基于PLC的机械手自动操作系统设计本科毕业设计_说明
基于PLC的搬运机械手控制系统设计

基于PLC的搬运机械手控制系统设计搬运机械手是一种自动化设备,广泛应用于工业生产中的物料搬运、装卸、组装等工序。
为了实现搬运机械手的自动化控制,可以采用基于可编程逻辑控制器(PLC)的控制系统。
本文将介绍一个基于PLC的搬运机械手控制系统的设计。
搬运机械手控制系统的主要功能是对机械手的运动进行控制。
基于PLC的控制系统可以实现对机械手的运动、速度和位置等参数进行精确控制,从而提升机械手的工作效率和准确性。
首先,需要确定搬运机械手的运动方式和结构。
常见的机械手运动方式包括直线运动、旋转运动和联动运动等。
根据任务需求,可以选择合适的运动方式和结构。
然后,需要选择合适的PLC设备。
PLC是一种专门用于工业自动化控制的设备,具有高可靠性、灵活性和可扩展性等特点。
根据机械手的规模和工作要求,选择适当的PLC设备。
接下来,需要设计搬运机械手的控制电路。
控制电路是实现机械手运动控制的关键部分,包括传感器、电磁阀、继电器等元件的连接和控制逻辑的设计。
在设计控制逻辑时,可以使用PLC提供的编程软件进行编程。
根据机械手的工作要求和操作流程,编写PLC程序,实现对机械手的自动控制。
此外,还需要设计人机界面(HMI)用于操作和监控机械手的运行状态。
HMI通常使用触摸屏或按钮等输入设备,以及显示屏或指示灯等输出设备。
通过HMI,操作人员可以控制机械手的运动和监控运行状态。
最后,进行系统调试和测试。
在将系统投入使用之前,需要进行调试和测试,确保搬运机械手的运动控制正常,并满足工作要求。
总结起来,基于PLC的搬运机械手控制系统设计包括确定运动方式和结构、选择合适的PLC设备、设计控制电路、编写PLC程序、设计人机界面以及进行系统调试和测试等步骤。
通过PLC控制系统的应用,可以提高机械手的自动化程度,提升生产效率和产品质量。
基于PLC的机械手搬运控制系统实现本科毕业设计(论文)

备注
1
工作台
470mm×860mm
9
张
2
上料检测单元
CPU224 AC/DC/继电器(14路数字量输入/10路继电器输出)
1
套
3
搬运单元
CPU224 AC/DC/继电器(14路数字量输入/10路继电器输出)
1
套
4
加工与检测单元
CPU224 DC/DC/晶体管+EM223(22路数字量输入/18路晶体管输出)
This system uses the STEP 7-Micro/WIN V4.0 programming software, to complete the programming of the software, Siemens S7-200 to complete the sequence ofmanipulatorcontrolled by a different cylinder to complete the implementation of the action. Achieve the S7-300 and S7-200 constitute the master - slave network structure on the touch screen to display the operating information.
2.1.2
(1)输入电源:单相三线 AC220V±10% 50Hz;
(2)工作环境:温度-10℃~40℃ 相对湿度≤85%(25℃)海拔<4000m;
(3)装置容量:≤1.5kVA;
(4)外形尺寸:380cm× 170cm×140cm;
(5)安全保护:具有漏电压、漏电流保护,安全符合国家标准。
毕业设计--基于PLC的机械手控制系统设计

设计题目基于PLC的机械手控制系统设计摘要【摘要】工业机械手是近几十年发展起来的一种高科技自动生产设备。
工业机械手也是工业机器人的一个重要分支。
他的特点是可以通过编程来完成各种预期的作业,在构造和性能上兼有人和机器各自的优点,尤其体现在人的智能和适应性。
机械手作业的准确性和环境中完成作业的能力,在国民经济领域有着广泛的发展空间。
机械手的发展是由于它的积极作用正日益为人们所认识:其一、它能部分的代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配,从而大大的改善了工人的劳动条件,显著的提高了劳动生产率,加快实现工业生产机械化和自动化的步伐。
因而,受到很多国家的重视,投入大量的人力物力来研究和应用。
尤其是在高温、高压、粉尘、噪音以及带有放射性和污染的场合,应用的更为广泛。
在我国近几年也有较快的发展,并且取得一定的效果,受到机械工业的。
机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。
机械手的结构形式开始比较简单,专用性较强。
随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。
由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。
ABSTRACTManipulator hand and arm can imitate the certain movements function, according to fixed program to grab, transporting or operating tool for automatic operation of the device. It can replace the hard labor in order to realize people the mechanization of manufacturing and automation, can in harmful environment operation to protect the personal safety and so widely used.The type of manipulator, according to drive mode can be divided into hydraulic, pneumatic, electric and mechanical manipulator; According to applicable range can be divided into robots for and general manipulator two; According to the trajectory control mode can be divided into position control and continuous track control robots.The design of the manipulator and add plane rotation type and structure, the action of the manipulator by pneumatic cylinder driving, pneumatic cylinder of the corresponding electromagnetic valve to control, electromagnetic valve controlled by PLC. Drive the implementation of the component finish, can very convenient embedded in all kinds of industrial production line. Manipulator used PLC control, and has high reliability, change program flexible, and other advantages, whether for time control or travel control or mixed control, can be set to realize through PLC program. According to the order of the manipulator action can modify the program, so that more of the manipulator strong generality.Keywords: manipulator electromagnetic valve PLC目录摘要 (1)ABSTRACT (2)第一章绪论 (4)1.1机械手的概述 (4)1.1.1机械手的简介 (4)1.1.2机械手的类型 (4)第二章机械手总体方案的设计 (4)2.1机械手的工作过程及控制要求 (5)2.1.1 机械手的基本结构 (5)2.1.2机械手的控制要求 (7)2.2.3 机械手的控制方案设计 (9)2.2.4 机械手的手部结构 (9)2.2.5机械手的主要参数..................................................................... 错误!未定义书签。
毕业论文 基于PLC的物料分拣机械手自动化控制系统设计

PLC的物料分拣机械手自动化控制系统设计摘要机械手在先进制造领域中扮演着极其重要的角色。
它可以搬运货物、分拣物品、代替人的繁重劳动。
可以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因此被广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
本文在纵观了近年来机械手发展状况的基础上,结合机械手方面的设计,对机械手技术进行了系统的分析,提出了用气动驱动和PLC控制的设计方案。
采用整体化的设计思想,充分考虑了软、硬件各自的特点并进行互补优化。
对物料分拣机械手的整体结构、执行结构、驱动系统和控制系统进行了分析和设计。
在其驱动系统中采用气动驱动,控制系统中选择PLC的控制单元来完成系统功能的初始化、机械手的移动、故障报警等功能。
最后提出了一种简单、易于实现、理论意义明确的控制策略。
通过以上部分的工作,得出了经济型、实用型、高可靠型物料分拣机械手的设计方案,对其他经济型PLC控制系统的设计也有一定的借鉴价值。
关键词:机械手,气动控制,可编程控制器(PLC),自动化控制,物料分拣The Design for The Automatic Control System of The Sorting Materials Manipulator Based on PLCABSTRACTManipulator plays an extremely important role in the field of advanced manufacturing. It can carry goods, sort materials and do heavy works instead of the human being. It also can realize mechanization and automation of the production, do the jobs in harmful environment to protect the personal safety. So it is widely used in metallurgy, machinery manufacturing, electronics, light industry and atomic energy etc.In this paper,by reviewing the developmental status of the manipulator in recent years, combining the design of manipulator and systematic analyzing technology of the manipulator, We proposed the design scheme that the manipulator was driven by the pneumatic and the system was controlled by PLC. Integrative idea was adopted in this design to fully consider the characteristics of the software and hardware and complementary optimization. We analyzed and designed the overall structure, the implementation of structural, driving system and control system of the manipulator. We used pneumatic-driven in the driving system, PLC control unit in the control system to complete initialization of the system, manipulator's moving, failure alarm and so on. Finally we put forward a control strategy which is simple, easy to realize, and clear theoretical significance.Through the work above, a practical, economical, high-reliability sorting materialmanipulator was designed, which also had certain reference value for the other typesof economical PLC control system design.KEY WORDS: manipulator ,pneumatic-driven, programmable logic controller (PLC), automatic control,sorting materials目录第一章执行系统的分析与选择....................................................................§1.1执行机构坐标形式的选择.....................................................§1.2 执行机构的组成............................................................§1.3 执行机构各部分的分析与选择................................................§1.3.1 手部的选择......................................§1.3.2 手臂结构的选择..................................§1.3.3 机座结构的选择..................................§1.4 执行机构的工作原理........................................................§1.5 执行机构简图............................................................... 第二章驱动系统的分析与选择....................................................................§2.1 驱动系统的分析与选择......................................................§2.2 机械手驱动系统的控制设计..................................................§2.3 气动元件选取及工作原理....................................................§2.3.1 气源装置........................................§2.3.2 执行元件........................................§2.3.3 控制元件........................................§2.3.4 辅助元件........................................§2.3.5 真空发生器......................................§2.3.6 吸盘............................................§2.4 气动回路的工作原理........................................................ 第三章控制系统的分析设计 .......................................................................§3.1 控制系统的组成结构........................................................§3.2 控制系统的性能要求........................................................§3.3 传感器的选择..............................................................§3.3.1 位置检测装置....................................§3.3.2 滑觉传感器......................................§3.3.3 视觉传感器......................................3.4 控制系统PLC的选型及控制原理.................................................................................................§3.4.1 PLC控制系统设计的基本原则.......................§3.4.2 PLC种类及型号选择...............................§3.4.3 I/O点数分配.....................................§3.4.4 PLC外部接线图...................................§3.4.5 机械手控制原理..................................3.5 PLC程序设计..................................................................................................................................§3.5.1 总体程序框图....................................§3.5.2 初始化及报警程序................................§3.5.3 手动控制程序....................................§3.5.4 自动控制程序.................................... 结论........................................................... 参考文献....................................................... 致谢.........................................................附录.........................................................前言机械手作为前沿的产品应自动化设备更新时的需要,可以大量代替单调往复或高精度需求的工作,在先进制造领域中扮演着极其重要的角色。
(精品)基于PLC的机械手控制系统的设计【范文仅供参考】

(精品)基于PLC的机械手控制系统的设计【范文仅供参考】【摘要】机械手是自动控制领域中一项重要而且较新的技术,引入PLC控制技术,是现代控制理论与工业生产自动化实践结合的精华。
它可以代替人类在各种恶劣的条件下工作,而且它能提高生产过程的自动化程度,提高产品质量和生产效率,因此得到广泛的应用。
本文主要研究在PLC控制下机械手完成上下左右以及抓取等活动。
【关键词】PLC;机械手;步进电机1.引言机械手按用途可分为通用机械手和专用机械手两种,本文研究的PLC机械手属于通用机械手,它的控制系统独立,可改变程序、动作灵活多样。
通过PLC控制的机械手具有较大的工作范围、较高的定位精度和很强的通用性,可在多种严酷条件下工作。
2.PLC机械手控制系统设计方案对PLC机械手的要求是能准确、快速地搬运和拾放物件,这就要求它们具有精度高、反应快、承载能力强、工作空间充足和灵活的自由度以及在任意位置都能自动定位等特性。
首先,PLC是可编辑控制器的简称,它是一种以微机处理器为核心的工业通用自动控制装置。
它的主要功能有:多种控制功能;数据采集、存储与处理功能;通信联网功能;输入输出接口调理功能;人机界面功能;编程、调试功能。
本文选用PLC作为机械手的控制系统,是因为PLC体积小、重量轻、控制方式灵活、可靠性高、操作简单、维修容易、易于扩展等特点,可以根据现场要求实现机械手的不同工作要求。
机械手采用PLC控制技术,可以大大提高该系统的自动化程序,减少了大量的中间继电器、时间继电器和硬件连线,提高了控制系统的可靠性。
同时,PLC控制系统可方便地更改生产流程,增强控制功能。
其次,选择步进电机和传感器。
控制机械手纵轴和横轴的步进电机选用的是42BYG250C型两相混合式步进电机,参数为步距角0.9o~1.8o,电流为1.5A。
选用SH-20403型步进电机驱动器,它采用10~40V直流供电,H桥双极恒相电流驱动,8种输出电流可选,最大为3A。
基于PLC的机械手控制系统设计

基于PLC的机械手控制系统设计目录一、内容概括 (2)1. 研究背景和意义 (3)2. 国内外研究现状 (3)3. 研究目的和任务 (5)二、PLC技术基础 (6)三、机械手控制系统设计原理 (7)1. 机械手控制系统概述 (8)2. 机械手控制系统的组成 (9)3. 机械手控制系统的工作原理 (10)四、基于PLC的机械手控制系统设计 (11)1. 系统设计目标 (13)2. 系统设计方案 (13)3. 控制系统硬件设计 (15)4. 控制系统软件设计 (17)五、PLC在机械手控制系统中的应用实现 (18)1. PLC的选型与配置 (19)2. PLC的编程与调试 (20)3. 系统的人机界面设计 (22)4. 系统的安全性和可靠性设计 (24)六、系统实验与性能分析 (25)1. 实验目的和实验内容 (26)2. 实验方法和实验步骤 (26)3. 实验结果和分析 (28)七、系统优化与改进建议 (29)1. 系统优化方案 (30)2. 可能出现的问题及解决方案 (31)3. 对未来研究的建议 (32)八、结论 (34)1. 研究成果总结 (35)2. 对未来研究的展望 (36)一、内容概括本文档旨在阐述基于PLC(可编程逻辑控制器)的机械手控制系统的设计过程。
设计内容主要包括系统概述、系统需求分析、系统架构设计、硬件选型与配置、软件编程与调试等方面。
系统概述:介绍基于PLC的机械手控制系统的基本概念、应用领域及其在现代工业生产中的重要性。
系统需求分析:分析系统的功能需求、性能需求、环境需求等,明确系统的设计要求与目标。
系统架构设计:根据需求分析结果,设计系统的整体架构,包括PLC控制器、传感器、执行机构、人机界面等组成部分的布局与连接方式。
硬件选型与配置:根据系统架构设计,选择适当的硬件设备和传感器,进行配置与布局,确保系统的可靠性和稳定性。
软件编程与调试:基于PLC编程软件,编写控制程序,实现机械手的各项功能,包括运动控制、安全防护、数据处理等。
基于PLC的机械手控制设计

基于PLC的机械手控制设计1. 引言1.1 背景介绍随着工业自动化的不断发展和机械手在生产中的广泛应用,基于PLC的机械手控制系统已经成为一个研究热点。
传统的机械手控制系统通常使用传统的控制方法,如PID控制等,但这些方法在复杂的生产环境下往往难以满足需求。
引入PLC作为控制核心,可以提高机械手控制系统的精度、灵活性和可靠性。
本研究将探讨基于PLC的机械手控制设计,通过对PLC在机械手控制中的应用进行深入分析,设计并实现一个高性能的机械手控制系统。
通过PLC编程实现各个关节的控制和协调动作,实现对机械手的精准控制。
将进行系统性能测试和优化改进措施,以验证系统的稳定性和可靠性。
本文旨在研究基于PLC的机械手控制系统,在实际生产中的应用具有重要的意义。
通过本研究,可以为提高机械手控制系统的性能、提升生产效率和质量提供技术支持和借鉴。
【此处省略...】1.2 研究目的研究目的是为了探讨基于PLC的机械手控制设计在工业生产中的实际应用情况,分析其在自动化生产中的优势和不足之处,并提出相应的改进措施。
通过研究机械手控制系统在PLC控制下的工作原理和设计方法,进一步提高机械手的操作效率和精度,实现更加精准和高效的生产。
本研究旨在为工业生产领域提供一种可靠的控制系统设计方案,为企业实现智能化生产提供技术支持。
通过本文的研究,希望能够为相关领域的研究者和工程师提供有益的参考和借鉴,促进PLC 技术在机械手控制领域的应用和推广,推动工业生产的自动化发展,从而提高生产效率和产品质量。
1.3 研究意义机械手在工业生产中扮演着重要的角色,可以进行自动化操作,提高生产效率和质量。
基于PLC的机械手控制设计是实现机械手自动化控制的重要途径。
研究意义有以下几点:1. 提高生产效率:利用PLC控制机械手可以实现高速、精准的操作,提高生产效率,降低生产成本。
2. 提高产品质量:PLC控制可以使机械手动作稳定、精准,避免人为因素对产品质量的影响,提高产品质量和一致性。
机械手plc控制设计毕业论文

摘要关键词:机械手;PLC;控制系统;设计第一章引言1.1 研究背景随着我国工业自动化水平的不断提高,机械手在制造业中的应用越来越广泛。
机械手作为一种自动化设备,能够替代人工完成重复性、危险性较大的工作,提高生产效率,降低生产成本。
可编程逻辑控制器(PLC)作为一种广泛应用于工业自动化领域的控制设备,具有可靠性高、编程灵活、易于维护等优点,成为机械手控制系统的首选。
1.2 研究目的与意义本文旨在设计并实现一个基于PLC的机械手控制系统,提高机械手在工业生产中的应用效果。
通过研究,掌握机械手和PLC的基本原理,分析机械手控制系统的需求,设计并实现一个高效、可靠的控制系统,为机械手在工业生产中的应用提供有力支持。
第二章机械手与PLC的基本原理2.1 机械手的基本原理机械手是一种能够模拟人手进行抓取、搬运等操作的自动化设备。
其基本原理包括机械结构、驱动系统、控制系统和传感器等部分。
机械手通过机械结构实现抓取、搬运等动作,驱动系统提供动力,控制系统控制机械手的运动轨迹和速度,传感器检测机械手的运动状态。
2.2 PLC的基本原理PLC是一种广泛应用于工业自动化领域的控制设备,其基本原理是利用可编程的存储器来存储用户编写的程序,实现对输入信号的逻辑运算,输出控制信号,从而实现对工业过程的控制。
PLC具有可靠性高、编程灵活、易于维护等优点。
第三章机械手控制系统的需求分析3.1 机械手控制系统的功能需求(1)抓取、搬运、放置等基本动作;(2)运动轨迹控制;(3)速度控制;(4)位置检测与反馈;(5)故障诊断与报警。
3.2 机械手控制系统的性能需求(1)响应速度快;(2)控制精度高;(3)稳定性好;(4)易于维护。
第四章机械手PLC控制系统的设计4.1 系统总体设计根据机械手控制系统的需求分析,设计了一个基于PLC的机械手控制系统。
系统主要由PLC、驱动器、传感器、机械手等组成。
PLC作为控制核心,负责接收传感器信号,输出控制信号,实现对机械手的控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论 1.1 课题提出背景 如今,机械自动化已经成为了新时代的主题。其中,机械手是工业生产过程中应用最多的,而且它的发展也是最快的。工业生产自动化的程度越来越高,而生产环境变得越来越恶劣,这样对工人提出了更高的要求,比如安全性、健康性、环保性等。机械手可以有效的解决这个问题,它可以在高温、高压、有毒、放射性等场合应用。在机械制造行业中,机械手又称工业机器人,它主要被应用于运送加工原料或者给特定的机床进行刀具的转换和机器的装配等一些自动化流水生产线上。综上所述,机械手的应用更加有效率,同时还能降低生产成本。 机械手是一门综合性的学科,它包含了机械、电子、材料、自动控制等许多学科方面的知识。随着计算机和电子技术的飞速发展,机械手也不断的更新换代,朝着精密化、智能化、复杂化的方向发展。如今的机械手加入了传感器反馈系统,当机械手发生故障时,它可以自我检测,并且自动修复。 工业的自动化程度的高低离不开PLC, 它的控制能力越高,自动化的程度也越高。所以PLC常被用于工业生产中,随着它的地位逐渐增长,它的功能也随之有了很大的提高。对于PLC而言,它的程序编写容易、系统操作灵活,同时对于控制也方便实现,这样能够提高工业生产的效率和加工的质量。在一些恶劣的环境下,PLC同样能够取代人类去完成一些控制,从另一方面而言,成本也相对减轻了许多。基于PLC设计的机械手自动操作系统,更加容易实现生产的连续性。 在本次设计任务中,选用三菱系列的PLC对机械手进行控制,完成自动操作系统的设计。实现对机械手的上下、左右、旋转等控制,要完全实现这些,还需要其它辅助元器件,比如气缸、传感器、电磁阀、底座和支架等。为了能够更加直观的对机械手的动作进行展示,在本次设计中加入了组态软件对机械手进行监控。MCGS是一种用于对机械手整体监控的一种组态软件,通过对机械手运动数据的采集,MCGS以动画形式表现,对机械手的运动过程进行监控和整个流程的控制。 1.2 国内外研究现状 在1954年,美国的著名工程师沃尔德最早提出了人机一体化的构想;到了1959年,拥有丰富创造力的两人沃尔德和英格伯一同制造出了世界上第一台机械手;1962年时,美国政府将机械手的实用性做了相关的叙述,机械手慢慢被大家所认知;1970年在美国召开了第一届有关机械手相关的会议,主要研究它的价值和实用性;1973年美国一家公司开始制造出了一台小型的机械手,为工业发展做奠基;直到1980年,机械手在日本很快的发展起来,使得机械手得到了充分的改进,现在机械手正在向智能化、高速化、精密化的方向发展,机械手的定位精度也是越来越高,能达到现在的纳米级别,它的运行速度可以达到3m/s,产出的产品可以达到6轴,夹起工件的重量也是越来越大。 生产过程慢慢的向着机械、自动、智能的方向发展,逐渐地融入了我们生活中。生产工业的连续性依靠工业的自动化,自动化逐渐成为了新时代的标志。在国外,利用计算机和镜头采集装置,再加上一些特殊的传感器装置组合在一起,能够有效的定位,这样更加精确和有效的进行加工。但是在机械加工的过程中,对于零件的加工、处理和装配这些过程是不连续的,所以在工业生产中加入生产自动化可以有效地解决这些问题。机械手的灵活多变性可以有效地适用于小批量的自动化生产和柔性的制造生产线上。 在我国,机械手技术是从80年代开始起步,在七五科技攻关的热潮中,生产出了部分的机械人的零件,慢慢的认识到机械手的实用性。在国家相对政策的扶持下,开始用机械手对加工零件进行喷漆和焊接的工作,这些都是国内自己开发研制的机器。其中孤焊机械手已经用于对当时汽车生产的焊接上,虽然技术和人才比较国外来说还有一定的差距,大部分的产品还是要通过进口才能完成组装。在当时,许多有着高技术的国家对自己的产品有严格保密性,不对外销售,使得我国落后于国外一些国家,但是随着时间的推移,技术和人才也飞快的跟上了世界的脚步。我国的企业主要生产一些中低端的产品,因为没有高端精密的伺服系统和反馈系统,这样很难生产出高端和有质量的产品。 目前,国家正在对中国未来的机械制造装备也出谋划策,争取让这些企业占取大量的市场份额。我国的“863”机械手技术主题成立以来,国家对于这些技术的推广和引进,逐渐使得机械手行业成为了真正高新的产业。国家对于机械手企业提高了优惠的政策支持,并且扶持这些企业提高技术水平,加大工业生产的进度。 1.3 课题研究主要内容 该课题主要设计一个基于PLC的机械手自动操作系统,这套系统主要用于对机械手的过程控制。机械手的直线、旋转运动都是通过气缸来完成,气缸的运动由电磁阀来驱动。 刚开始时,要求将机械手复位,工作在左位、高位和放松状态。一上电,先控制底部转动气缸摆动调整机械手的位置,让它复位。然后通过传感器检测工件,检测到工件后,机械手底部气缸旋转,中间气缸右移到极限位置,下臂气缸开始下降到极限位置,夹紧气缸夹紧工件,下臂气缸上升到高位,下臂气缸上升到极限位置,中间气缸缩回到极限位置,底部气缸旋转,中间气缸右移到极限位置,下臂气缸开始下降到极限位置,夹紧气缸放下工件,最后机械手复位。如图1-3所示: 图1-3 机械手实际效果图 本次课题主要设计内容:
(1) 对机械手动作进行构思,设计出一套工作的整体方案 (2) 对机械手整体进行简单设计 (3) 各气缸选型,PLC和传感器的选型 (4) 系统硬件的设计和机械手控制程序的设计 (5) 组态软件MCGS的设计 (6) 通过PLC来控制机械手,完成自动控制并且连接MCGS进行调控 1.4 设计的目的和意义 随着信息技术的不断发展,对于机械产品的精度等级和结构的复杂程度也是要求越来越高。人们对于机械产品的设计,同样也要求具有创新性,更符合人性化和工业化。所以,针对国外的设计可以进行参考和总结,帮助我们完成对产品结构的设计。 机械手技术对工业发展有很大的好处,首先,它可以按照生产进行加工,依照一定的程序和规定的时间内完成工件的加工和传送;其次,它可以减轻工人的压力,而且它能单独的对机械进行装配,因此可以改善工人劳动环境,有效地提高生产效率,减轻工人劳动强度,节约了成本。尤其在一些有污染环境的场合,机械手的实用性更加体现出来。 如今,电子技术的飞速发展和渗入,机械手的研究和开发是人类进步的桥梁,机械手的迅速发展使得它成为工业行业中的重要部分。同时,也是因为机器人的发展,促进了机械手的飞速发展。在现代生产过程中,机械手被用于自动化流水生产线上,这样使得机械手能够广泛的被运用,并且能够熟练地适用于工业生产的脚步。 本次课题设计的机械手是通过用三菱PLC来进行程序系统的控制,PLC控制是机械手的灵魂。对于三菱系列的PLC,它的通用性好、适用范围广、灵活性和编程简单等方法来实现自动化。 2 机械手整体结构设计 2.1 机械手概述 在机械行业中,由于生产环节比较多,要想各环节协调运行需要大量的人力、物力、空间资源等,这样的生产方法成本高、效率低、复杂程度高。为了解决上述难题,本设计主要研究基于PLC控制机械手的自动运行。在过去的几十年里,机械手发展非常快,迅速发展成为一种高科技的自动化程度非常高的生产设备。机械手是机器人的一部分,也是属于机器人,它有机器人的部分特征,并且机械手可以通过简单的编程来实现它的自动化来完成各种预期的任务,它继承了人和机器人的一些特征和优点,尤其是有了人工智能,在生产过程中更加的准确和在各种环境下能够有效的工作。相对于我国来说,机械手有着更为广大的发展空间,也有利于提高国民经济的水平[3]。 2.2 机械手工作原理 机械手是一种通过一定的编程软件来对其进行自动定位和以多变的动作形式来实现预期的功能。它拥有多个自由度,在空间中能够灵活地自由运动。 执行元件、驱动元件和控制系统这三个部分组成了机械手。其中执行元件由手部、手臂和身躯构成。手部装在手臂的上端可以夹紧。机械手的手部可以模仿人的手指,因此非常的灵活。在本设计中主要是用到夹紧气缸,来完成对零件的夹紧和搬运功能。在设计中我们可根据被夹工件的大小和形状来装备各种各样的夹头,以便适应不同的操作需要。手臂是用来引导气爪能够准确地抓住工件,并把工件搬送到另一个工位上。一般机械手的运动有两种,一种是直线运动,另一种是旋转运动。身躯主要是用来安装手臂、动力源和各执行元件,而且它可以起到连接的作用。 驱动元件是用来驱动气爪来抓取工件也可以吸取工件,以达到预定的功能。可以随时改变被夹持工件件的位置。驱动元件的能够实现上升、下降、旋转、前后左右移动的这些动作,叫做机械手的自由度。自由度是机械手一个很重要的参数性能,机械手的自由度越高,则机械手的灵活性就会越高,它的结构就会越复杂,通用性就会越广,反之则越小。 本次设计对机械手整体机构进行控制,来完成特定的工作内容。通过一定的硬件控制系统对其编程来实现所有的功能,在此基础上加上传感器系统,进行运动的反馈工作,使其更加地稳定和精确[4]。 通过上面的有关知识,我们设计出了一套机械手,他总共有4个自由度,包括:手臂上下运动、手臂前后伸缩、气爪的夹紧、底座的旋转。其中,底座的旋转采用的是摆动气缸,手臂前后和上下运动选择的是带导向的气缸,保证气爪在抓取工件时的稳定性和可靠性,能够有效地抓取到工件,然后在每个极限位置加上传感器进行反馈,以实现机械手运动的精确性和平稳性[10]。 2.3 机械手整体控制要求 机械手运动控制要求一般为手动模式和自动控制模式。其中手动控制模式是适用于调试和安装的时候使用或者在出现机器发生故障的时候使用。本次课题所设计的是自动控制模式,通过对PLC编写特定的程序,机械手会按照一定的运动规律完成特定的动作,往往在设计中我们加入手动控制模式,这样便于安装和调试,当机械手出现故障的时候,可以用手动控制来检测故障点。通常在设计先确定控制方案,然后按照方案进行设计。如图2-3所示,机械手工作流程图: