 :C分析 :如图,取AC中点P,则MP 1 1故 C 正确 . 2BC,NP AD, 且 MP+NP= (BC+AD)=a>MN,28.如图,在棱长为 1 的正方体 ABCD —A 1B1 C1D 1中, O 是底面 ABCD 的中心, E、F 分别是CC1、 AD 的中点,那么异面直线OE 和 FD 1所成的角的余弦值等于 ()10 15 4 2A. B. C. D.5 5 5 3答案 :B分析一 :如图 (1),取面 CC1D1D 的中心为 H,连接 FH 、D 1H.易知 OE∥ FH ,因此∠ D 1FH 为所求异面直线所成的角 .在△ FHD 1中,FD 1= 5, FH=3, D1H=2由余弦定理,得∠D 1FH 的余弦值为15 .2 2 2 5分析二 :如图 (2),取 BC 中点为 G.连接 GC1、 FD1,则 GC1∥ FD1.再取 GC 中点为 H, 连接 HE 、OH,则∠ OEH 为异面直线所成的角 .在△ OEH 中, OE= 3 ,HE= 5,OH= 5 .2 4 4由余弦定理,可得cos∠OEH= 15. 59.空间有四点 A,B,C,D, 每两点的连线长都是2,动点 P 在线段 AB 上 ,动点 Q 在线段 CD 上 ,则P,Q 两点之间的最小距离为( )B.3C. 2D. 3 2答案 :C分析 :PQ的最小值应是AB,CD 的公垂线段长 .易知 P,Q 分别是 AB,CD 中点时 ,PQ⊥ AB,PQ ⊥CD.在 Rt△ BQP 中 ,∵BQ= 3 ,BP=1,∴PQ= 3 1 = 2 .10.右图是正方体的平面睁开图,则在这个正方体中:①BM 与 ED 平行 ;② CN 与 BE 是异面直线 ;③ CN 与 BM 成 60°角 ;④ DM 与 BN 垂直 .以上四个命题中,正确命题的序号是()A. ①②③B. ②④C.③④D.②③④答案 :C分析 :将上边的睁开图复原成以下图正方体.简单知道BM与ED异面,CN与BE平行,故①②不正确 .由于 BE∥ CN, 因此 CN 与 BM 所成的角是∠ EBM=60 ° ,延伸 CD 至 D ′,使 DD ′=DC, 则D ′N ∥ DM, ∠ BND ′就是 DM 与 BN 所成的角 .设正方体的棱长为 1,由于 BN= 3 a,ND ′ = 2 a,BD′= 5 a,因此BN2+D′N2=D′B2,即BN⊥ND′,BN⊥DM.第Ⅱ卷(非选择题)二、填空题(本大题共 4 小题 ,答案需填在题中横线上)11.以下四个命题 :①A ∈ l,A ∈ α,B∈ l,B∈ αl α;②A ∈ α,A∈ β,B∈ α,B∈βα∩β =AB;③l α,A∈ l A a;④A,B,C ∈ α,A,B,C∈ β,且 A,B,C 不共线α与β重合.此中推理正确的序号是__________.答案 :①②④分析 :由公义 1 知①正确 ;由公义 2 知②正确 ;由公义 3 知④正确 ;而③中直线 l 可能与平面 α 订交于 A.故③不正确 .12.空间四条直线 ,两两订交可确立平面的个数最多有 ____________ 个.答案 :6分析 :明显 ,任两条订交直线若都能确立一个平面 (不重复 ),此时平面个数最多 .如图 ,平面 PAB, 平面PAC,平面 PAD,平面 PBC,平面 PCD,平面 PBD, 共 6 个. 13.(2006 全国要点中学一模 ,11)给出三个命题 :①若两条直线和第三条直线所成的角相等 ,则这两条直线相互平行 ; ②若两条直线都与第三条直线垂直 ,则这两条直线相互平行 ; ③若两条直线都与第三条直线平行 ,则这两条直线相互平行 . 此中不正确的序号是 __________. 答案 :①②分析 :在以下图的正方体 ABCD — A 1B 1C 1D 1 中 ,A 1D 1⊥ D 1D,C 1D 1⊥ D 1D,即 A 1D 1 与 D 1D,C 1D 1 与 D 1D 所成的角都是 90°,但 A 1D 1 与 C 1 D 1 不平行 ,可知①②不正确 ,由公义 4 可知③正确 . 14.在正方体ABCD — A 1B 1C 1D 1 中,假如 E 、 F 分别为 AB 、CC 1 的中点,那么异面直线 A 1C与 EF 所成的角等于 _______________. 答案 :arccos23分析 :延伸 AA 1 到 P ,使 A 1P=1 AA 1,2连接 PF ,则 PF ∥ A 1C ,设 A 1A=a.则 PE 2=( 3a)2+( 1a)2=102 2 4 EF 2=( 1 a)2+a 2+( 1 a)2 = 6224a 2,a 2 ,PF 2=A 1C 2=3a 2 .3a 2 6 a 2 10 a 2∴cos ∠ PEF=4 4 2.2 3a6 a 322∴直线 A 1C 与 EF 所成的角等于 arccos.3三、解答题(本大题共 5 小题 ,解答应写出文字说明,证明过程或演算步骤)15.已知正方体ABCD — A 1B1C1D 1中, E、 F 分别是 D1C1、 B1C1的中点, AC∩BD=P ,A 1C1∩ EF=Q,求证:(1)D 、 B、 F、 E 四点共面;(2)若直线 A 1C 交平面 DBFE 于点 R,则 P、 Q、 R 三点共线 .(1)证法一 :∵ EF 是△ D 1B1 C1的中位线 ,∴EF ∥B 1D 1.在正方体 AC 1中, B1 D1∥ BD,∴E F ∥BD.由公义 3 知 EF 、BD 确立一个平面,即 D 、B、 F、 E 四点共面 .证法二 :延伸 BF,CC1交于点 G,延伸 DE,CC 1交于点 G′ .G 与 G′重合 DE,BF 是订交直线D,B,F,E 四点共面 .(2)证明 :正方体 ABCD — A 1B1C1D1中,设 A 1ACC 1确立的平面为α ,设平面 DBFE 为β,Q EF Q∵Q 为α、β的公共点.又Q A1C1Q同理 ,P 亦为α、β的公共点 ,R A1C RR∈ PQ,即 P、 Q、 R 三点共线 .∴又 R由公义 2可知评论 :证明多点共线,可先由两点确立向来线,证其他点在直线上.要证点在一条直线上,只需证明这点是两平面的公共点,而直线是两个平面的交线,这是证点在直线上的常用方法.16.如图,E、F、G、H 分别是空间四边形 ABCD 各边上的点,且有 AE ∶EB=AH ∶ HD=m,CF ∶FB=CG ∶GD=n.(1)证明 E、 F、 G、H 四点共面 .(2)m 、 n 知足什么条件时,EFGH 是平行四边形 ?(3)在( 2)的条件下,若 AC ⊥ BD ,试证明 EG=FH.(1)证明 :∵AE ∶ EB=AH ∶ HD ,∴ EH ∥ BD.∵C F∶ FB=CG ∶ GD,∴FG∥ BD. ∴ EH ∥ FG.∴ E、 F、 G、H 四点共面 .(2)解 :当且仅当 EH FG 时,四边形 EFGH 为平行四边形 .∵ EH AE m ,∴ EH= m BD.BD AE EB m 1 m 1同理 ,FG= n BD. 由 EH=FG 得 m=n.n 1故当 m=n 时,四边形EFGH 为平行四边形 .(3) 证明 :当 m=n 时, AE ∶ EB=CF ∶ FB,∴ EF∥ AC.又∵ AC ⊥ BD ,∴∠ FEH 是 AC 与 BD 所成的角 .∴∠ FEH=90 ° .进而 EFGH 为矩形,∴ EG=FH.评论 :空间四边形是立体几何的一个基本图形,它各边中点的连线组成平行四边形;当两对角线相等时该平行四边形为菱形;当两对角线相互垂直时,该平行四边形为矩形;当两对角线相等且相互垂直时 ,该平行四边形为正方形 .M,N,P . 分别在直线a,b,c 上 ,点Q 是b 17.如图 ,a,b,c 为不共面的三条直线,且订交于一点O,点上异于 N 的点 ,判断 MN 与 PQ 的地点关系 ,并予以证明证法一 :(反证法 )假定 MN 与 PQ 共面于β ,则点 M,N,P,Q∈ β .又点 N, Q b b OcO b P同理 ,aβ .∴a,b,c 共面 ,与已知 a,b,c 不共面矛盾 .故 MN 与 PQ 为异面直线 .a b0点M , N , Q共面于 MON证法二 : M又 Q b且异于 NN , Q b点Q MN,OP 平面 MON点 P平面MON.P c故平面 MON 内一点 Q 与平面外一点P的连线 PQ 与平面内可是Q 点的直线MN 是异面直线.18.以下图 ,今有一正方体木材ABCD — A 1B 1C1D1,此中M,N分别是AB,CB的中点,要过D 1,M,N 三点将木材锯开 ,请你帮助木匠师傅想方法 ,如何画线才能顺利达成 ?解: 作法以下 :(1) 连接 MN 并延伸交 DC 的延伸线于 F,连接 D 1F 交 CC 1 于 Q,连接 QN; (2) 延伸 NM 交 DA 的延伸线于 E,连接 D 1E 交 A 1A 于 P,连接 MP;(3) 挨次在正方体各个面上画线D 1P,PM,MN,NQ,QD 1,即为木匠师傅所要画的线 .19. 如 图 ,AB,CD是 两 条 异 面 直 线 ,AB=CD=3a,E,F 分 别 是 线 段 AD,BC上 的 点 , 且ED=2AE,FC=2BF,EF=7 a,G ∈ BD,EG ∥ AB.(1) 求 AB 与 CD 所成的角 ; (2) 求△ EFG 的面积 .解 :(1) ∵ ED=2AE,EG ∥AB, ∴ DG=2BG . ∵ F C=2BF, ∴ FG ∥ DC.∴∠ EGF 即为 AB 与 CD 所成的角或其补角 .∵ A B=CD=3a,EG=2a,GF=a, 又 EF= 7 a,EG 2 GF 2 EF 24a 2 a 2 7a 21 ∴cos ∠ EGF=2EG GF2 2a a.2∴∠ EGF=120° .∴ AB 与 CD 所成的角为 60° .1 (2)S △ EFG = EG ·GF · sin120° 2= 1× 2a × a × sin120°23 2=a .2本卷由《 100 测评网》整理上传,专注于中小学生学业检测、练习与提高.。
空间向量与立体几何 单元测试-2022-2023学年高二上学期数学

空间向量与立体几何测试一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1—→-D 1C 1—→等于( ) A.AD 1—→ B.AC 1—→ C.AD → D.AB →2.若直线l 的方向向量为a ,平面α的法向量为μ,则能使l ∥α的是( ) A .a =(1,0,0),μ=(-2,0,0) B .a =(1,3,5),μ=(1,0,1) C .a =(0,2,1),μ=(-1,0,1) D .a =(1,-1,3),μ=(0,3,1)3.已知棱长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1的中心为O 1,则AO 1—→·AC →的值为( )A .-1B .0C .1D .24.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( ) A .2 B .3 C .4D .55.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( )A .16B .14C .16-D .14-6.已知正四棱柱1111ABCD A B C D -中,12AA AB =,则CD 与平面1BDC 所成角的正弦值等于( ) A .23B .33C .23D .137.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A 3λB .22C 2λD 5 8.已知空间直角坐标系O xyz -中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )A .131,,243⎛⎫⎪⎝⎭B .133,,224⎛⎫⎪⎝⎭C .448,,333⎛⎫⎪⎝⎭D .447,,333⎛⎫⎪⎝⎭二、选择题:本题共4小题,每小题5分,共20分。
立体几何与空间向量小题分类练习(四)综合应用-北京市2021-2022学年高二上学期期中数学备考

高二专题分类-立体几何与空间向量(四)空间向量与立体几何的综合应用一.选择题1.(2021·北京八中高二期末)正方体1111ABCD A B C D -中,AC 和1A D 所成角的大小是( ) A .30B .45C .60D .752.(2021·北京市朝阳区北京教育学院朝阳分院高二期中)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ 的值为( )A .2aB .212aC .214aD 2 3.(2021·北京昌平区·昌平一中高二月考)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,点E 是SB 的中点,则直线AE ,SD 所成角的余弦值为( )A .3B C D .134.(2021·北京西城·)如图,在正方体1111ABCD A B C D -中,E 为CD 的中点,则直线1A E 与BC 所成角的余弦值为( )A .25B .35C .13D .235.(2020·北京和平街第一中学高二月考)已知向量()2,0,1n =为平面α的法向量,点()1,2,1A -在α内,点()1,2,2P -在α外,则点P 到平面α的距离为( )A B C .D6.(2021·北京八中高二期末)如图,正方体1111ABCD A B C D -的棱长为1,点E 为1DD 的中点,点P 为BDE 内部一动点,P 点到平面1111D C B A 的正射影为点Q ,则Q 到点A 的距离的最小值为( )AB C D .17.(2021·北京师范大学昌平附属学校)正方体1111ABCD A B C D -中,点E 为1BB 中点,平面1A EC 与平面ABCD 所成二面角的余弦值为( )A B C D 8.(2021·北京高二期末)在空间直角坐标系Oxyz 中,已知点(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D ,则直线AD 与BC 所成角的大小是___.二.填空题9.(2020·北京市广渠门中学)已知平面α的一个法向量()2,2,1n =--,点()1,3,0A --在平面α内,则点()2,1,4P -到平面α的距离为_________.10.(2021·北京朝阳·高二期末)如图,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1.则A 1C 与平面C 1BD _______(填“垂直”或“不垂直”);A 1C 的长为_______.11.(2021·北京昌平区·昌平一中高二月考)如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足BC 1⃗⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =1,则BC 1⃗⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角最大值为___________.12.(2021·北京昌平区·昌平一中高二月考)如图,正方体1111ABCD A B C D -的棱长为2,E 为1BB 的中点,则异面直线1BC 与1D E 所成的角为___________.13.(2021·北京人大附中高二期末)如图,若正三棱柱111ABC A B C -的底面边长为8,对角线1B C 的长为10,点D 为AC 的中点,则点1B 到平面1C BD 的距离为_____,直线1AB 与直线BD 所成角的余弦值为________.14.(2021·北京高二期末)如图,在四面体ABCD 中,其棱长均为1,M ,N 分别为BC ,AD 的中点.若MN ⃗⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ +zAD ⃗⃗⃗⃗⃗ ,则x y z ++=________;直线MN 和CD 的夹角为________.15.(2020·北京市第十二中学高二期中)在长方体1111ABCD A B C D -中,4AB AD ==,11AA =,点P 在底面1111D C B A 上.(1)若点P 与点1A 重合,则点P 到平面11BDD B 的距离是__________. (2)若点P 到直线AD 和11C D 的距离相等,则1PC 的最小值是__________.参考答案1.C 【分析】连接1B C ,即可得到11//A D B C ,则1B CA ∠(或补角)即为异面直线AC 和1A D 所成角,再根据正方体的性质计算可得; 【详解】解:如图连接1B C ,在正方体1111ABCD A B C D -中,因为11//A B CD ,且11=A B CD ,所以四边形11A B CD 为平行四边形,所以11//A D B C , 所以1B CA ∠(或补角)即为异面直线AC 和1A D 所成角, 显然1AB C 为等边三角形,所以160B CA ∠=. 故选:C.2.C 【分析】由题意可知,空间四边形ABCD 相邻两边的夹角都为60︒,所以把,,AB AC AD 看成空间向量的基底,将,AE AF 用基底表示化简可得答案 【详解】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ 22211(cos60cos60)44a a a ︒︒=+= 故选:C3.C 【分析】由题意画出图形,连接AC ,BD ,交于O ,连接,EO SO ,可得//EO SD ,则AEO ∠为直线AE 与直线SD 所成的角,证明AC ⊥平面SBD ,AC OE ⊥,则求解直角三角形得答案.【详解】解:如图,连接AC ,BD ,交于O ,连接,EO SO ,则SO ⊥平面ABCD ,又AC ⊂平面ABCD ,所以SO AC ⊥, 因为正四棱锥S ABCD -的侧棱长与底面边长都相等,则AC BD ⊥, 又BD SO O ⋂=,所以AC ⊥平面SBD , 又OE ⊂平面SBD ,所以AC OE ⊥,在SBD 中,O 为BD 的中点,点E 是SB 的中点,所以//EO SD ,则直线AE 与直线SD 所成的角为AEO ∠或其补角, 设正四棱锥S ABCD -的棱长为2,则AO =AE =在Rt AOE 中,1EO .cosEO AEO AE ∴∠==即直线AE ,SD 故选:C .4.D 【分析】设正方体的棱长为2,建立空间直角坐标系,利用向量法求解直线1A E 与BC 所成的角即可. 【详解】解:设正方体的棱长为2,如图所示建立空间直角坐标系, 则1(2A ,0,2),(0E ,1,0),(0C ,2,0),(2B ,2,0), 则1(2,1,2),(2,0,0)A E BC =--=- 所以111cos ,||||A E BC A EBC A E BC ⋅<>=42323==⨯, 所以异面直线1A E 与直线BC 所成角的余弦值为23,故选:D .5.A 【分析】利用点到平面距离公式的向量求法即可求解. 【详解】因为()1,2,1A -,()1,2,2P -, 所以()2,0,3PA =-,因为平面α的法向量为()2,0,1n =,所以点P 到平面α的距离为242PA n d n⋅-==, 故选:A.6.B 【分析】建立空间直角坐标系,用向量法求AQ 的距离,再由表达式研究最小值即可 【详解】由题可知,Q 点在线段11B D 上运动,且Q 不与11,B D 重合,如图以D 为原点,1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系, 则易知(1,0,0)A ,又11B D 为1111D C B A 的对角线,故可设(,,1),(01)Q a a a <<,则AQ =令2222t a a =-+,则易知12a =时,2222t a a =-+所以AQ 故选:B 7.C 【分析】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面1A EC 与平面ABCD 所成二面角的余弦值. 【详解】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()12,0,2A 、()2,2,1E 、()0,2,0C ,所以,()10,2,1EA =-,()2,0,1CE =, 设平面1A CE 的法向量为(),,m x y z =,则12020m EA y z m CE x z ⎧⋅=-+=⎨⋅=+=⎩,取1x =,可得()1,1,2m =--,易知平面ABCD 的一个法向量为()0,0,1n =,所以,cos ,6m n m n m n⋅<>===⨯⋅,易知,平面1A EC 与平面ABCD 故选:C. 8.60︒ 【分析】利用空间向量求夹角公式直接求解. 【详解】(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D(0,2,2),(1,0,1)BC AD ∴=-=-21cos ,20AD BC AD BC AD BC⋅∴===⋅又空间中两直线夹角范围为(0,90⎤⎦,故,60AD BC = 所以直线AD 与BC 所成角的大小是60︒ 故答案为:60︒9.23【分析】由题意算出()1,4,4AP =-,根据向量()2,2,1n =--是平面α的一个法向量,算出向量AP 在n 上的投影的绝对值,即可得到P 到α的距离.【详解】解:根据题意,可得()()1,3,0,1,4,2A P ---,()1,4,4AP =-, 又平面α的一个法向量()2,2,1n =--,点A 在α内,()2,1,4P ∴-到α的距离等于向量AP 在n 上的投影的绝对值,()()1242412P n A -⨯-+⨯-∴⨯=-=+ 即(232AP n d n===- 故答案为:23【点睛】本题给出平面的法向量和平面上的一点,求平面外一点到平面的距离;着重考查了向量的数量积公式和点到平面的距离计算等知识,属于中档题.10.垂直【分析】设CB a =,CD b =,1CC c =,可得出1CA a b c =++,计算得出1110CA BD CA BC ⋅=⋅=,可得出1CA BD ⊥,11CA BC ⊥,利用线面垂直的判定定理可证得结论成立,求1CA 的平方即可求A 1C 的长.【详解】设CB a =,CD b =,1CC c =,由题意可得1CA a b c =++,则()()()2211CA BD CA CD CB a b c b a b a c b c a ⋅=⋅-=++⋅-=-+⋅-⋅cos60cos600c b c a =⋅-⋅=,1CA BD ∴⊥,同理可证11CA BC ⊥,1BD BC B ⋂=,故1CA ⊥平面1C BD .∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1,11CD CB CC ∴===,222221111()2()1112()6222CA a b c a b c a b b c a c ∴=++=+++⋅+⋅+⋅=+++++=1CA →∴=即A 1C .11.60【分析】以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤,根据空间向量的数量积运算得x z =,再根据空间向量的夹角运算和二次函数的性质可得答案.【详解】解:以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,如图所示:∠M 是左侧面ADD 1A 上的一个动点,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤, 1(1,1,0),(0,1,1),B C =,1(1,0,1),(1,1,)BC BM x z ∴=-=--,111BC BM x z ∴⋅=-+=,即x z =,又1||2,||(BC BM x ===设1BC 与BM 的夹角为θ,1cos 2θ∴== 设2()1f x x x =-+,()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以13(0)1,()24f f ==,3()14f x ≤≤,所以1cos 2θ≤≤1BC 与BM 的夹角最大值为60.故答案为:60.12.4π. 【分析】连接1BC ,证明11//BC AD ,则1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,从而可的答案.【详解】解:连接1BC ,由正方体的性质可知,11//AB C D ,且11AB C D =,所以11ABC D 是平行四边形,所以11//BC AD ,所以1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,在1AD E △中,113,D E AD AE ==则22211111cos 2AD D E AE AD E AD D E +-∠===⋅ 即异面直线1BC 与1D E又因异面直线1BC 与1D E 所成的角的范围为0,2π⎛⎤ ⎥⎝⎦, 所以异面直线1BC 与1D E 所成的角为4π. 故答案为:4π.13 【分析】设1B C 与1BC 交于点O ,连接1AC ,可证得1//AB 平面1C BD ,求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,然后利用11A BC D C ABD V V --=进行计算求解;由于1//AB DO ,直线1AB 与直线BD 所成的角为ODB ∠,利用余弦定理进行计算求解即可.【详解】设1B C 与1BC 交于点O ,连接1AC ,在正三棱柱111ABC A B C -中,显然点O 为1B C 的中点,又点D 为AC 的中点, 所以1//AB DO ,又DO ⊂平面1C BD ,1AB ⊄平面1C BD ,所以1//AB 平面1C BD ,所以求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,因为8BD =,16CC ==,1C D所以有22211BD C D BC +=,所以1BD C D ⊥,所以112BC D S =⨯△易得BD AC ⊥,所以142ABD S =⨯=△ 设点A 到平面1C BD 的距离为h ,由11A BC D C ABD V V --=,即111133BC D ABD S h S C C ⨯⨯=⨯⨯△△,所以有11633h ⨯=⨯,解得:h = 因为1//AB DO ,所以直线1AB 与直线BD 所成的角为ODB ∠,因为1BD C D ⊥,O 为1B C 的中点,所以1152DO BC ==,而BD =所以22222255cos2OD BD OB ODB OD BD+-+-∠===⨯..【点睛】关键点点睛:求线面距离通常可以转化为求三棱锥的高,而求三棱锥的高通常利用等体积法进行求解.14.12-. 4π 【分析】利用空间向量的线性运算把MN 用,,AB AC AD 表示即可得,,x y z ,再由向量的数量积得向量夹角,从而得异面直线所成的角.【详解】由已知得MN 1122MB BA AN CB AB AD =++=-+11111()22222AB AC AB AD AB AC AD =--+=--+,又MN xAB y AC z AD =++且,,AB AC AD 不共面,∠12x y ==-,12z =,∠12x y z ++=-, ABCD 是棱长为1的正四面体,∠111cos602AB AC ⋅=⨯⨯︒=,同理12AB AD AC AD ⋅=⋅=,2222111111444222MN MN AB AC ADAB AC AB AD AC AD ==+++⋅-⋅-⋅44444== CD AD AC =-,111()()222MN CD AB AC AD AD AC ⋅=--+⋅-22111111222222AB AD AB AC AC AD AC AD AD AC =-⋅+⋅-⋅++-⋅11111114442242=-+-++-=, ∠12cos ,2MN CD MN CD MN CD ⋅<>===,∠,4MN CD π<>=, ∠异面直线MN 和CD 所成的角为4π. 【点睛】 关键点点睛:本题考查空间向量基本定理,考查用向量法求异面直线所成的角.在空间任意不共面的三个向量可作为空间的一个基底,空间所有向量都可用基底表示,且表示方法唯一,因此在用同一个基底用两种不同方法表示出同一向量时,两种表示法中对应的系数相等.由此结合向量的运算法则可表示得结论.同样用向量法求异面直线所成的角,可以直接计算,不需要作图与证明.15. 3【分析】(1)若点P 与点1A 重合,在平面1111D C B A 内,过P 作11PE B D ⊥,证明PE ⊥平面11BDD B ,则PE 为点P 到平面11BDD B 的距离,利用等面积法求解; (2)以1D 为坐标原点建立空间直角坐标系,设()(),,00,0P x y x y >≤,得()2210,0x y x y +=>≤,再由两点间的距离公式写出1PC ,利用配方法求最小值.【详解】解:(1)如图,若点P 与点1A 重合,在平面1111D C B A 内,过1A 作111A E B D ⊥, ∠平面1111A B C D ⊥平面11BB D D ,平面1111A B C D 平面1111BB D D B D =,∠1A E ⊥平面11BDD B ,则1A E 为点P 到平面11BDD B = (2)以1D 为坐标原点建立如图所示空间直角坐标系.设()(),,00,0P x y x y >≤y ,即()2210,0x y x y +=>≤,P 的轨迹为双曲线的部分, ()14,0,0C ,则1PC = ∠当2x =时,1PC 的最小值是3.故答案为:3.。
高二数学《立体几何》测试题(A)

高二数学《立体几何》测试题(A )一、选择题1. 两条直线不平行是两条直线异面的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分又不必要条件2. 设有四个命题:甲:底面是平行四边形的四棱柱是平行六面体. 乙:底面是矩形的平行六面体是长方体 丙:直四棱柱是直平行六面体. 丁:正四棱柱是长方体 以上正确命题的个数是( )A. 0个B. 1个C. 2个D. 3个 3. 在棱长为1的正方体ABCD —1111D C B A 中,M 和N 分别为11B A 和1BB 中点,那么直线AM 和CN 所成角的余弦值是( ) A. 23 B. 1010 C. 53 D. 52 4. 将边长为a 的正方形ABCD 沿对角线AC 折起,使得a BD =,则三棱锥D —ABC 的体积为( ) A. 63a B. 123a C. 3123a D. 3122a 5. a 、b 为异面直线,二面角M —l —N ,M a ⊥,N b ⊥,如果二面角M —l —N 的平面角为θ,则a ,b 所成的角为( )A. θB. θ-πC. θ或θ-πD. θ+π6. 下列命题正确的是( )A. 过平面外的一条直线只能作一平面与此平面垂直B. 平面α⊥平面β于l ,α∈A ,l PA ⊥,则β⊥PAC. 一直线与平面α的一条斜线垂直,则必与斜线的射影垂直D. a 、b 、c 是两两互相垂直的异面直线,d 为b 、c 的公垂线,则a ∥d7. 在空间,如果x 、y 、z 表示直线与平面,“若y x ⊥,z x ⊥,则y ∥z ”成立,那么x ,y ,z 所分别表示的元素正确的是( )A. x ,y ,z 都是直线B. x ,y ,z 都是平面C. x ,y 为平面,z 为直线D. x 为直线,y ,z 为平面8. 在正三棱柱ABC —111C B A 中,若12BB AB =,则1AB 与B C 1所成的角大小为( )A. 105°B. 60°C. 90°D. 75°9. 侧棱长为10,高为6的正三棱锥的底面积是( )A. 30B. 24C. 60D. 48310. 棱锥被平行于底面的平面所截,其截面面积和底面面积之比为1∶m ,则此棱锥的高被分成两段(从顶点到截面和从截面到底面)之比是( )A. 1∶mB. 1∶2mC. 1∶()1+mD. 1∶()1-m 11. 正三棱锥的侧面积是底面积的332倍,则底面与侧面所成的二面 角为( ) A. 15° B. 30° C. 45° D. 60°12. 正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱的侧对角线D E 1与1BC 所成的角是( )A. 90°B.60°C. 45°D. 30二、填空题13. 一个棱锥三个侧面两互相垂直,它们的面积分别为12cm 2,8cm 2,6cm 2,那么这个三棱锥的体积 .14. 在棱长为1的正方体ABCD —1111D C B A 中,则A 到面A 1BD 的距离为 .15. 等腰直角ABC ∆的斜边AB 在平面α内,点C 到平面α的距离等于AB 边上高的一半,C 点在α内的射影为O ,则AB 与平面CAO 所成的余弦值为 .16. 长方体的对角线长为2,则长方体全面积的最大值为 .三、解答题17. (12分)已知ABCD 为矩形,PA 垂直面ABCD ,M 、N 分别是AB 、PC 的中点,(1)求证:AB MN ⊥;(2)若AD PA =,求证:⊥MN 平面PDC .18. (12分)如图α⊂AC ,l AC ⊥,l C ∈,β⊂BD ,l BD ⊥,l D ∈,3=AC ,4=BD ,17=AB ,2=CD .(1)求锐二面角α—l —β的大小;(2)求AB 与面β所成角的正弦值.19. (12分)已知ABCD 为边长为4的正方形,E 、F分别是AB 、AD 的中点,GC 垂直ABCD 所在的平面,且GC =2,求点B 到平面EFG 的距离。
高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .//B .⊥C .也不垂直于不平行于,D .以上三种情况都可能4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B. 637 C. 647 D. 6575.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A.+-a b cB. -+a b cC. -++a b cD. -+-a b c6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对7.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( )A .2B .3C .4D .59.已知的数量积等于与则35,2,23+-=-+=( )EM GDCBA10.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .12.12、若向量 ()()1,,2,2,1,2a b λ==-,,a b 夹角的余弦值为89,则λ等于__________.13.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 。
高二数学立体几何试题答案及解析

高二数学立体几何试题答案及解析1.如图所示,已知PD⊥平面ABCD,底面ABCD是正方形,PD=AB,M是PA的中点,则二面角M-DC-A的大小为()A.B.C.D.【答案】C【解析】∵底面,∴而底面是正方形,∴∴面,则∴就是二面角的平面角在中,∵,是中点∴,即二面角的大小为,故选C2.如图,在棱长为2的正方体ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成角的余弦值为()【答案】B【解析】略3.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,在四棱锥中,底面为矩形,平面,点在线段上,平面.(1)求证:平面;(2)若,,求二面角的大小.【答案】(1)详见解析;(2)详见解析.【解析】(1)要证线与面垂直,即证垂直于平面内的两条相交直线,根据已知的线与面垂直,得到线性垂直,得证;(2)法一:根据前问所证,平面,易证底面是正方形,所以可以根据三垂线定理做出二面角的平面角,即设的交点为,过点作于点,连,易证为二面角的平面角,在直角三角形内求得角;法二:以为原点建立平面直角坐标系,根据向量法,求两个平面的法向量,利用法向量夹角的余弦值计算二面角的余弦值.试题解析:解:(1)证明:∵,∴.同理由,可证得.又,∴.(2)解法一:设的交点为,过点作于点,连易证为二面角的平面角由(1)知为正方形,在中,,二面角的大小为解法二:分别以射线,,为轴,轴,轴的正半轴建立空间直角坐标系.由(1)知,又,∴.故矩形为正方形,∴.∴.∴.设平面的一个法向量为,则,即,∴,取,得.∵,∴为平面的一个法向量.所以.设二面角的平面角为,由图知,则二面角的大小为【考点】1.线与面垂直的判定;2.二面角的计算;3.几何法与向量法求二面角.4.已知矩形的顶点都在半径为4的球的球面上,且,则棱锥的体积为.【答案】【解析】设,那么平面,在直角三角形中,,,所以,所以四棱锥的体积是.【考点】1.球与几何体;2.体积的计算5.(本小题12分)已知三棱柱中,底面,,,分别为的中点.(1)求证://平面;(2)求证:;(3)求三棱锥A-BCB的体积.1【答案】(1)见解析:(2)见解析;(3)【解析】(1)欲证//平面,AB中点G,连DG,CG,只需证明是平行四边形,∥即可;(2)证明面面垂直采用证明线面垂直,通过证明因为底面为等腰三角形,,又因为,所以可证得;(3)转化顶点所求三棱锥的体积为,即可求得试题解析:(I)取AB中点G,连DG,CG,在三棱柱中,底面ABC ,是矩形.∵D,E分别为AB1,CC1的中点,∴,是平行四边形,∥∵GC平面ABC,平面ABC,∴DE//平面ABC .(II)三棱柱中,底面ABC,∴中点,又,∴(III)由(II)得,在,,【考点】1.证明线面平行;2.证明面面垂直;3.求体积6.在空间直角坐标系中,点与点之间的距离为()A.B.C.D.【答案】A【解析】由空间距离公式可知:【考点】空间两点间距离7.已知为两条不同的直线,为两个不同的平面,且,给出下列结论:①若∥,则∥;②若∥,则∥;③若⊥,则⊥;④若⊥,则⊥;其中正确结论的个数是( )A.0B.1C.2D.3【答案】A【解析】若两个平面内分别有两条直线平行,则这两个平面不一定平行,所以命题•错误;若两个平面平行,则两个平面内的直线可能平行或异面,所以命题‚错误;若两个平面内分别有两条直线垂直,则这两个平面不一定垂直,所以命题ƒ错误;若两个平面垂直,则两个平面内的直线可能平行、垂直或异面,所以命题④错误;【考点】直线与直线、平面与平面的平行与垂直的命题判断.8.已知,,则的最小值.【答案】【解析】,因此当时取最小值【考点】空间向量模9.截一个几何体,各个截面都是圆面,则这个几何体一定是A.圆柱B.圆锥C.球D.圆台【答案】C【解析】圆柱的截面可以是矩形,圆锥的截面可以是三角形,圆台的截面可以是梯形,值有球的截面都是圆,故选C.【考点】几何体的截面图形.10.一个正方体的展开图如图所示,为原正方体的顶点,则在原来的正方体中()A.B.C.与所成的角为D.与相交【答案】C【解析】把展开图还原为立体图形,如下图正方体,可见与是异面直线,它们甩成的角为60°.【考点】多面体的展开图,两直线的位置关系.11.在三棱锥中,已知,则三棱锥外接球的表面积为.【答案】【解析】设中点为,由于,则点到点的距离相等,因此是三棱锥外接球的直径,由题意,是等边三角形,,所以,.【考点】几何体与外接球,球的表面积.【名师】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.12.如图,在体积为2的三棱锥侧棱AB、AC、AD上分别取点E、F、G使,记O为三平面BCG、CDE、DBF的交点,则三棱锥的体积等于()A. B. C. D.【答案】D【解析】为了便于解析,可设三棱锥为正三棱锥,为正三棱锥的高;为正三棱锥有高,因为底面相同,则它们的体积比为高之比,已知三棱锥的体积为2,所以三棱锥的体积为:(1),由题意可知,且,所以由平行得到,所以,(面BCG所在的平面图如左下角简图),同理,,则,所以,那么,亦即,设,那么,则,而,所以,则,所以,所以,又,所以,(2),且,所以:(3),由(2)×(3)得到:代入到(1)得到:三棱锥的体积就是.【考点】1.简单几何体体积;2.三角形相似比的应用.【方法点晴】此题主要考查三角形相似比在求简单几何体体积中应用方面的内容,属于中高档题.根据题意可借助正三棱锥(或正四面体)模型来帮助思考,值得注意的是所求三棱锥体积的高与原三棱锥的高往往是不在同一直线上的,当然这两个高的比值也是解决此问题的关键点,需要借助这两高与垂线之间的比值进行转换,在此过程中多次使用了相似三角形的相似比,从而问题可得解决.13.如图,棱锥的底面是矩形,⊥平面,.(1)求证:BD⊥平面PAC;(2)求二面角P—CD—B的大小;(3)求点C到平面PBD的距离.【答案】(1)见解析;(2)450(3)【解析】(1)要证明BD⊥平面PAC,只需证BD垂直于平面PAC两条相交直线即可,由ABCD为正方形,可得BD⊥AC,易得PA⊥平面ABCD,可得BD⊥PA ,结论得证.(2)由PA⊥面ABCD可得AD为PD在平面ABCD的射影,又CD⊥AD,由三垂线定理的逆定理可得 CD⊥PD,可得∠PDA为二面角P—CD—B的平面角.易得∠PDA=450.(3)由,求得点C到平面PBD的距离试题解析:(1)在Rt△BAD中,AD=2,BD=,∴AB=2,ABCD为正方形,因此BD⊥AC.∵PA⊥平面ABCD,BDÌ平面ABCD,∴BD⊥PA .又∵PA∩AC=A∴BD⊥平面PAC.(2)由PA⊥面ABCD,知AD为PD在平面ABCD的射影,又CD⊥AD,∴CD⊥PD,知∠PDA为二面角P—CD—B的平面角.又∵PA=AD,∴∠PDA=450.(3)∵PA=AB=AD=2,∴PB=PD=BD=,设C到面PBD的距离为d,由,有,即,得【考点】线面垂直,二面角及点到平面的距离.【方法点睛】立体几何解答题的一般模式是首先证明线面位置关系(一般考虑使用综合几何方法进行证明),然后是与空间角有关的问题,综合几何方法和空间向量方法都可以,但使用综合几何方法要作出二面角的平面角,作图中要伴随着相关的证明,对空间想象能力与逻辑推理能力有较高的要求,而使用空间向量方法就是求直线的方向向量、平面的法向量,按照空间角的计算公式进行计算,也就是把几何问题完全代数化了,这种方法对运算能力有较高的要求.两种方法各有利弊,在解题中可根据情况灵活选用.14.直三棱柱中,,分别是的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)详见其解析;(2)存在一点,使得平面与平面所成锐二面角的余弦值为.【解析】(1)首先根据线面垂直的判定定理和性质定理可得,然后以为原点建立如图所示的空间直角坐标系,并写出各点的坐标,再由三点共线即可求出点坐标,最后计算并验证其是否为0即可得出所证的答案;(2)首先设出面的法向量为,然后由即可得出,又因为面的法向量,再由公式即可得出的值,进而得出点的坐标,即可得出所求的结果.试题解析:(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则,∵,所以;…6分(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为理由如下:由题可知面的法向量,设面的法向量为,则,∵,∴,即,令,则.∵平面与平面所成锐二面角的余弦值为,∴,即,解得或(舍),所以当为中点时满足要求.【考点】1、线线垂直的判定定理;2、空间向量法求解立体几何问题.15.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的高为______________.【答案】【解析】设圆锥母线为,底面圆的半径,圆锥侧面积,所以,又半圆面积,所以,,故,所以答案应填:.【考点】1、圆锥侧面展开图面积;2、圆锥轴截面性质.16.已知一个高度不限的直三棱柱,,点是侧棱上一点,过作平面截三棱柱得截面,给出下列结论:①是直角三角形;②是等边三角形;③四面体为在一个顶点处的三条棱两两垂直的四面体.其中有不可能成立的结论的个数是()A.0B.1C.2D.3【答案】B【解析】本题考察在空间点线面的位置关系,在直三棱柱中,数形结合,作图求解,①和②找出一个例子即可证明其存在性,③需分类讨论,利用直三棱柱的性质以及底面三边长AB=4,BC=5,CA=6条件判断.如图,做直三棱柱ABC-A1B1C1,AB=4,BC=5,CA=6,(1)不妨取AD=6,AE=10,DE=8,则△ADE是直角三角形,①可能成立;(2)不妨令AD=AE=DE=a(a>6),则△ADE是等边三角形,②可能成立;(3)假设四面体APDE为在一个顶点处的三条棱两两垂直的四面体,当A为直角顶点时,在直三棱柱ABC-A1B1C1中,PA⊥底面ABC,则 E,D分别与C,B重合,此时,∠EAD不是直角,与假设矛盾,假设不成立,当P为直角顶点时,可得PD∥AB,PE∥AC,由等角定理知则∠EPD不可能是直角,与假设矛盾,假设不成立,当E或D点为直角顶点时,不妨选E为直角顶点,则DE⊥EP,DE⊥EA,EP∩EA═A,EP⊂平面,EA⊂平面,则平面与平面垂直,则直三棱柱中,可证∠ACB为二面角的平面角,∠ACB═90°,与题意矛盾,假设不成立.综上③错误.故选:C.【考点】命题的真假判断17.如图,在直三棱柱中,,,,点分别在棱上,且.(1)求三棱锥的体积;(2)求异面直线与所成的角的大小.【答案】(1);(2).【解析】(1)从图形可以看出,三棱锥中,平面,所以三棱锥的体积比较容易求,利用等积法即可求出三棱锥的体积;(2)连接,由条件知,所以就是异面直线与所成的角,解三角形知.试题解析:(1)(2)连接,由条件知,所以就是异面直线与所成的角.在中,,所以,所以异面直线与所成的角为.【考点】1、三棱锥的体积;2、异面直线所成的角;3、等积法.18.若向量,,则A.B.C.D.【答案】D【解析】因为向量,,所以,排除B;,所以,应选D.,A错,如果则存在实数使,显然不成立,所以答案为D.【考点】向量的有关运算.19.在直三棱柱中,,,则直线与平面所成角的正弦值为()A.B.C.D.【答案】C【解析】在直三棱柱中,,可以证得,因此直线与平面所成角为,在中,,因此【考点】直线与平面所成的角;20.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱与一个三棱锥组成的,其直观图如下:所以该几何体的体积为:.故选A.【考点】1.三视图;2.几何体的体积.21.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线,它与直尺所在直线()A.垂直B.异面C.平行D.相交【答案】A【解析】由题意得可以分两种情况讨论:①当直尺所在直线与地面垂直时,则地面上的所有直线都与直尺垂直,则底面上存在直线与直尺所在直线垂直;②当直尺所在直线若与地面不垂直时,则直尺所在的直线必在地面上有一条投影线,在平面中一定存在与此投影线垂直的直线,由三垂线定理知,与投影垂直的直线一定与此斜线垂直,则得到地面上总有直线与直尺所在的直线垂直.∴教室内有一直尺,无论怎样放置,在地面总有这样的直线与直尺所在直线垂直. 【考点】空间中直线与直线之间的位置关系22. (2015秋•淮南期末)已知正方体的棱长为1,则正方体的外接球的体积为 . 【答案】.【解析】正方体的外接球的直径是正方体的体对角线,由此能求出正方体的外接球的体积. 解:∵正方体棱长为1, ∴正方体的外接球的半径R=, ∴正方体的外接球的体积V=()3=.故答案为:.【考点】球的体积和表面积.23. 在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,O 是底面ABCD 的中心,E 、F 分别是CC 1、AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于 ( ) A .B .C .D .【答案】B 【解析】取的中点,连接,,那么异面直线所成角就是,根据勾股定理,,,所以,故选B .【考点】异面直线所成角24. 如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1;(2)求证:AC 1∥平面CDB 1. 【答案】见解析【解析】(1)利用ABC ﹣A 1B 1C 1为直三棱柱,证明CC 1⊥AC ,利用AB 2=AC 2+BC 2,说明AC ⊥CB ,证明AC ⊥平面C 1CB 1B ,推出AC ⊥BC 1.(2)设CB 1∩BC 1=E ,说明E 为C 1B 的中点,说明AC 1∥DE ,然后证明AC 1∥平面CDB 1. 解:(1)∵ABC ﹣A 1B 1C 1为直三棱柱, ∴CC 1⊥平面ABC ,AC ⊂平面ABC , ∴CC 1⊥AC∵AC=3,BC=4,AB=5, ∴AB 2=AC 2+BC 2,∴AC ⊥CB 又C 1C∩CB=C ,∴AC ⊥平面C 1CB 1B ,又BC 1⊂平面C 1CB 1B , ∴AC ⊥BC 1(2)设CB1∩BC1=E,∵C1CBB1为平行四边形,∴E为C1B的中点又D为AB中点,∴AC1∥DEDE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.25.如图,在直三棱锥中,底面是正三角形,点是中点,.(1)求三棱锥的体积;(2)证明:.【答案】(1);(2)证明见解析.【解析】(1)由于平面为直棱柱的侧面,所以可以考虑变换顶点,利用面面垂直的性质性质定理作,则面,由棱锥的体积公式即可求得其体积;(2)要证明线线垂直可考虑证线面平行,取的中点,连接,由于底面是正三角形,,可证得,在平面由平面几何的知识可证得,所以面由线面垂直的性质即可证得.试题解析:(1)过作,直三棱柱中面,,面,是高,(2)取的中点,连接底面是正三角形,矩形中,,中面.【考点】空间直线与平面的垂直关系及棱锥的体积.26.如图,四边形和均为正方形,它们所在的平面互相垂直,分别为的中点,则直线与平面所成角的正切值为________;异面直线与所成角的余弦值是________.【答案】,【解析】由两两垂直,分别以所在的直线为轴建立如图所示的空间直角坐标系,设,则,所以,其中平面的一个法向量为,所以与平面所成角的正弦值为,所以;又向量与所成角的余弦值为,又,所以异面直线与所成角的余弦值是.【考点】空间向量的运算及空间角的求解.27.平行六面体中,底面是边长为1的正方形,侧棱的长为2,且,则的长为 .【答案】【解析】由题意得,在平行六面体中,因为,,,且,所以,所以.【考点】空间向量的运算.28.在长方体ABCD﹣A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为()A.B.C.D.【答案】A【解析】试题分析:设长方体的高为1,根据B1C和C1D与底面所成的角分别为600和450,分别求出各线段的长,将C1D平移到B1A,根据异面直线所成角的定义可知∠AB1C为异面直线B1C和DC1所成角,利用余弦定理求出此角即可.解:设长方体的高为1,连接B1A、B1C、AC∵B1C和C1D与底面所成的角分别为600和450,∴∠B1CB=60°,∠C1DC=45°∴C1D=,B1C=,BC=,CD=1则AC=∵C1D∥B1A∴∠AB1C为异面直线B1C和DC1所成角由余弦定理可得cos∠AB1C=故选A【考点】异面直线及其所成的角.29.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为 .【答案】【解析】设圆锥的底面半径为,,解得,根据勾股定理,圆锥的高等于,所以圆锥的体积.【考点】旋转体的体积30.已知A、B、C三点不共线,若点M与A、B、C四点共面, 对平面ABC外一点O,给出下列表达式:其中x,y是实数,则【答案】【解析】A、B、C三点不共线,点M与A、B、C四点共面,则对平面ABC外一点O,满足,所以,所以【考点】空间向量的基本定理及其意义31.在正方体中,、分别是、的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间直线选择题4
1、直线a :b :c有共同的公垂线:并且a和b是异面直线:b和c也是异面直线:
那么a和c是
(A)异面直线(B)相交直线(C)平行直线(D)可能是异面直线
2、已知a :b :c均是直线:则下列命题中必定成立的是
(A)若a与b垂直:b与c垂直:则a与c也垂直
(B)若a与b相交:b与c相交:则a与c也相交
(C)若a与b平行:b与c平行:则a与c也平行
(D)若a与b异面:b与c异面:则a与c也异面
3、下列命题中:正确的命题是
(A)若一条地线和两条平行直线中的一条直线相交:则它必与另一条相交
(B)一条直线和两平行直线中的一条直线可以确定一个平面:则它必与另一条直线也能确定一个平面
(C)一条直线和两条平行直线中的任何一条都没有公共点:那么这三条直线平行
(D)一条直线和两条平行直线中的一条直线是异面直线:当它与另一条直线没有公共点时:必与另一条直线也是异面直线
4、若a//b :c//d :且a :c是异面直线:则
(A)b :d是异面直线(B)b :d相交(C)b//d (D)(A) :(B)均有可能
5、在一个平面内和这个平面的斜线垂直的直线
(A)只有一条(B)有无数条(C)有相交的两条(D)不存在
6、如图:AA
与BB1是异面直线:线段AA1=2 :BB1=1 :AB⊥BB1:A1B1⊥BB1则
1
AA1与BB1所成的角为
(A)30o (B)45o(C)60o(D)不确定
7、下列命题中:正确的命题是
(A)如果一个角的两边和另一个角的两边分别平行:那么这两个角相等:
(B)如果一个角的两边和另一个角的两边分别垂直:那么这两个角相等:
(C)如果两条相交直线和另两条相交直线分别平行:那么这两组直线所成的角相等。
(D)如果两条相交直线和另两条相交直线分别平行:那么这两组直线所成的锐角(或直角)相等。
8、正方体ABCD- A
B1C1D1中:AC与BC1所成的角为
1
(A)90°(B)60°(C)45°(D)75°
9、设两条异面直线所成的角为θ:则角θ的范围
(A)00<θ<1800(B)00≤θ≤900(C)00<θ≤900(D)00≤θ<900
10、下列四个命题:(1)两个平面有无数个公共点:则它们重合;(2)同垂直于同一条直线
的两条直线互相平行;(3)两条平行直线中的一条与第三条直线垂直:则另一条也与第三条直线垂直;(4)若a、b是异面直线:直线c、d与a、b都相交:则c、d也是异面直线.其中正确的是
(A)(3)、(4) (B)(4) (C)(3) (D)(1)、(2)、(3)、(4)
11、a、b为异面直线:a⊂α:b⊂β若α∩β=l :则直线l必定
(A)与a、b都相交(B)至少与a、b中的一条相交
(C)与a、b都不相交(D)至多与a、b中的一条相交
12、与两条异面直线都相交的两条直线的位置关系是
(A)不行(B)相交(C)相交或异面(D)异面
13、已知直线a、b、c是两两互相垂直的异面直线:d是b、c的公垂线:那么d与a
是
(A)相交直线(B)不垂直的异面直线
(C)平行直线(D)互相垂直的异面直线
14、若直线a、b是异面直线:直线c是a、b的公垂线:直线d//c :则d与a、b的公
共点的个数是
(A)1 (B)最多为1 (C)2 (D)1或2
15、在空间四边形ABCD中:“AB=AD且CB=CD”是“AC⊥BD”成立的( )
(A)充分不必要条件(B)必要不充分条件
(C)充要条件(D)不充分也不必要条件
16、E、F、G、H分别是空间四边形的四边AB、BC、CD、DA的中点:已知对角线AC=BD=4 :则EG2+HF2等于
(A)8 (B)22(C)16 (D)12
17、“a、b是异面直线”是指
(A)a、b不相交且不平行(B)a⊂平面α:b⊂平面β:α、β不相交
(C)a⊂平面α:b⊂平面β:α、β相交(D)a⊂平面α:b⊄平面α
18、设MN为互相垂直的两条异面直线a、b的公垂线段:P为MN上不同于M、N的点:A、B为a、b上的点:则△APB为
(A)锐角三角形 (B)钝角三角形 (C)直角三角形 (D)以上均不对
19、与空间四边形的四个顶点距离相等的平面个数为
(A)0 (B)3 (C)4 (D)7
20、a 、b 是两异面直线 :它们在平面α上的射影分别为a ′、b ′ :点O 是a ′、b ′的交点 :过点O 作平面α的垂线c :则c 与a 、b 的关系是
(A)c 与a 、b 都是异面直线 (B)c 最多与a 、b 中的一条是相交直线
(C)c 与a 、b 都相交 (D)c 与a 、b 都垂直
21、已知l 、m 是互相垂直的两条异面直线 :过l 、m 分别作平面α、β :那么四种情况:α//β :α⊥β :l//β :l ⊥β可能出现的有
(A)1种 (B)2种 (C)3种 (D)4种
22、空间两条直线l 、m 在平面α、β上的射影分别为a 1、b 1和a 2、b 2 :若a 1//b 1 :a 2与b 2交于一点 :则直线l 和m 的位置关系为 ( )
(A)异面 (B)平行 (C)平行或相交 (D)平行或异面或相交
23、已知a 、b 为异面直线 :a 、b 在不过a 、b 的一个平面上的射影分别是a ′、b ′ :且a ′、b ′的距离为1 :那么a 、b 之间的距离为
(A)1 (B)2 (C)2 (D)无法确定
24、设AB 、BC 、CD 是不共面的三条线段 :P 、Q 分别是AB 、CD 的中点 :AC=4 :BD=25 :PQ=3 :则AC 、BD 所成角的大小是
(A)30o (B)45o (C)60o (D)90o
25、在直角△ABC 中 :∠B=90o :∠C=30o :D 为BC 的中点 :AC=2 :直线DE 垂直这个三角形所在平面 :且DE=1 :则E 到AC 的距离是 (A)25 (B)211 (C)2
7 (D)219 26、a 、b 是异面直线 :A 、B 是a 上两点 :AB=2 :若A 1A ⊥b :B 1B ⊥b :垂足为A 1、B 1 :A 1B 1=1 :则a 、b 所成的角是
(A)30o (B)45o (C)60o (D)75o
27、在空间四边形ABCD 中 :AB=3 :BC=25 :CD=4 :DA=5 :BD=2 :则AC 与BD 所成的角等于
(A)90o (B)60o (C)45o (D)30o
28、异面直线a 、b 的公垂线为AB :AB=2cm :a 、b 成30o 角 :若在a 上取AD=1cm :
则点D 到直线b 的距离为 (A)2cm (B)2
17cm (C)32cm (D)42cm 29、在正方体AC 1中 :E 、F 分别是棱AB 、BB 1的中点 :则A 1E 与CF 所成角的余弦值为 (A)21 (B)2
2 (C)521 (D)52 30、已知a 、b 为异面直线 :点A 、B 在直线a 上 :点C 、D 在直线b 上 :且AC=AD :BC=BD :则直线a 、b 所成的角为
(A)90o (B)60o (C)45o (D)30o
空间直线选择题4(参考答案)
1、 D
2、 C
3、 D
4、 D
5、 B
6、 C
7、 D
8、 B
9、 C 10、 C
11、 B 12、 C 13、 C 14、 B 15、 A
16、 C 17、 A 18、 B 19、 D 20、 C
21、 D 22、 A 23、 A 24、 D 25、 D
26、 C 27、 A 28、 B 29、 D 30、 A。