流体力学计算
计算流体力学基本方程

计算流体力学基本方程(张量形式)1质量方程(连续方程)()0i iu t x ρρ∂∂+=∂∂ 312123()()()0u u u t x x x ρρρρ∂∂∂∂+++=∂∂∂∂ ()()()0y x z u u u t x y zρρρρ∂∂∂∂+++=∂∂∂∂ 定常(()00i iu t x ρρ∂∂=⇒=∂∂) 不可压缩(const 0iiu x ρ∂=⇒=∂) 2动量方程(运动方程)()()13i j i ik i j i jj i k u u u u u p f t x x x xxx ρρρμμ⎛⎫∂⎛⎫∂∂∂∂∂∂+=-++ ⎪ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭累积动量 + 对流动量= 质量力 + 压力 +(黏性力)内摩擦力不可压缩(0kku N S x ∂=⇒-∂方程) ()()i j i i i j i jj u u u u p f t x x x xρρρμ⎛⎫∂∂∂∂∂+=-+ ⎪ ⎪∂∂∂∂∂⎝⎭3能量方程()()()j j j v j v Tu T T p q t x x c x c ρρλφ⎛⎫∂∂∂∂++=+ ⎪ ⎪∂∂∂∂⎝⎭ ()()j j jj eu e Tq t x x xρρλρρφ⎛⎫∂∂∂∂+=++ ⎪ ⎪∂∂∂∂⎝⎭累积热量 + 对流换热 = 导热 + 内热源 +(黏性力)内摩擦生热内能(v e c T =)焓(p h c T =)内热源(Q q ρ=) 耗散函数(ρφΦ=)无黏流体(0Φ=) 4组分方程()()()i j i i i i j jj c u c c D S t x x x ρρρ⎡⎤∂∂∂∂+=+⎢⎥∂∂∂∂⎢⎥⎣⎦累积浓度 + 对流浓度 = 扩散浓度 + 化学反应产生浓度组分i 扩散系数(i D ),组分i 体积浓度(i c ),组分i 质量浓度(i c ρ),组分i 化学反应生成率(i S ) 5状态方程pp RT RT ρρ=⇒=6总方程()()j j jj u S t x x xφρφρφφ⎛⎫∂∂∂∂+=Γ+ ⎪ ⎪∂∂∂∂⎝⎭方程 φΓS φ质量方程1运动方程i uμi i p f x ρ∂-∂能量方程 Tv c λ ()v q c ρφ+组分方程 i ci D ρi S7湍流方程湍流瞬时运动=时均运动+随机脉动('i i i u u u =+) 不可压缩湍流控制方程(动量方程或运动方程)()()i j i ii j i jj u u u u p f t x x x xρρρμ⎛⎫∂∂∂∂∂+=-+ ⎪ ⎪∂∂∂∂∂⎝⎭(N-S 方程) 对瞬时状态下的动量方程取平均时间,可得湍流时均控制方程如下:()()i j i ii j i jj u u u u p f t x x x xρρρμ⎛⎫∂∂∂∂∂+=-+ ⎪ ⎪∂∂∂∂∂⎝⎭由雷诺运算法则(时均规律)(''i j i j i j u u u u u u =+)可得''()()i j i i i i j j i jj u u u u p f u u t x x x x ρρρμρ⎛⎫∂∂∂∂∂+=-+- ⎪ ⎪∂∂∂∂∂⎝⎭为方便起见,除脉动值的时均值外,去掉其他项时均值的上划线符号可得''()()i j i i i i j j i jj u u u u p f u u t x x x x ρρρμρ⎛⎫∂∂∂∂∂+=-+- ⎪ ⎪∂∂∂∂∂⎝⎭8湍流黏性方程引入湍动黏度(Turbulent Viscosity )或涡黏系数(Eddy Viscosity )表示湍流应力(雷诺应力)()()()'',,ij i j t t u u f f f ρμκεκω=-===''2132j i i ij t i i ij j i iu u ut u u x x x μρμδ⎛⎫∂⎛⎫∂∂=+-- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭ 223j i i ij ij j i i u u u t C x x x μκρρκμδε⎛⎫∂⎛⎫∂∂=+-- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭ ()2,t f C μκμκερε== ''12i i u u κ= ''i i k k u u x x μερ⎛⎫⎛⎫∂∂= ⎪⎪∂∂⎝⎭⎝⎭。
第1章流体力学与计算流体力学基础

第1章 流体力学与计算流体力学基础机进行数值计算,模拟流体流动时的各种相关物理现象,包括流动、热传导、声场等。
计算流体动力学分析广泛应用于航空航天设计、汽车设计、生物医学工业、化工处理工业、1.1 流体力学基础本节将介绍流体力学一些重要的基础知识,包括流体力学的基本概念和基本方程。
流体力学是进行流体力学工程计算的基础,如果想对计算的结果进行分析与整理,在设置边界条件时有所依据,那么学习流体力学的相关知识是必要的。
1.1.1 一些基本概念(1)流体的密度流体密度的定义是单位体积内所含物质的多少。
若密度是均匀的,则有:VM=ρ (1-1) 式中:ρ为流体的密度;M 是体积为V 的流体内所含物质的质量。
由上式可知,密度的单位是kg/m 3。
对于密度不均匀的流体,其某一点处密度的定义为:VMV ΔΔ=→Δ0limρ (1-2)2 Fluent 17.0流体仿真从入门到精通例如,4℃时水的密度为10003kg /m ,常温20℃时空气的密度为1.243kg /m 。
各种流体的具体密度值可查阅相关文献。
流体的密度是流体本身固有的物理量,随着温度和压强的变化而变化。
(2)流体的重度流体的重度与流体密度有一个简单的关系式,即:g ργ= (1-3)式中:g 为重力加速度,值为9.812m /s 。
流体的重度单位为3N /m 。
(3)流体的比重流体的比重定义为该流体的密度与4℃时水的密度之比。
(4)流体的粘性在研究流体流动时,若考虑流体的粘性,则称为粘性流动,相应地称流体为粘性流体;若不考虑流体的粘性,则称为理想流体的流动,相应地称流体为理想流体。
流体的粘性可由牛顿内摩擦定律表示:dyduμτ= (1-4)牛顿内摩擦定律适用于空气、水、石油等大多数机械工业中的常用流体。
凡是符合切应力与速度梯度成正比的流体叫做牛顿流体,即严格满足牛顿内摩擦定律且µ保持为常数的流体,否则就称其为非牛顿流体。
例如,溶化的沥青、糖浆等流体均属于非牛顿流体。
流体力学公式总结

工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。
计算流体力学CFD的基本方法与应用

计算流体力学CFD的基本方法与应用
一、基本介绍
流体力学计算(CFD)是使用数值模拟技术来研究物理流体(如气体
和液体)运动性质的一类技术。
它可以用于研究物理流体的流动,以及流
体的热物性和压力分布。
CFD让工程师更容易地更好地研究流体运动,以
解决实际问题。
CFD利用数学模型可以模拟各种流体及其粒子在特定条件下的运动。
它包括很多步骤,从流体参数的定义到解算器的实现以及结果的分析和可
视化,这可以帮助工程师更清楚地研究和控制流体的性质。
CFD的基本方法主要包括:建立数学模型,采用合适的差分技术以及
计算策略,构建计算带等技术。
其中最重要的是建立数学模型,数学模型
可以帮助工程师精确表示实际问题,从而得到准确的解决方案。
二、应用
CFD在工业工程与科学研究中有广泛应用,其应用领域包括飞行技术、机械设计、环境工程、交通流量分析、水资源开发、仿真与虚拟技术等。
(1)适航性设计
CFD技术可用于飞机的性能计算和适航性设计,可以准确地迅速预测
飞机的性能参数,如噪声、燃油消耗和航空安全等。
(2)机械设计
CFD在机械工程中可以用于研究机械系统的流体性能,还可以用于优
化设计。
流体力学计算公式

1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ∙=∙-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα∙-=∙=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du AT (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:hb bh R 2+=,b 为明渠宽度,h 为明渠水深) 15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
《流体力学》Ⅰ主要公式及方程式讲解

《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。
3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。
8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。
注意:p0为自由液面上的压力。
1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。
注意:p0为自由液面上的压力。
10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。
压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。
当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。
流体力学计算公式

1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ•=•-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα•-=•=11(v α的单位是C K ︒1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dydu dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=∆=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,ςςςv gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:h b bh R 2+=,b 为明渠宽度,h 为明渠水深)15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρςρςρχς====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
流体力学计算公式

流体力学计算公式流体力学是研究流体的运动规律和性质的一门学科,广泛应用于工程和科学领域中。
在流体力学的研究过程中,有许多重要的计算公式和方程被提出和应用。
下面是一些重要的流体力学计算公式。
1.压力力学方程:压力力学方程是描述流体力学中流体静压力分布和变化的方程。
对于稳定的欧拉流体,方程为:∇P=-ρ∇φ其中,P是压力,ρ是流体的密度,φ是流体的势函数。
2.欧拉方程:欧拉方程用于描述流体的运动,它是流体运动的基本方程之一:∂v/∂t+v·∇v=-1/ρ∇P+g其中,v是流体的速度,P是压力,ρ是流体的密度,g是重力加速度。
3.奇异体流动方程:奇异体流动是流体与孤立涡流动的一种类型,其方程为:D(D/u)/Dt=0其中,D/Dt是对时间的全导数,u是速度向量。
4.麦克斯韦方程:5.纳维-斯托克斯方程:纳维-斯托克斯方程是描述流体的动力学行为的方程,它是流体力学中最重要的方程之一:∂v/∂t+v·∇v=-1/ρ∇P+μ∇²v其中,v是速度矢量,P是压力,ρ是密度,μ是动力黏度。
6.贝努利方程:贝努利方程描述了在不可压缩流体中流体静力学的变化。
贝努利方程给出了伯努利定律,即沿着一条流线上的速度增加,压力将降低,反之亦然。
贝努利方程的公式为:P + 1/2ρv^2 + ρgh = const.其中,P是压力,ρ是密度,v是流体速度,g是重力加速度,h是流体高度。
7.流量方程:流量方程用于描述流体在管道或通道中的流动。
Q=A·v其中,Q是流量,A是截面积,v是流速。
8.弗朗脱方程:弗朗脱方程是描述管道中流体流动的方程,其中考虑了摩擦阻力的影响:hL=f(L/D)(v^2/2g)其中,hL是管道摩擦阻力头损失,f是阻力系数,L是管道长度,D 是管道直径,v是流速,g是重力加速度。
以上是一些重要的流体力学计算公式。
这些公式和方程在流体力学中具有广泛的应用,是工程和科学领域中进行流体流动分析和计算的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学计算
流体力学作为一门重要的物理学科,专门研究液体和气体的流动性,是分析和设计机械、结构物和其他有关系统的重要工具之一。
理解流体力学中的基本原理以及应用是解决实际问题的重要基础。
本文的目的是介绍流体力学的基本概念,以及流体力学计算的基本方法。
流体力学是研究液体和气体的流动性的物理学科。
它是量子力学和相对论最为完善的非常规理论之一。
它研究物体(液体或气体)在其表面形状以及温度、压力等参数的变化下的流动特性。
物体在受到重力的作用下的流动称为重力流,而在不受重力的作用下,经历的流动称为思维流。
流体力学研究的内容和理论包括流体动力学和流体热力学、传质流体力学、流体稳定性等。
流体力学计算分为两类:定常流体力学和非定常流体力学。
定常流体力学指流体中的变量是固定的,主要用于研究定常流体中流动机理,国内外有许多成熟的定常流计算软件,如CFX、Fluent、Star-CD 等。
非定常流体力学是新兴的流体力学研究领域,它涉及的变量是变化的,用于研究复杂的非定常流体运动,涉及的计算方法以及计算机程序也有很大不同。
在进行流体力学计算时,必须要考虑几何因素。
例如,在求解流体力学问题时,首先要正确定义流体中的参考系统;其次,要建立正确的几何模型。
几何模型的精确度直接影响到流体力学计算结果的准确性,因此,在流体力学计算中,几何模型选取非常重要。
在流体力学计算中,要准确描述流体运动过程,必须要使用流动
计算所需的物理量和参数,如流体的密度、粘度、湍流强度等。
比如,如果模拟的是一个气体流动,则一定要给出气体的粘度系数和压力等参数,以及气体的温度等动态物理量。
此外,还应该考虑流体在特殊边界上的特殊条件,比如应力强度、温度和数量流量等。
在计算流体力学中,还需要知道解析解的求解方法,以及它们的优劣。
解析解是指基于流体力学基本方程的直接求解方法。
目前,解析方程的求解已经发展到比较完善的水平,它有助于流体力学基本理论的研究和应用。
解析解的优点在于可以直接获得流体的精确解决方案,但是它的性能受制于流体力学中的假设,而且解出的解决方案也受到计算机性能的制约,因而它并不能解决较复杂的流体力学问题。
另一种求解方法是数值计算。
目前数值计算已经发展成一门重要的计算科学,是解决复杂流体力学问题的重要工具。
数值计算可以根据指定的几何模型、物理量和参数,使用有限差分方法或有限元方法,结合微分方程数学模型,求解流体力学中的非定常流动问题。
这种计算方法可以解决复杂流体系统的运动过程,并且对于不同的流体系统,可以选择合适的数值方法来获得满意的解决方案。
综上所述,流体力学是一门重要的物理学科,它研究液体和气体的流动性,是分析和设计机械、结构物和其他系统的重要工具。
流体力学计算主要有定常流体力学和非定常流体力学。
进行流体力学计算时,要考虑几何因素、求解流体力学所需的物理量和参数以及流体在特定边界上的特殊条件,同时要掌握解析解求解方法和数值计算方法。
未来,随着计算机技术和算法的发展,流体力学计算软件可以进一步
改进和优化,从而为分析和设计机械、结构物和其他系统提供更好的辅助工具。