无线电波的四种传播方式
无线电波的传播特性

无线电波的传播特性传播特性(一)移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:1.表面波传播表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播.当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射.从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播.2.天波传播短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波.电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广.在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作.传播特性(二)1.空间波传播当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响.空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右.空间波除了受地面的影响以外,还受到低空大气层即对流层的影响.移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.2.散射传播大气对流层中,除了有规则的片状或层状气流外,还存在有不规则的,这类似于水流中漩涡的不均匀体.相应的,在电离层中则有电子密度的不均匀性.当天线辐射出去的电波,投射到这些不均匀体的时候,类似于光的散射和反射现象,电波发生散射或反射,一部分能量传播到接收点的这种传播称为散射传播.这种通信方式通信距离可达300-800km,适用于无法建立微波中继站的地区,例如用于海岛之间和跨越湖泊,沙漠,雪山等地区.但是,由于散射信号相当微弱,所以散射传播接收点的接收信号也相当微弱,即传播损耗很大,这样,散射通信必须采用大功率发射机,高灵敏度接收机和高增益天线.3.外层空间传播电磁波由地面发出(或返回),经低空大气层和电离层而到达外层空间的传播,如卫星传播,宇宙探测等均属于这种远距离传播.由于电磁波传播的距离很远,且主要是在大气以外的宇宙空间内进行,而宇宙空间近似于真空状态,因而电波在其中传播时,它的传输特性比较稳定.我们可以把电波穿过电离层外面的空间传播,基本上当作自由空间中的传播来研究.至于电波在大气层中传播所受到的影响,可以在考虑这一简单的情况基础上加以修正. 传播特性(三)前面我们对电磁波的各种传播方式做了介绍,在这里,我们简单地介绍一下各个波段的传播特点,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.各个波段的传播特点如下:1.长波传播的特点由于长波的波长很长,地面的凹凸与其他参数的变化对长波传播的影响可以忽略.在通信距离小于300km时,到达接收点的电波,基本上是表面波.长波穿入电离层的深度很浅,受电离层变化的影响很小,电离层对长波的吸收也不大.因而长波的传播比较稳定.虽然长波通信在接收点的场强相当稳定,但是它有两个重要的缺点:①由于表面波衰减慢,发射台发出的表面波对其他接受台干扰很强烈.②天电干扰对长波的接收影响严重,特别是雷雨较多的夏季.2.中波传播的特点中波能以表面波或天波的形式传播,这一点和长波一样.但长波穿入电离层极浅,在电离层的下界面即能反射.中波较长波频率高,故需要在比较深入的电离层处才能发生反射.波长在3000-2000米的无线电通信,用无线或表面波传播,接收场强都很稳定,可用以完成可靠的通信,如船舶通信与导航等.波长在2000-200m的中短波主要用于广播,故此波段又称广播波段.3.短波传播的特点与长,中波一样,短波可以靠表面波和天波传播.由于短波频率较高,地面吸收较强,用表面波传播时,衰减很快,在一般情况下,短波的表面波传播的距离只有几十公里,不适合作远距离通信和广播之用.与表面波相反,频率增高,天波在电离层中的损耗却减小.因此可利用电离层对天波的一次或多次反射,进行远距离无线电通信.4.超短波和微波传播的特点超短波,微波的频率很高,表面波衰减很大;电波穿入电离层很深,甚至不能反射回来,所以超短波,微波一般不用表面波,天波的传播方式,而只能用空间波,散射波和穿透外层空间的传播方式.超短波,微波,由于他们的频带很宽,因此应用很广.超短波广泛应用于电视,调频广播,雷达等方面.利用微波通信时,可同时传送几千路电话或几套电视节目而互不干扰.超短波和微波在传播特点上有一些差别,但基本上是相同的,主要是在低空大气层做视距传播.因此,为了增大通信距离,一般把天线架高.。
无线电波的传播方式zz

无线电波的传播方式zz2009-10-19 18:55无线电波的传播途径可分为:地波传播、对流层传播、电离层传播。
广播电视系统中的中波调幅广播,主要靠地波传播、夜晚天波参加传播;短波调幅广播主要靠天波;电视和调频广播靠空间波传播。
一、电波传播的途径由发射天线幅射的能量,经过各种可能的途径到达接收天线。
主要的传播途径如图1所示,它是按照离地面的高度而划分的。
1、电离层传播:经过电离层的反射式散射到达接收点的电波。
利用电离层反射的波段是短波及夜晚中波。
2、对流层传播:经过对流层(距地面 10km以内的大气层)反射或散射的电波。
超短波常利用对流层进行远距离的传播。
此外,地面上的电视和微波波段的电波,从发射点直接到达接收点,收和发两端点处在直视范围内,称为直视传播。
所以也把它归到对流层传播。
地面直视传播,是由直射波和地面反射波组成的空间波传播的。
3、地波传播:它是指电波沿地球表面绕射的传播,长波沿地面绕射传播的本领最强。
白天的中波广播也是靠地波传播。
实际上,天线幅射出来的电波往往不是以单一形式,既有地波也有天波,但总是以一种传播形式为主。
二、天线电波的波段划分及各波段传播的特点无线电波的频谱很宽,按频率的高低划分为许多波段,见表1。
由于波长不同,各波段的主要传播方式也不同,这就是各个波段适用于不同业务的主要原因,下面简述各波段的传播特点及其应用范围。
长波的近距离传播(300km以内)主要是靠地波,远距离(2000km)传播主要靠天波,用长波通信时,在接收点的场强稳定。
但由于表面波衰减慢,对其它收信台干扰大。
长波受天电干扰的影响很严重。
此外由于发射天线非常庞大,所以利用长波作为通信和广播的不多。
仅在越洋通信、导航、气象预报等方面采用。
中波传播白天天波衰减大,被电离层吸收,主要靠地波传播,夜晚天波参加传播,传播距离较地波远,它主要用于船舶与导航通信,波长为2000—200m的中波主要用于广播。
短波传播有地波也有天波。
无线电波的传播方式

无线电波的传播方式一、无线电波的传播方式无线电波以每秒三十万公里的速度离开发射天线后,是经过不同的传播路径到达接收点的。
人们根据这些各具特点的传播方式,把无线电波归纳为四种主要类型。
1)地波,这是沿地球表面传播的无线电波。
2)天波,也即电离层波。
地球大气层的高层存在着“电离层”。
无线电波进入电离层时其方向会发生改变,出现“折射”。
因为电离层折射效应的积累,电波的入射方向会连续改变,最终会“拐”回地面,电离层如同一面镜子会反射无线电波。
我们把这种经电离层反射而折回地面的无线电波称为“天波”。
3)空间波,由发射天线直接到达接收点的电波,被称为直射波。
有一部分电波是通过地面或其他障碍物反射到达接收点的,被称为反射波。
直射波和反射波合称为空间波。
4)散射波,当大气层或电离层出现不均匀团块时,无线电波有可能被这些不均匀媒质向四面八方反射,使一部分能量到达接收点,这就是散射波。
在业余无线电通信中,运用最多的是“天波”传播方式,这是短波远距离通信向必要条件。
空间波和散射波的运用多见于超高频通信,而地波传播“般只用于低波段和近距离通信。
二、电离层与天波传播1.电离层概况在业余无线电中,短波波段的远距离通信占据着极重要的位置。
短波段信号的传播主要依靠的是天波,所以我们必需对电离层有所了解。
地球表面被厚厚的大气层包围着。
大气层的底层部分是“对流层”,其高度在极区约为九公里,在赤道约为十六公里。
在这里,气温除局部外总是随高度上升而下降。
人们常见的电闪雷鸣、阴晴雨雪都发生在对流层,但这些气象现象一般只对直射波传播有影响。
在离地面约10到50公里的大气层是“同温层”。
它对电波传播基本上没有影响。
离地面约50到400公里高空的空气很少流动。
在太阳紫外线强烈照射下,气体分子中的电子挣脱了原子的束缚,形成了自由电子和离子,即电离层。
由于气体分子本身重量的不同以及受到紫外线不同强度的照射,电离层形成了四个具有不同电子密度和厚度的分层,每个分层的密度都是中间大两边小。
无线电波传播理论

电离层传播模型需要考虑电离层 的结构、成分、电子密度等参数 ,以及电离层对电波的吸收和反 射等作用。
地面对无线电波的吸收
地面对无线电波的吸收是指电波在传 播过程中,由于地面物质的吸收作用 而导致的能量损耗。
VS
地面对无线电波的吸收与地面的物质 成分、湿度、温度等因素有关,不同 的地面类型对电波的吸收程度不同。
对流层传播模型
对流层传播模型适用于电波在对流层中的传播,由于对流层的气象条件复杂多变,电波传播受到大气 折射、散射、吸收等因素影响。
对流层传播模型需要考虑大气温度、湿度、气压等参数,以及气象条件对电波传播的影响。
电离层传播模型
01
电离层传播模型适用于电波在电 离层中的传播,电离层对电波的 折射、反射、散射等作用会影响 电波的传播路径和强度。
、雷达等领域。
无线电波的产生与传播
产生
无线电波可以通过电子运动、振荡器 、天线等设备产生。
传播
无线电波在传播过程中会受到多种因 素的影响,如大气、地形、建筑物等 ,其传播方式和距离也会因此而有所 不同。
02 无线电波传播方式
直射传播
直射传播是指无线电波直接从发射天线沿直线到达接收设备 ,不经过其他介质或物体的反射、折射或散射。直射传播的 路径损耗较小,信号质量较好,但受地形、建筑物等遮挡物 的影响较大。
自由空间传播模型
自由空间传播模型适用于电波在自由 空间中的传播,其假设电波在均匀介 质中沿直线传播,不受地球曲率、大 气折射等因素影响。
自由空间传播模型的公式为:$d = frac{c}{2pi f sqrt{epsilon}}$,其中 $d$为电波传播距离,$c$为光速,$f$ 为电波频率,$epsilon$为介电常数。
无线电波空间传播模型

无线电波空间传播模型一、引言无线电波是一种电磁波,它的传播是通过空间介质进行的。
无线电波的传播模型是对无线电波在空间中传播过程的一种描述和模拟。
了解无线电波空间传播模型对于实现高效的无线通信系统设计和优化至关重要。
本文将介绍几种常见的无线电波空间传播模型,包括自由空间传播模型、二维和三维传播模型以及多径传播模型。
二、自由空间传播模型自由空间传播模型是最简单也是最常用的一种传播模型。
它假设无线电波在真空中传播,没有遇到任何障碍物和干扰。
根据自由空间传播模型,无线电波的传播损耗与距离的平方成反比。
具体而言,传播损耗(L)可以通过以下公式计算:L = 20log(d) + 20log(f) + 20log(4π/c)其中,d是发送端和接收端之间的距离,f是无线电波的频率,c是光速。
自由空间传播模型适用于开阔的空间环境,如农村、海洋等,但在城市和山区等环境中,由于有大量建筑物和地形等障碍物的存在,自由空间传播模型并不适用。
三、二维和三维传播模型二维和三维传播模型考虑了障碍物和地形等因素对无线电波传播的影响。
在二维传播模型中,地面被简化为平面,建筑物和其他障碍物被建模为二维形状。
在三维传播模型中,地面和建筑物等障碍物被建模为三维形状。
为了计算二维和三维传播模型中的传播损耗,常用的方法是射线追踪。
射线追踪将无线电波视为一束射线,通过计算射线与障碍物的相交点,从而确定传播路径和传播损耗。
射线追踪可以基于几何光学原理进行,也可以使用电磁波的波动性质进行更精确的计算。
四、多径传播模型多径传播模型是一种复杂的传播模型,考虑了多个传播路径和多个传播信号的叠加效应。
当无线电波传播过程中遇到建筑物、地形等障碍物时,会发生反射、折射和散射等现象,导致信号在接收端出现多个传播路径。
这些多个传播路径的信号叠加在一起,会引起传播信号的衰减和时延扩展。
多径传播模型通常使用统计方法进行建模和仿真。
常见的多径传播模型包括瑞利衰落模型和莱斯衰落模型。
无线电波段划分及传播方式

无线电波段划分及传播方式频率从几十Hz(甚至更低)到3000GHz左右(波长从几十Mm 到0.1mm左右)频谱范围内的电磁波,称为无线电波。
电波旅行不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间。
发信天线或自然辐射源所辐射的无线电波,通过自然条件下的媒质到达收信天线的过程,就称为无线电波的传播.无线电波的频谱,根据它们的特点可以划分为表所示钓几个波段.根据频谱和需要,可以进行通信、广播、电视、导航和探测等,但不同波段电波的传播特性有很大差别。
光速÷频率=波长无线电波波段划分波段名称波长范围(m)频段名称频率范围超长波长波中波短波1,000,000~10,00010,000~1,0001,000~100100~~1010~11~0.10.1~0.010.01~0。
001甚低频低频中频高频甚高频特高频超高频极高频3~30KHz30~300KHz 300~3,000KHz 3~30MHz30~300MHz 300~3,000MHz 3~30GHz30~300GHz超短波米波分米波厘米波毫米波电波主要传播方式电波传输不依靠电线,也不象声波那样,必须依靠空气媒介帮它传播,有些电波能够在地球表面传播,有些波能够在空间直线传播,也能够从大气层上空反射传播,有些波甚至能穿透大气层,飞向遥远的宇宙空间.任何一种无线电信号传输系统均由发信部分、收信部分和传输媒质三部分组成。
传输无线电信号的媒质主要有地表、对流层和电离层等,这些媒质的电特性对不同波段的无线电波的传播有着不同的影响。
根据媒质及不同媒质分界面对电波传播产生的主要影响,可将电波传播方式分成下列几种:地表传播对有些电波来说,地球本身就是一个障碍物。
当接收天线距离发射天线较远时,地面就象拱形大桥将两者隔开。
那些走直线的电波就过不去了.只有某些电波能够沿着地球拱起的部分传播出去,这种沿着地球表面传播的电波就叫地波,也叫表面波。
《无线电波的发射、接收和传播》 讲义

《无线电波的发射、接收和传播》讲义一、无线电波的概述在我们的日常生活中,无线电波无处不在。
从手机通信到广播电视,从卫星导航到无线局域网,无线电波在信息传递中扮演着至关重要的角色。
那么,什么是无线电波呢?无线电波是一种电磁波,其频率范围非常广泛,从低频的几千赫兹到高频的几十亿赫兹。
它们能够在自由空间中传播,不需要像电线那样的物理连接就能传递信息。
二、无线电波的发射要实现无线电通信,首先需要发射无线电波。
无线电波的发射主要依靠天线和发射机。
天线是发射和接收无线电波的重要设备。
发射时,电流通过天线,产生变化的电磁场,从而向周围空间辐射出无线电波。
天线的形状和尺寸会影响发射的效率和方向性。
发射机则负责产生高频振荡电流。
这个电流具有特定的频率和功率,决定了发射的无线电波的特征。
为了有效地发射无线电波,发射机通常会对信号进行调制。
调制就是把要传递的信息加载到高频载波上。
常见的调制方式有调幅(AM)和调频(FM)。
调幅是使载波的振幅随信号变化,而调频则是使载波的频率随信号变化。
经过调制后的信号,能够携带更多的信息,并且更适合在空间中传播。
三、无线电波的传播无线电波在空间中的传播方式主要有地波传播、天波传播和直线传播三种。
地波传播是指无线电波沿着地球表面传播。
这种传播方式适合频率较低的无线电波,如长波和中波。
地波传播比较稳定,但传播距离有限,且容易受到地面障碍物和地球曲率的影响。
天波传播是指无线电波被发射到高空的电离层,然后被反射回地面。
这种传播方式适合中波和短波。
电离层是地球大气层中的一个区域,其中存在大量的自由电子和离子,能够反射无线电波。
但电离层的状态会随时间和季节变化,导致天波传播的稳定性较差。
直线传播是指无线电波以直线的方式传播。
这种传播方式适合频率较高的无线电波,如超短波和微波。
直线传播的信号强度随距离的增加而迅速衰减,因此需要通过中继站来延长传播距离。
此外,无线电波在传播过程中还会受到各种因素的影响,如大气衰减、障碍物阻挡、多径传播等。
无线电波的传播特性

无线电波的传播特性传播特性(一)移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:1.表面波传播表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播.当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射.从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播.2.天波传播短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波.电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广.在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作.传播特性(二)1.空间波传播当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响.空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km 左右.空间波除了受地面的影响以外,还受到低空大气层即对流层的影响.移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.2.散射传播大气对流层中,除了有规则的片状或层状气流外,还存在有不规则的,这类似于水流中漩涡的不均匀体.相应的,在电离层中则有电子密度的不均匀性.当天线辐射出去的电波,投射到这些不均匀体的时候,类似于光的散射和反射现象,电波发生散射或反射,一部分能量传播到接收点的这种传播称为散射传播.这种通信方式通信距离可达300-800km,适用于无法建立微波中继站的地区,例如用于海岛之间和跨越湖泊,沙漠,雪山等地区.但是,由于散射信号相当微弱,所以散射传播接收点的接收信号也相当微弱,即传播损耗很大,这样,散射通信必须采用大功率发射机,高灵敏度接收机和高增益天线.3.外层空间传播电磁波由地面发出(或返回),经低空大气层和电离层而到达外层空间的传播,如卫星传播,宇宙探测等均属于这种远距离传播.由于电磁波传播的距离很远,且主要是在大气以外的宇宙空间内进行,而宇宙空间近似于真空状态,因而电波在其中传播时,它的传输特性比较稳定.我们可以把电波穿过电离层外面的空间传播,基本上当作自由空间中的传播来研究.至于电波在大气层中传播所受到的影响,可以在考虑这一简单的情况基础上加以修正.传播特性(三)前面我们对电磁波的各种传播方式做了介绍,在这里,我们简单地介绍一下各个波段的传播特点,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.各个波段的传播特点如下:1.长波传播的特点由于长波的波长很长,地面的凹凸与其他参数的变化对长波传播的影响可以忽略.在通信距离小于300km时,到达接收点的电波,基本上是表面波.长波穿入电离层的深度很浅,受电离层变化的影响很小,电离层对长波的吸收也不大.因而长波的传播比较稳定.虽然长波通信在接收点的场强相当稳定,但是它有两个重要的缺点:①由于表面波衰减慢,发射台发出的表面波对其他接受台干扰很强烈.②天电干扰对长波的接收影响严重,特别是雷雨较多的夏季.2.中波传播的特点中波能以表面波或天波的形式传播,这一点和长波一样.但长波穿入电离层极浅,在电离层的下界面即能反射.中波较长波频率高,故需要在比较深入的电离层处才能发生反射.波长在3000-2000米的无线电通信,用无线或表面波传播,接收场强都很稳定,可用以完成可靠的通信,如船舶通信与导航等.波长在2000-200m的中短波主要用于广播,故此波段又称广播波段.3.短波传播的特点与长,中波一样,短波可以靠表面波和天波传播.由于短波频率较高,地面吸收较强,用表面波传播时,衰减很快,在一般情况下,短波的表面波传播的距离只有几十公里,不适合作远距离通信和广播之用.与表面波相反,频率增高,天波在电离层中的损耗却减小.因此可利用电离层对天波的一次或多次反射,进行远距离无线电通信.4.超短波和微波传播的特点超短波,微波的频率很高,表面波衰减很大;电波穿入电离层很深,甚至不能反射回来,所以超短波,微波一般不用表面波,天波的传播方式,而只能用空间波,散射波和穿透外层空间的传播方式.超短波,微波,由于他们的频带很宽,因此应用很广.超短波广泛应用于电视,调频广播,雷达等方面.利用微波通信时,可同时传送几千路电话或几套电视节目而互不干扰.超短波和微波在传播特点上有一些差别,但基本上是相同的,主要是在低空大气层做视距传播.因此,为了增大通信距离,一般把天线架高.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线电波的四种传播方式
无线电波的四种传播方式分别是:
1. 地面波传播:地面波是靠着大地反射和折射形成的,主要在短波和中波频段中使用。
地面波传播的优点是信号稳定,但距离有限,适用于局部通信。
2. 天波传播:天波是指从天空反射回来的无线电波,主要在短波和中波频段中使用。
天波传播的优点是传播距离较远,但受天气影响较大,信号容易受到干扰。
3. 散射波传播:散射波是指无线电波在物体表面散射后形成的波,主要在超短波和微波频段中使用。
散射波传播的优点是信号不易受到干扰,但传播距离较短。
4. 空间波传播:空间波是指直接从发射天线向接收天线发射的无线电波,主要在超短波和微波频段中使用。
空间波传播的优点是传播距离较远,但信号容易受到遮挡和衰减的影响。