第二章 计算流体力学的基本知识
流体力学第二章

h液深
• 压强与高度的关系
p g zc或 pp 0g h
当z=const 时,p=const, —— 等压面是一个水平面
同一种液体中,p 随z 的增加而变小 压强随液深(淹深)线性增加。 帕斯卡定律(1650年):自由面上的压强p0 的
任何变化,都会等值的传递到液体中的任何一 点。
流体平衡条件:不可压均质流体只有在有势力的作用下才能保 持静止平衡。
质量力的向量形式:
fi jk
x y z
对重力:
fx0 ,fy0 ,fz g
则:
z
(g)dzgz
0
• 等压面就是等势面。(P=常数,π=常数,dP=dπ=0)。
• 有势力场中,两种流体交界面必为等压面(等势面)。
证:在交界面上的两点A、B,其静压差为dp,势差为dπ
状态。例如水泵和风机的吸入管中,凝汽器、锅炉炉膛以及烟
囱的底部等处的绝对压强都低于当地大气压强,这些地方的计
示压强都是负值,称为真空或负压强,用符号pv表示,则
pv pa p
(2-10)
如以液柱高度表示,则
hv
pv
g
pa p
g
式中hv称为真空高度。
(2-11)
在工程中,例如汽轮机凝汽器中的真空,常用当地大气压强
p p xd 2 x1 2 x 22 p d 2 x 21 6 x 33 p d 2 x 3 略去二阶以上无穷小量后,分别等于:
p 1 p dx 2 x
p 1 p dx 2 x
p1pdxdydz 2x
p 1 p dxdydz
p
2 x
微元平行六面体x方向的受力分析
流体力学第二章 流体运动学基础

根据欧拉的观点,任何物理量Φ(V,P,ρ)都是坐标和时间 的函数,在直角坐标系中,该物理量可以表示为
(x, y,z,t)
x,y,z,t:欧拉变数-空间位置的标志
2020/11/25
.
13
注意事项: ✓ 不要把空间点和流体质点混淆。
流体力学第二章
✓ 流体运动时,同一个空间点在不同的时刻由不同的流体质 点所占据。
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
x x a,b,c,t
y
y a,b,c,t
z
z a,b,c,t
a,b,c,t称为拉格朗日变数—是流体质点的标志。
2020/11/25
.
6
拉格朗日方法表示的速度,则有
Vuivjwk
流体力学第二章
x a,b,c,t
u
t
y a,b,c,t
其中
v
t
z a,b,c,t
w
t
同样,质点的加速度可表示为
.
17
随体导数(实质微商、质点加速度)
流体力学第二章
写成分量形式为
du
dt
u t
u
u x
v
u y
w
u z
u t
V
u
dv
dt
v t
u
v x
v
v y
流体力学第二章ppt课件

P ghC A 225kN
yC
4 sin 60
11
6.6m
IC
b 12
h3
4 3
1.33m4
4m
C D
60° y
yD
yC
IC yC A
6.6
1.33 6.6 4
6.6
0.05
6.65m
yC
图解法(求解矩形平面)
1 水静压强分布图 用一定比例的线段表示压强的大小。 与作用面垂直的箭头表示压强的方向。
(H 13.6103 kg/m 3, 1103 kg/m 3 )
解题步骤
解:
已知断面1上作用着大气压, 因此可以从点1开始,通过等 , 压面,并应用流体静力学基 本方程式,逐点推算,最后 便可求得A点压强。
, 因2-2、3-3、4-4为等压面,根据静压强公式可得
p2 H g(1 2 )
p3 p2 g(3 2 )
根据力的作用方式不同
质量力:指某种力场作用在流体的每一个质点上,大小 与受作用的流体质量成正比的力。
lim X
FBX
V M m
单位质量力轴向分力
lim Y
FBY
V M m
lim Z
FBZ
V M m
单位:N/kg
表面力:是指作用于流体表面上,大小与作用表面积成 正比的力。
P
法向分力
p lim A A A
➢与两流层间的速度差du及流层的接触面积A成正比,和流层间距dy成反比。 ➢与流体种类有关。 ➢与流体的压力大小无关。
T A du dy
T A du 或 du
dy
dy
牛顿内摩擦定律
§1.3 流体的力学模型
流体力学第二章

第四节 液柱测压计
一、测压管( Piezometer )
测压管:一根玻璃直管或U形管,一端接在被测器壁的孔口上,另一端与大气相通。
(a) PA为正压 PA=γhA
(b) PA为负压 PA+γh’A=0
PA=- γh’A
Pv= γh’A
(c) 忽略气柱高度产生的压强,PA为正压 PA=γhA
(d) 忽略气柱高度产生的压强, PA为负压 PA+γh’A=0
p0 γ p0 γ
Z1
p1 γ
Z2
p2 γ
Z0
p0 γ
Z pC
结论:在同一种液体中,无论哪一点(Z+P/ γ)总是一个常数。
Z -位置水头(Elevation Head)
p
-压强水头(Pressure Head)
Z p
-测压管水头(Piezpmetric Head )。
测压管水头 9
二、分界面和自由面是水平面
微小压力dP 对x轴的力矩:dP y hdA y y2 sinadA
各微小力矩的总和为: y2 sinadA sina y2dA sina J x
A
A
受压面积A对x轴的惯性矩:J x y2dA
A
水静压力P对x轴的力矩:P yD hc AyD yc sinaAyD
绝对压强
0
0
绝 对 压 强:Absolute Pressure。
当地大气压:Atomspheric Pressure。
真 空 度:Vacuum。
表
压:Gage Pressure 12
第三节 压强的计算基准和度量单位
二、压强的三种度量单位
1.从压强的基本定义出发,用单位面积上的力表示。 国际单位:Pa [N/㎡] 工程单位:kgf/㎡
计算流体动力学第二章33页PPT

XJTU
3.流体力学各级近似方程的类型
可压缩理想完全气体二维非定常绝热 流动的Euler方程
UAUBU0 t x y
U
u
v
p
u 0 0
A 0
u
0
1
0 0 u 0
0 p 0
u
v 0 0
B
0
v
0
0
0 0 v 1
0
0
p
v
计算流体动力学课程
西安 2019年3
XJTU
1.流体力学的各级近似方程
可压缩理想流体非定常跨音速无旋流动
当物体在理想流体中作亚临界飞行时,整个流场 将是无旋的;即使当物体作跨音速飞行时,激波 强度不大,整个流场也可以近似地当作是无旋的。
2 2 u u 2 v v u 2 a 2 u 2 u u v v 2 a 2 v 0
Pr
Cp
K
完全气体 状态方程
Sutherland 公式
计算流体动力学课程
西安 2019年3
XJTU
1.流体力学的各级近似方程
uvuv0
t x y x y
u u u1 p 2 2 u 2 u 2 v
u v
0
t x y x
x 2 y 2
x y
v u v v v 1 p 2 2 v 2 v 2 u 0
计算流体动力学课程
西安 2019年3
XJTU
1.流体力学的各级近似方程
不可压缩牛顿流体二维非定常流动的 Navier-Stokes方程
对于液体或者低速运动的气体而言,可以采用 不可压缩近似,即Dp/Dt=0,并且能量方程 可与连续方程及运动方程分开求解。
第二章流体静力学

当四面体的体积趋于零时,可证得px= py=pz=pn
即
p=p(x,y,z)
§2-2 流体的平衡微分方程及积分
一、流体的平衡微分方程
在平衡流体中取如图所示微小正交六面体。分析六面
体在x、y、z方向所受外力,列平衡方程,整理化简得
fx
1
p x
0
fy
1
p y
0
1 p
fz z 0
上式也可用矢量方程表示:
虚压力体:压力体和液体在受压曲面的异侧, Pz向上。
A
A
B
B
例4:试绘制图中abc曲面上的压力体。如已知曲面abc为半圆 柱面,宽度为1m,d=3m,试求abc柱面所受静水压力的水平分 力Px和竖直分力Pz 。
a
d d/2
b 水
水 c
[解] 因abc曲面左右两侧均有水的作用,故应分别考虑。
考虑左侧水的作用
故得欧拉平衡微分方程综合式(即全微分形式)
dp ( f xdx f ydy f z dz)
四.等压面
1.定义: p=C或dp=0的平面或曲面。
2.等压面微分方程
f xdx f y dy f z dz 0
或
f•
ds
0
3.等压面的性质
(1)等压面与等势面重合;
(2)等压面恒与质量力正交。
其作用点为通过体积重心所引出的水平线与受压面的交点D。 当相对压强分布图为三角形时,D点位于自由液面下(2h)/3处。
对于相对压强分布图为梯形情况,可将其分解成三角形和矩 形两部分进行计算后,最后利用合力矩定理求总压力作用点。
例3.铅垂放置的矩形平板闸门,面板后布置三根横梁,各横梁受 力相等,已知闸门上游水头H=4m,试求: (1)每根横梁所受静水总压力的大小; (2)各横梁至水面的距离。
计算流体力学电子教案ppt课件

解:由于板在y、z方向为无限大,因此可作为一维问题 处理,即只考虑x方向。相对于无源问题,控制方程中增 加了源项。即
d dx
(k
dT dx
)
q
0
第一步:生成离散网格(先控制体后节点),生成5个单元
aPP aWW aEE Su (2 8)
aW
w
xWP
Aw
,
aE
e
k x
A,
aP
aW
aE SP
SP
2k x
A,Su
2k x
A
TB
23
根据以上过程可以得到左右边界控制体的离散方程:
左端控制体
kA(T2
x
T1
)
kA(T1 TA ) x / 2
0
右端控制体
kA(TB x
T5
/2
)
kA(T5 T4 ) x
0
(T2 T1) (2T1 2TA ) 0 (2TB 2T5 ) (T5 T4 ) 0
计算流体力学电子教案
1
目录
• 第一章 绪论 • 第二章 扩散问题的有限体积法 • 第三章 对流扩散问题的有限体积法 • 第四章 差分格式问题 • 第五章 压力--速度耦合问题的有限体积法 • 第六章 有限体积法离散方程的解法 • 第七章 非稳态流动问题的有限体积法 • 第八章 边界条件处理
2
第二章 扩散问题的有限体积法
即
kA(T2 T1 ) x
kA(T1 TA ) x / 2
0
在上述过程中有一假定:认为A点的温度梯度dT/dx与A
高等流体力学 第二章 流体力学的基本概念

第二章 流体力学的基本概念
连续介质假设 流动性 压缩性 粘性
1
第一节 流体的特征和连续介质假设
表1-4
压强 p (10 Pa)
5
0℃水在不同压强下的 值
4.9 0.539 9.8 0.537 19.6 0.531 39.2 0.523 78.4 0.515
(×10 -9 m2 /N)
17
气体的压缩性要比液体的压缩性大得多,这是由于气 体的密度随着温度和压强的改变将发生显著的变化。对于 完全气体,其密度与温度和压强的关系可用热力学中的状 态方程表示,即 p RT (1-6)
气体的压缩性都很大。从热力学中可知,当温度不变 时,完全气体的体积与压强成反比,压强增加一倍,体积 减小为原来的一半;当压强不变时,温度升高1℃体积就 比0℃时的体积膨胀1/273。所以,通常把气体看成是可压 缩流体,即它的密度不能作为常数,而是随压强和温度的 变化而变化的。我们把密度随温度和压强变化的流体称为 可压缩流体。 把液体看作是不可压缩流体,气体看作是可压缩流体, 都不是绝对的。在实际工程中,要不要考虑流体的压缩性, 要视具体情况而定。例如,研究管道中水击和水下爆炸时, 水的压强变化较大,而且变化过程非常迅速,这
动 力 黏 度 104 ( P a·s) 10.1 10.6 — 11.6 6.5 9.7 — 14900 2.9 19.2 72 — 0.21 2.8 15.6
11
表1-2
在标准大气压和20℃常用气体性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 计算流体力学的基本知识 流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1 计算流体力学简介 2.1.1计算流体力学的发展 流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。 数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。 从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。 自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。航空技术的发展强烈推动了流体力学的迅速发展。 流体运动的规律由一组控制方程描述。计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解析解。但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解析解。计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。 计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或 Navier-Stokes方程)以发现各种流动现象规律的学科。它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科。广义的CFD包括计算水动力学、计算空气动力学、计算燃烧学、计算传热学、计算化学反应流动,甚至数值天气预报也可列入其中。 自20世纪60年代以来,CFD技术得到飞速发展,其原动力是不断增长的工业需求,而航空航天工业自始至终是最强大的推动力。传统飞行器设计方法实验昂贵、费时,所获信息有限,迫使人们需要用先进的计算机仿真手段指导设计,大量减少原型机实验,缩短研发周期,节约研究经费。四十年来,CFD在湍流模型、网格技术、数值算法、可视化、并行计算等方面取得飞速发展,并给工业界带来了革命性的变化。如在汽车工业中,CFD和其它计算机辅助工程(CAE)工具一起,使原来新车研发需要上百辆样车减少为目前的十几辆车;国外飞机厂商用CFD取代大量实物实验,如美国战斗机YF-23采用CFD进行气动设计后比前一代YF-17减少了60%的风洞实验量。目前在航空、航天、汽车等工业领域,利用CFD进行的反复设计、分析、优化己成为标准的必经步骤和手段。 当前CFD问题的规模为:机理研究方面如湍流直接模拟,网格数达到了109(十亿)量级,在工业应用方面,网格数最多达到了107(千万)量级。 与实验研究相比,理论计算具有花费少、速度快、信息完整、模拟能力强等优点,特别是大量的计算流体力学软件的出现,大大减少了计算流体力学研究的工作量,从而扩大了计算流体力学的应用范围,推动了流体力学更深入的发展。计算流体力学还不是一项很成熟的技术,在用计算流体力学对流动现象进行预测的时候,需要对复杂的流动现象进行处理,然后用数学模型来描述它,计算的结果既取决于计算方法,也取决于数学模型本身,如果数学模型的描述不够精确,甚至不恰当,其计算结果也就没有任何价值可言。尽管作为一门新兴的学科,计算流体力学还有缺陷,但它会随着技术的进步和发展而日趋成熟,并将在化工领域得到广泛的应用。一个完整的计算流体力学模型应包含如下几个方面的内容: 本构方程 ,即流体力学基本方程:连续性方程(质量方程)、动量方程、能量方程、状态方程等。 湍流模型,不同于层流,必须考虑流体单元的脉动速度,脉动是湍流流动的基本特征。从模型的建立及求解过程可以看出,其实质是寻找出由于脉动而起的运动粘度的表达式。 多相流模型,对于多相流模拟计算来说,基本的湍流模型还不够用,需要进一步寻找各相运动规律及相间作用力规律。 模型的求解数值方法,对模型进行计算时,需要选择好的差分格式、松弛因子、时间步长等,以使结果收敛尽量减少CPU运算时间。
2.1.2 计算流体力学的定义 计算流体动力学(Computational Fluid Dynamics ,简称CFD)是建立在经典流体力学与数值计算方法基础上的新型独立的学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。它兼有理论性和实践性的双重特点,建立了理论和方法,为现代科学中许多复杂流动和传热问题提供了有效的计算技术。 计算流体动力学(CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。它的基本思想是:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的几何来代替,通过一定的原则和方式建立起来的关于这些离散点上场变量之间关系的代数方程组,然后代数方程组获得场变量的近似值[5]。 CFD方法和传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系。 理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证数值计算方法的理论基础,但是它往往要求对计算进行抽象和简化,才可能得出理论解。对于非线性情况,只有少数流动才能给出解析结果。 实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。然而,实验往往受到模型尺寸、流场流动、人身安全和测量精度的限制,有时可能很难通过试验的方法得到满意的结果。 而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算,就好像在计算机上做一个物理实验。例如,机翼的绕流,通过计算机并将其结果在屏幕上显示,就可以看到流场的各种细节:如激波的运动、强度,涡的生成与传播,流动的分离、表面的压力分布、受力大小及其随时间的变化等。数值模拟可以形象地再现流动情景,与做实验没有什么区别。
2.1.3 计算流体力学的计算步骤 采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤: (1)建立反映工程问题或物理问题本质的数学模型。具体的说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数学模型的出发点。没有正确完善的数学模型,数值模拟就没有任何意义。流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。 (2)寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。这里的计算方法不仅包括微分方程的离散化方法及求解条件,还包括体坐标的建立,边界条件的处理等。这些内容可以说是CFD的核心。 (3)编制程序和进行计算。这部分工作包括计算网格划分、初始条件和边界条件的输入,控制参数的设定等。这是整个工作中花时间最多的部分。由于求解的问题比较的复杂,比如Navier-Stokes方程就是一个十分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。正是从这个意义上讲,数值模拟又叫数值实验。 (4)显示实验的结果,计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要的意义。
2.1.4 计算流体力学的局限性 虽然CFD具有许多的优点,但是也存在一定的局限性。首先,数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合在计算机上进行计算的离散的数学模型,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差;第二,它不像物理模型试验一开始就能给出流动现象并定性的描述,往往需要由原体观测或物理模型试验提供某些流动参数,并需要对建立的数学模型进行验证;第三,程序的编制及资料的收集、整理与正确利用,在很大程度上取决于经验和技巧。此外,因数值处理方法等原因有可能导致计算结果的不真实,例如产生数值粘性和频散等伪物理效应。当然,某些缺点或局限性可以通过某种方式克服或弥补。最后,CFD因涉及大量的数值计算,因此,需要较高的计算机软硬件配置。
2.1.5 几种数值解法 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于对控制方程的离散方式。根据离散的原理不同,大体上可以分为三个分支:有限差分法、有限元法、有限体积法。 有限差分法是运用最早、最经典的CFD方法,它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分方程组的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变成代数问题的近似数值解法。这种方法发展较早,比较成熟,较多的用于求解双曲型和抛物型问题。在此基础上发展起来的方法有PIC(Particle-in-Cell)法、MAC(Marker-and-Cell)法,以及由美籍华人学者陈景仁提出的有限分析法(Finite-Analytic-Method)等[6]。 有限元法是20世纪80年代开始应用的一种数值解法,它吸收了有限差分法中离散处理的内核,又采用了变分计算中选择逼近函数对区域进行积分的合理方法。有限元法因求解速度较有限差分法和有限体积法慢,因此应用不是很广泛。在有限元法的基础上,英国C.A.Brebbia等提出了边界元法和混合元法等方法。 有限体积法是将计算区域划分为一系列控制体积,将待解微分方程对每一个控制体积进行积分,得出离散方程。有限体积法的关键是在导出离散方程过程中,需要对界面上的被求函数本身及导数的分布做出某种形式的假定。用有限体积法导出的离散方程可以保证具有守恒特性,而且离散方程系数物理意义明确,计算量相对较小。它是目前CFD应用最广的一种方法。当然这种方法的研究和扩展也在不断的进行,有的学者提出了适用于任意多边形非结构网格的扩展有限体积法[7]。