长江口及近海区沉积物重金属与底质环境评价
长江口及近海水环境中新型污染物研究进展

长江口及近海水环境中新型污染物研究进展一、概览随着工业化和城市化的快速发展,长江口及近海区域正面临严峻的新型污染物环境挑战。
这些新型污染物具有毒性、稳定性强、难以降解等特点,对生态系统和人类健康构成严重威胁。
国内外学者对长江口及近海水环境中新型污染物的研究逐渐成为热点。
本文旨在概述近五年来该领域的研究进展,以期为进一步深入了解新型污染物的污染特征与生态效应提供参考。
随着环境监测技术的不断发展和提高,研究者们已经从各种环境样品中检测出数百种新型污染物,涵盖了重金属、有机污染物、持久性有机污染物、内分泌干扰物质等多种类型。
新型纳米污染物和医药活性化合物等新型污染物的研究逐渐受到关注。
这些新型污染物在环境中广泛存在,且对生态系统的毒性作用显著。
从地理位置分布上看,长江口和杭州湾是新型污染物在长江流域的主要汇和扩散区。
研究人员已在该区域检测到了包括重金属、有机污染物和纳米颗粒等在内的多种新型污染物。
这些污染物不仅对海洋生物产生毒性效应,还可能通过食物链对人类健康造成潜在威胁。
面对日益严重的新型污染物环境污染问题,国内外的研究者们积极开展了相关研究工作。
通过分析现有文献资料,可以发现目前对于新型污染物研究主要集中在以下几个方面:随着科学技术的不断发展和创新,新型污染物研究在长江口及近海环境中扮演着越来越重要的角色。
了解这些新型污染物的研究进展,对于揭示其环境污染特征、制定有效的环境政策以及保护生态环境具有重要意义。
目前对于新型污染物的研究仍存在许多亟需解决的问题,如其环境行为的深入表征、风险评价方法的完善以及去除技术的创新等方面。
未来的研究应继续加强跨学科合作,从环境系统中抽取关键因子,为区域环境管理提供科学依据和技术支持。
1. 新型污染物的概念及其重要性随着工业化的快速发展和人类活动影响的加剧,水体环境中的新型污染物日益受到关注。
这些新型污染物具有化学稳定性、生物难容性和高毒性等特点,能在环境中持久存在并累积,对生态系统和人类健康构成严重威胁。
长江水系沉积物中重金属的赋存形态

第27卷 第4期2008年 7月环 境 化 学ENV I RONME NT AL CHE M I ST RY Vol .27,No .4July 2008 2008年1月14日收稿.3国家重点基础研究发展计划(973计划)项目(课题编号:2006CB403403)资助.33通讯联系人:wangyc@i w hr 1com长江水系沉积物中重金属的赋存形态3周怀东1,2 袁 浩2,3 王雨春233 陆 瑾2 万晓红2(1 河海大学水文水资源学院,南京,210098;2 中国水利水电科学研究院水环境研究所,北京,100038;3 贵州大学资源与环境工程学院,贵阳,550003)摘 要 分析了长江干流和主要支流的沉积物样品中重金属(Cu,Zn,Pb,Cd,Cr,A s,Hg )的含量和赋存形态1结果表明:除Zn 外,长江流域水系沉积物中重金属的污染程度总体呈上升趋势,其中,Cd 的污染较为严重,Cd 主要以可交换态的形式存在,长江水系沉积物中Zn,Pb 以及Cu 具有相似的同源性,而Cd,A s,Hg 以及Cr 则另为一类1关键词 沉积物,重金属,长江. 沉积物中重金属的环境行为和生态毒理效应不仅与有毒物质的总量有关,而且与重金属在沉积环境中的地球化学形态密切相关[1]1对沉积物(土壤)中重金属赋存形态的研究方法,如,Tessier 等提出的“五步连续提取法”,采用专属性提取液将土壤中重金属的存在形态分为可交换态、碳酸盐结合态、铁锰氧化态、有机结合态和残渣态[2]11993年,欧共体标准局提出了相对简化的“三步形态分类法”(BCR )[3],即,将沉积物中重金属的形态分为B1醋酸提取态(水溶态、可交换态和碳酸盐结合态)、B2可还原态(Fe —Mn 氧化物结合态)、B3可氧化态(有机物及硫化物结合态)和B4(残渣态),BCR 法已被证明是可以在不同地区获得可比数据的成熟方法[4]1 本研究采用BCR 法开展了长江流域干流和主要支流水系沉积物中重金属的形态研究1初步分析了不同重金属及其形态分布的相关关系,为评价长江流域水系沉积物中重金属污染状况和潜在风险提供有用的科学数据11 样品的采集和分析 分别在长江干流和部分主要支流(包括长江、岷江、金沙江、湘江等)采集沉积物样品.采样点为:1#小沙坝、2#豆腐石、3#岷江口、4#江津自来水厂、5#梁沱水厂、6#江南水厂、7#江万船厂、8#丹江口、9#常德、10#丹江口水库、11#学堂洲、12#草桥、13#猴子石、14#黄洲、15#黄石、16#武穴闸、17#南京长江大桥、18#燕子矶、19#采石矶、20#镇江汽渡、21#长江天生港1采集0—5c m 表层沉积物样品及平行样品,样品自然风干后,用玛瑙研钵研磨至80目,然后用四分法制得500g 样品,最后用烘箱100℃烘至恒重,干燥器内密封保存1 采用微波消解处理样品(王水2氢氟酸2高氯酸消解),原子吸收光谱仪测定Cu,Zn,Pb,Cd 和Cr,用原子荧光光谱仪测定A s 和Hg 12 长江流域水系沉积物中重金属的含量 表1为长江水系沉积物中重金属的含量及背景值1从沉积物重金属的总体配分模式看,长江流域水系沉积物与全球页岩重金属的丰度模式是一致的,即Zn >Cr >Pb >Cu >A s >Cd >Hg 1 从浓度水平看,本次研究结果不仅高于(或相当于)全球页岩重金属地球化学背景值[5]和工业化前全球沉积物最高背景值[6],同时也明显高于前人在该区域的研究数值[7—10],表明长江流域近年来沉积物中重金属的污染呈增加的趋势1其中,沉积物中Cd 是污染较严重的重金属,与前人研究的平均值(0135mg ・kg -1)相比,本研究测定的沉积物中Cd 增加了约282%,Hg 含量也要显著高出臧小平[7]报道的最高值,Pb,Cu,A s 和Cr 也呈不同程度的增加趋势,而Zn 则比已有数值略有降低.516 环 境 化 学27卷 从样点的空间分布看,沉积物中重金属的含量也表现出较大的差异性1Cu浓度表现为中、下游高于上游的趋势,最高点在长江武汉附近江段,有30%的样点Cu浓度超过了页岩重金属地球化学背景值.Zn除在2#和13#相对较高外,其沿程变化不显著,均值高于全球页岩重金属地球化学背景值而低于全球沉积物最高背景值.Pb浓度的空间分布与Cu类似,高值区主要在武汉以下南京以上江段,上游重庆段也较高1Cd的浓度水平总体较高,最大值在黄州附近江段,上游和中、下游也有高值区,这可能是不同类型污染源贡献的结果1A s和Hg表现出采样的沿程空间分布模式,高值区在长江中、下游地区1Cr最大值位于金沙江下游江段的3#,有4个点含量高于90mg・kg-1,其余变化不明显1表1 长江流域沉积物金属元素含量(mg・kg-1)Table1 M etal contents in the sedi m ents of Yangtze basin数据来源Cu Zn Pb Cd Cr A s Hg文献[7]枯水期1514—67113617—107—0113—014447—99411—811—丰水期1615—46195115—118191613—421801152—01328—516—916010098—010705文献[8]48101821034100133———文献[9]491316317381601337614——文献[10]6918132——90——文献[5]45953401462130135文献[6]5017570110090150125本次研究最小值24158591431512401284515281210113最大值11111120114721612515107123113561991153均值5911512617663121113578181515901463 长江流域水系沉积物中重金属的地球化学特征 以不同元素在各自形态中的平均含量计算百分比,长江流域沉积物中重金属每种形态占总量的比例见图11其中,Cu,Zn,Cr,A s和Hg主要以B4残渣态形式存在,Pb主要以B2态存在,Cd以B1态存在1不同的重金属在相态中分布的差异体现了其地球化学特性,前三种能被生物所利用的相态在研究评价过程中被陈静生等[11]划为次生相态,而B4态作为重金属存在于矿物晶格中的化学形态,一般认为不具有生物可利用性,对环境无影响而被列为原生相态1图1 长江沉积物中重金属元素不同形态所占比例平均值F i g11 The average percentages of heavy metals fracti ons in the sedi m ents of Yangtze basin Cu的B1态只占8%,这部分包含:(1)能被生物直接利用的水溶态重金属离子;(2)位于沉积物粘土矿物等活性成分交换位置,能被Ca2+,Mg2+或NH+4等阳离子交换下来易被生物利用的元素;(3)被碳酸盐表面吸附或以共沉淀形式存在,在pH变化的情况下可被生物利用的重金属元素,说明沉积物中Cu元素对环境的直接影响较低1 Zn的次生相中主要以B1和B2态存在,分别占总量的20%和30%左右1B2态包括沉积物中铁锰氧化物吸附以及被其包裹的部分重金属,这部分氧化物表现的专属吸附作用比较强,但转为还原环境后,在不稳定状态下易被释放或在S的作用下进入B3态1因此,沉积物中Zn的生物可利用性较高1 4期周怀东等:长江水系沉积物中重金属的赋存形态517 Pb的B1态含量很少,主要以B2铁锰氧化物结合态形式存在,占总量的64%,在pH值Eh改变的情况下,B2态容易转化为B1态直接对环境造成影响,说明Pb的直接危害小而潜在危害较大1 Cd的B1>B2>B4>B3,B1态占总量的60%,说明极其需要关注其对环境造成的直接和间接危害1马振东等[12]认为这主要是扬子和秦岭两构造单元表壳岩系富含Cd以及侵蚀作用带来的结果1 Cr的B4态占了绝大多数,次生相态总共只占了16%,说明Cr在研究区域沉积物中的稳定性最好,对环境的影响较小1 A s的次生相所占比例都很低,并且主要以B2态存在,说明长江流域沉积物中A s的生物可利用性不高1 Hg的原生相态占了58%左右,次生相态分别为B3(22%)>B2(12%)>B1(8%),B3态的重金属与沉积物中的烷烃和腐殖酸等有机质形成络合物或鳌合物,以及与硫化物结合共沉淀1在氧化条件下,微生物氧化分解有机质,硫元素变成S6+,这部分元素形成迁移能力更高的价态进入水体,说明Hg在长江流域沉积物的次生相态中主要与有机质及硫化物结合14 长江流域水系沉积物中重金属总量与形态的相关分析 将每种元素的4种形态及总量做成相关系数矩阵,并将矩阵中不同元素的形态与各自总量的相关系数值列于表2,用以识别控制各元素在风化、迁移及沉积的过程中的关键因子1表2 长江流域沉积物重金属元素不同形态与总量的相关性Table2 Correlati on coefficients bet w een t otal concentrati on and their fracti ons in the sedi m ents of Yangtze basin元素各形态与总量的相关系数B1B2B3B4Cu01798017580174501884Zn01945018970185101834Pb0118019880137801953Cd01999019930161201704Cr01316015130122501974A s0157019120120801999Hg-011501520126201972 如表2所示,几种元素的B4态与总量之间都呈现了良好的相关性,表明了地质背景是影响和控制各元素在沉积物中含量的主要因素. Cu的前三种相态与总量的相关系数差别不大,说明对于总量的贡献,这三种相态的活性是均一分布的.Cu与B3态的亲和作用已得到证实[13],B2略高于B3说明了相对于还原条件下的沉积物,当有机质和硫化物的含量较低时,Cu的变化会受到铁锰氧化物吸附作用的影响1 Zn的总量与B1态的相关性较好,B2和B3与总量的相关性也高于B4,加上B1和B2态的含量较高,可能暗示污染外源输入对Zn主要以可交换的吸附形式对沉积物总Zn有着主要影响,这与张朝生等人[10]结果一致1 Pb的总量与不同形态含量的相关性主要受沉积物相中铁锰氧化物的影响,同时,B4态与总量有较好的相关性,说明相当部分的Pb是存在于沉积物的矿物晶格,代表流域侵蚀作用的贡献1 Cd含量主要与B1态和B2态显著相关,表明进入沉积物中的Cd易被粘土矿物或土壤胶体强烈吸附,沉积物的Cd可能具有显著的环境迁移活性1 沉积物中的Cr和Hg主要体现于B4态(矿物晶格残渣态)的变化,说明在自然条件下其转化为离子的倾向小于其它金属,相对是稳定的1 A s的总量与B2(次生相态中与铁锰氧化物所吸附)和B4(矿物晶格残渣态)的相关性较好,这可能反映该元素具有两种不同的环境归趋模式.5 长江流域水系沉积物中重金属总量与形态的聚类分析 环 境 化 学27卷518 聚类分析通过研究某一相态下不同元素之间的相关关系,更好地了解其在环境中变化的联系及规律,并能大致解析其来源和环境行为的异同1 根据聚类分析的结果(见图2)可以看出,在沉积物总量的相关性上,Zn和Pb作为一小组元素可能具有更好的共源性,B4态与B2态的聚类分析也表现出相同的特征,与之对应,Cd,A s,Hg以及Cr的来源有所不同,这可能主要与Cd等在地壳中的丰度低而且高度分散,并多出现在其它金属硫化物矿床的氧化带的地球化学性质有关1 B1态代表最不稳定的可溶态、可交换态及碳酸盐吸附态,对该相态的聚类结果显示,Cd和Zn 在迁移、转化的环境行为上存在某种相似性关联,这与沉积物形态含量分布的分析结果是一致的,长江水系沉积物中这两种元素主要是B1态存在,环境行为相对活泼. B3态的聚类分析表现各异,相关性最好的为Cu和A s.Cu原子半径小,主极化能力强,易与离子半径大的被极化能力强的S和A s等成共价或带金属键结合形成络合物,所以在含硫化物的相态中, Cu和A s表现出良好的相关关系,Zn在硅酸盐熔体中是变网阳离子,也是亲硫元素,但较Cu弱,因此,与Cu和A s二者的关系次之1其中最独特的为Hg,主要是由于Hg在沉积物中能被生物作用成甲基汞,微生物也能将Hg2+变成零价汞,而这些作用主要发生于B3态,导致了Hg表现出性质差异.图2 长江流域沉积物重金属元素不同形态的聚类分析F i g12 H ierachical cluster analysis on different phases of heavy metals in the sedi m ents of Yangtze basin 综上所述,长江水系沉积物中,Cu,Zn,Cr,A s和Hg主要是以矿物晶格相存在于沉积物中,相对而言,Cu和Zn的铁锰氧化物吸附态和硫化物结合态在总量中的比例更高,具有较大的活性;Pb 主要以铁锰氧化物结合态形式存在(占总量的64%),在环境氧化还原条件变化时可能有较大环境风险;Cd主要与粘土矿物或土壤胶体强烈吸附,因此,具有很高的环境迁移活性,可能对水环境具有较高的生态风险1另外,聚类分析表明,长江水系沉积物中Zn,Pb以及Cu具有同源性,而Cd,A s, Hg以及Cr则呈另一类.从环境迁移、转化的性质上看Cd和Zn等较为接近1 4期周怀东等:长江水系沉积物中重金属的赋存形态519参 考 文 献[1] Kot A,Nam iesik J,The Role of Speciati on in Analytical Che m istry[J]1Trends in Analysis Che m istry,2000,19∶69—79[2] Tessier A,Ca mpbell P G C,B iss on M,Sequential Extracti on Pr ocedure f or the Specificati on of Particulate Trace Metals[J],AnalyticalChe m istry,1979,51∶844—851[3] Maier E A,Griep ink B,The BCR(Measurement and Testing)Pr ogra mme———Quality of Measure ments:a Eur opean Goal[J]1F resenius’Journal of Analytical Che m istry,1994,348(1)∶6—8[4] Dang C T,Jeffrey O P,Metal Speciati on in CoastalMarine Sedi m ents fr om Singapore U sing a Modified BCR2Sequential Extracti on Pr oce2dure[J]1A pplied Geoche m istry,2006,21∶1335—1346[5] 李健,郑春江,郭希利等,环境背景值数据手册[S]1北京,中国环境科学出版社,1989[6] Hakans on L,An Ecol ogical R isk I ndex f or Aquatic Polluti on Contr ol1A Sedi m ent ol ogical App r oach[J]1W ater Res1,1980,14∶975—1001[7] 臧小平,郭利平,长江干流水底沉积物中十二种金属元素的背景值及污染状况的初步探讨[J]1中国环境监测,1992,8(4)∶18—20[8] Qu C,Yan R,Chem ical Compositi on and Fact ors Contr oling Sus pended Matter in Three Maj or Chinese R ivers[J]1Sci.Total.Envi2ron.,1990,97/98∶335—346[9] 陈静生,王飞越,程成旗等,中国东部主要河流颗粒物的元素组成[J]1北京大学学报(自然科学版),1996,32(2)∶206—214[10] 张朝生,长江与黄河沉积物金属元素地球化学特征及其比较[J]1地理学报,1998,53(4)∶314—322[11] 陈静生,铜在沉积物各相中分配的实验模拟与数值模拟研究2以鄱阳湖为例[J]1环境科学学报,1987,7(2)∶140—149[12] 马振东,张德存,闭向阳等,武汉沿长江、汉江Cd高值带成因初探[J]1地质通报,2005,24(8)∶740—743[13] Thomas P R,U re A M,Davids on C M et al.,Three2Stage Sequential Extracti on Pr ocedure f or the Deter m inati on ofMetals in R iver Sedi2ments[J]1Analytica Chi m ica Acta,1994,286(3)∶423—429THE CHE M I CAL SPEC I AT IO N O F HEAV Y M ETAL S I NSED IM ENTS FROM YANGTZE BAS I NZHOU Huai2dong1 YUAN Hao2,3 WAN G Yu2chun2 LU J in2 WAN X iao2hong2 (1 The College of Hydr ol ogy and W ater Res ources,Hohai University,Nanjing,210098,China;2 The Depart m ent of W ater Envir onment,I W HR,Beijing,100038,China;3 College of Res ources and Envir onmental Engineering Guizhou University,Guiyang,550003,China)ABSTRACT The t otal concentrati on and che m ical s peciati on of heavy metals(Cu,Zn,Pb,Cd,Cr,A s and Hg) in the surface sedi m ents collected fr om the mainstrea m and several tributaries of Yangtze basin were studied using BCR sequential extracti on p r ocedure,HCl2HNO32HF digesti on method and AAS1The results showed that the heavy metals(excep t Zn)polluti on in sedi m entary envir onment were increasing.Cd was mainly ass o2 ciated with exchangeable fracti on1So,the quality and che m ical for m s of sedi m entary heavy metals i m p lied that there were the higher ecol ogical risks on the aquatic envir on ment of Yangtze basin1W e als o used the H ierachi2 cal cluster analysis t o i m p r ove the understanding of the characteristics of heavy metals in sedi m ent1The statis2 tic analysis data revealed that the sedi m entary Zn,Pb and Cu have the si m ilar origin,and Cd,A s,Hg and Cr were clustered t ogether in the another gr oup1 Keywords:sedi m ent,heavy metals,Yangtze basin.。
海洋沉积物中重金属的污染状况和来源

海洋沉积物中重金属的污染状况和来源海洋是地球上最大的污染承载体之一,而其中的沉积物中也存在着严重的重金属污染问题。
本文将探讨海洋沉积物中重金属的污染状况以及其来源,并提出相应的治理措施。
一、重金属的污染状况1. 污染范围海洋沉积物中重金属污染普遍存在于全球范围内。
全球各大洋的沉积物中均检测到了铅(Pb)、汞(Hg)、镉(Cd)、铬(Cr)等重金属元素的高含量。
2. 污染程度海洋沉积物中重金属污染程度与地理区域、海洋活动等因素密切相关。
一些近岸地区受到工业废水、城市排污等直接排放的影响,污染程度明显高于远离陆地的深海沉积物。
3. 生物富集海洋沉积物中的重金属不仅对海洋生态系统构成威胁,还可能进一步富集至海洋生物体内,对人类健康造成危害。
比如,鱼类、贝类等海洋生物在摄入污染沉积物的同时也摄入了其中的重金属。
二、重金属的主要来源1. 工业活动工业废水、废气是重金属进入海洋沉积物的主要来源之一。
许多工业过程会排放含有重金属元素的废水,这些废水最终进入河流、河口,随着河流的流动进入海洋。
2. 城市排污城市生活污水中含有大量重金属元素,如镉、铅等。
这些重金属元素通过污水处理厂处理后,可能仍未完全去除,最终进入海洋沉积物。
3. 农业活动农药、化肥中的重金属元素,如铜、锌等,可能通过农田冲洗到水体中,最终进入海洋。
此外,畜禽养殖过程中的废物也可能含有重金属元素,通过河流、河口进入海洋沉积物。
4. 自然因素除人为活动造成的重金属污染外,自然因素也是海洋沉积物中重金属的来源之一。
火山喷发、海底火山活动等自然过程会释放大量的重金属元素,进入海洋沉积物。
三、治理措施1. 加强监测和预警体系建立海洋沉积物重金属污染的监测网络和预警体系,及时掌握污染状况,采取有效的治理措施。
2. 排放控制加强工业废水、城市污水处理工艺的改进,确保废水中的重金属排放达到国家标准,减少对海洋沉积物的污染。
3. 农业环境保护加强农田管理,合理使用农药和化肥,避免重金属元素进入水体和海洋沉积物。
基于空间插值法的长江口海水质量评价

基于空间插值法的长江口海水质量评价一、引言长江口海域是中国重要的渔业生产基地和海洋资源开发区,也是重要航道和沿海城市的供水源地。
随着经济的快速发展和城市化的进程,长江口海域受到了严重的污染,海水质量问题逐渐凸显。
为了有效评价长江口海水质量,科学分析污染情况,提出相应的治理措施,本研究基于空间插值法对长江口海水质量进行评价分析。
二、长江口海水质量现状分析长江口海域是中国最重要的河口海域之一,也是全国最大的渔场之一。
随着城市化和工业化的发展,长江口地区的污染问题日益突出。
主要污染物有化工废水、生活污水、工业废水等,导致海水中重金属、有机物等污染物浓度升高,影响了海洋生态环境和渔业生产。
长江口海域的水质主要受到城市污水排放、工业废水排放、农业面源污染等因素的影响。
城市污水排放是主要污染源之一,尤其是有机物和氮、磷等营养盐的排放。
工业废水中的重金属、有机物等也对海水质量造成了严重影响。
农业面源污染也是长江口海水质量恶化的重要原因,农田施肥、农药使用等导致的化学物质渗入水体,对海水质量形成了威胁。
长江口地区的海水污染严重影响了当地的渔业生产,也对周边的城市供水造成了威胁。
对长江口海水质量进行科学评价,制定相应的治理措施是至关重要的。
1. 空间插值法空间插值法是通过一定的数学和统计方法,根据已知的数据点在空间上的分布特征,推算出未知位置上的数值。
常用的插值方法包括克里金插值法、反距离加权插值法、三角网插值法等。
这些方法可以根据数据点的分布特征和采样密度进行选择,较为全面地反映出了地理空间上的数据分布情况。
2. 海水质量评价指标海水质量评价指标通常包括水温、盐度、溶解氧、PH值、营养盐、有机物、重金属等多个方面的指标。
这些指标可以全面地评价海水的化学和生物学性质,反映海水的污染程度和适用性。
本研究基于长江口海域2019年的海水质量监测数据,采用克里金插值法对长江口海域的海水质量进行评价。
对监测数据进行了空间分析,得到了长江口海域的海水质量分布情况。
长江口湿地沉积物中的氮_磷与重金属

研究简报 NO TE长江口湿地沉积物中的氮、磷与重金属全为民,韩金娣,平先隐,钱蓓蕾,沈盎绿,李春鞠,施利燕,陈亚瞿(农业部海洋与河口渔业重点开放实验室,中国水产科学研究院东海水产研究所,上海200090)摘要:研究了总氮N T、总磷P T、重金属Cu,Zn,Pb和Cd在崇明东滩湿地沉积物中的分布与累积特征。
结果表明,N T和重金属表现为:芦苇带>互花米草带>海三棱镳草带>光滩,即从光滩至芦苇带,从南部至北部,N T和重金属的质量分数呈现逐步增加的趋势。
由于高潮带以细颗粒为主,有机质含量较高,因此N T和重金属表现出相应的富集;而沉积物P T在各个潮带呈均匀分布,这主要与沉积物中磷的化学形态组成有关。
与上海南岸潮滩湿地和世界其他河口湿地相比,东滩湿地沉积物中重金属的质量分数相对较低,表明它是一块保存较为完好未受到污染的天然湿地,这主要与长江径流对污染物的稀释作用有关。
关键词:长江口湿地;养分;重金属;分布;累积中图分类号:P734 文献标识码:A 文章编号:100023096(2008)0620089205 河口湿地是一类独特的生态系统,在海洋、陆地界面间形成重要的污染物屏障,在维护自然生态平衡、生物多样性保护、环境净化等方面具有重要的生态功能。
在自然和人类活动的双重驱动下,河口湿地的生物地球化学循环过程不仅影响着区域的物质循环、能量流动和湿地生产过程。
同时,由于近海环境污染的日益严重以及可持续发展的需要,揭示湿地在营养盐及重金属循环中的功能,认识营养盐及重金属在湿地中的迁移和循环机制是十分必要的[1,2]。
长江口作为世界性的特大型河口,由长江径流携带而来的大量泥沙在此沉积形成了丰富的湿地资源。
有关学者在长江口湿地开展了一些研究,主要集中在氮磷的存在形态[3~5]、重金属在根际的富集[6~8]及沉积物2水体界面的营养盐交换[9]等方面。
而系统地研究营养盐和重金属在河口湿地的分布与累积特征比较少见。
长江口及邻近海域细颗粒沉积物中重金属的空间分布及沉积通量

长江口及邻近海域细颗粒沉积物中重金属的空间分布及沉积通量陈彬;范德江;郭志刚;王亮;李巍然【期刊名称】《海洋学报(中文版)》【年(卷),期】2014(000)011【摘要】长江每年输送大量的泥沙进入东海,其中细颗粒沉积物具有搬运距离远、扩散范围大的特点,成为示踪河口及近海沉积物源汇过程的良好载体。
本文基于采自长江口及邻近海域的44个表层沉积物样品,分析了细颗粒组分中重金属的空间分布和沉积通量,探讨了重金属来源和搬运沉积过程。
研究表明:长江口及邻近海域细颗粒沉积物中 Cu、Cr、Ni、V 和 Zn 含量、沉积通量的空间分布具有高度的相似性,总体表现为长江口及浙闽沿岸高,向外急剧降低;该区细颗粒沉积物中的重金属主要来自长江,入海后向两个方向扩散,其一为向西南方向扩散,沉积于内陆架泥质区;其二是向东的跨陆架输送,沉积于长江冲淡水影响的海域。
从长江口向西南方向的输送和沉积是长江入海重金属最重要的汇。
%The Changjiang River discharges large amounts of fine-grained sediments into the East China Sea (ECS) each year.Fine-grained sediment transports far distance and spreads widely when it enter the continental shelf, which makes it an excellent archive to explore the source to sink of sediment from river to continental shelf.In this paper,the ICP-AES method was used to determine the concentration of heavy metals of fine-grained surface sedi-ments of 44 samples collected in the Changjiang Estuary and its adjacent areas.The spatial distribution patterns, sedimentary fluxes,and source to sink of theseelements were discussed.The results show:(1)the spatial distri-bution patterns and sedimentary fluxes of heavy metals in the area are similar,which have high values in the Changjiang Estuary and the inner mud shelf,decreasing dramatically in southeastern direction;(2)The heavy met-als in the fine-grained sediments in the study areas mainly originate from the Changjiang River;then they disperse in two ways,one along the inner shelf outside the Zhe-Min coast,the other along the Changjiang River diluted wa-ter spreading area and into the outer continental shelf.Our results suggest that the sub-aquatic Changjiang River delta and the inner shelf of ECS are dominant sinks for the heavy metals from the Changjiang River.【总页数】10页(P101-110)【作者】陈彬;范德江;郭志刚;王亮;李巍然【作者单位】中国海洋大学海底科学与探测技术教育部重点实验室,山东青岛266000;中国海洋大学海底科学与探测技术教育部重点实验室,山东青岛266000;复旦大学环境科学与工程系,上海200433;中国海洋大学海底科学与探测技术教育部重点实验室,山东青岛 266000;中国海洋大学海底科学与探测技术教育部重点实验室,山东青岛 266000【正文语种】中文【中图分类】P736.21【相关文献】1.长江口及邻近海域沉积物中重金属研究——时空分布及污染分析 [J], 李磊;平仙隐;王云龙;蒋玫;唐峰华;沈新强2.长江口及邻近海域沉积物重金属潜在生态风险评价 [J], 白有成;高生泉;金海燕;孙向卫;李宏亮;卢勇;王奎;陈建芳3.长江口及邻近海域夏季表层沉积物中重金属等的分布、来源与沉积物环境质量[J], 何松琴;宋金明;李学刚;刘志刚4.长江口及邻近海域表层沉积物中重金属元素含量分布及其影响因素 [J], 董爱国;翟世奎;ZABEL Matthias;于增慧5.长江口及其邻近海域表层沉积物中重金属分布和潜在生态危害评价 [J], 滕德强;吕颂辉;郭福星;江涛因版权原因,仅展示原文概要,查看原文内容请购买。
长江口海域生态环境状况及保护对策

第33卷㊀第5期2020年5月环㊀境㊀科㊀学㊀研㊀究ResearchofEnvironmentalSciencesVol.33ꎬNo.5Mayꎬ2020收稿日期:2020 ̄02 ̄04㊀㊀㊀修订日期:2020 ̄03 ̄21作者简介:王孝程(1990 ̄)ꎬ男ꎬ黑龙江哈尔滨人ꎬ工程师ꎬ博士ꎬ主要从事海洋生态学研究ꎬxcwang@nmemc.org.cn.∗责任作者ꎬ李宏俊(1982 ̄)ꎬ男ꎬ辽宁丹东人ꎬ研究员ꎬ博士ꎬ主要从事海洋生态学研究ꎬhjli@nmemc.org.cn基金项目:自然资源部海洋灾害预报技术重点实验室开放基金项目(No.LOMF1805)ꎻ国家海洋环境监测中心博士科研启动经费项目SupportedbyOpenFoundationofKeyLaboratoryofMarineHazardsForecastingꎬMinistryofNaturalResourcesꎬChina(No.LOMF1805)ꎻDoctoralFoundationofNationalMarineEnvironmentalMonitoringCenterꎬChina长江口海域生态环境状况及保护对策王孝程1ꎬ2ꎬ解鹏飞1ꎬ李㊀晴1ꎬ张金勇1ꎬ李宏俊1∗1.国家海洋环境监测中心ꎬ辽宁大连㊀1160232.自然资源部海洋灾害预报技术重点实验室ꎬ北京㊀100081摘要:为加快推进长江口海域的生态环境保护和修复工作ꎬ结合长江经济带大保护ꎬ系统总结分析了近20年长江口环境质量和生态监控区的监测结果.结果表明:①长江口海域生态系统长期处于亚健康状态.②长江径流总量呈现波动变化ꎬ年均流量无明显的变化ꎬ而长江口海域海水环境状况一直较差.③营养盐污染严重ꎬ主要污染物是无机氮和活性磷酸盐ꎻ浮游生物和底栖生物群落结构不稳定ꎬ存在生境破碎化严重㊁外来生物入侵㊁赤潮频发㊁低氧区等诸多生态问题.为加强长江口海域生态环境的保护与修复ꎬ建议:①加强顶层设计ꎬ推进落实陆海统筹ꎻ②科学规划临港产业布局ꎬ加强涉海产业的污染管理ꎻ③加强污染物入海排放管控ꎬ提升海洋环境保护意识ꎻ④保障海洋生态建设资金ꎬ强化海洋生态保护与建设.关键词:长江口ꎻ生态环境ꎻ变化趋势ꎻ生态问题ꎻ保护对策中图分类号:X321㊀㊀㊀㊀㊀文章编号:1001 ̄6929(2020)05 ̄1197 ̄09文献标志码:ADOI:10 13198∕j issn 1001 ̄6929 2020 03 29EcologicalEnvironmentoftheYangtzeEstuaryandProtectionCountermeasuresWANGXiaocheng1ꎬ2ꎬXIEPengfei1ꎬLIQing1ꎬZHANGJinyong1ꎬLIHongjun1∗1.NationalMarineEnvironmentalMonitoringCenterꎬDalian116023ꎬChina2.KeyLaboratoryofMarineHazardsForecastingꎬMinistryofNaturalResourcesꎬBeijing100081ꎬChinaAbstract:InordertopromotetheprotectionandrestorationoftheYangtzeestuaryundertheprotectionstrategyofYangtzeRiverEconomicBeltꎬwesystematicallyanalyzedthemonitoringdataoftheYangtzeestuarymarineecologicalmonitoringprogramsinrecent20years.Theresultsindicatedthattheecosystemwasinasub ̄healthlong ̄termstate.Thetotalrunofffluctuatedwhiletherewasnoobviouschangeintheannualaverageflow.Howeverꎬitisnoteworthythattheconditionofseawaterwaspoor.Nutrientsweremainpollutants(i.e.inorganicnitrogenandphosphate).Manyotherproblemssuchasbiodiversitylossꎬdamagedhabitatꎬalieninvasionꎬfrequentredtideꎬandlow ̄oxygenzonesalsoexist.Werecommendimprovingtheprotectionandrestorationoftheecologicalenvironmentfromthefollowingaspects:(1)Strengthenthetop ̄leveldesignandpromotecoordinatedlandandseadevelopmentꎻ(2)Plananddesignthelayoutofport ̄vicinityindustryscientificallyandimprovethepollutionmanagementofsea ̄relatedindustriesꎻ(3)Tightenthecontrolofpollutantdischargeandincreasetheawarenessofmarineenvironmentalprotectionꎻ(4)Ensuresufficientfundsformarineecologicalconstructionandstrengthenitsprotectionandconstruction.Keywords:Yangtzeestuaryꎻecologicalenvironmentꎻhealthconditionꎻecologicalproblemꎻprotectioncountermeasure㊀㊀长江口是世界第三大河口ꎬ生态环境状况特殊[1].长江口海域在海洋水团的共同作用下ꎬ水温状况复杂多变ꎬ营养盐丰富ꎬ生产力高ꎬ磷酸盐㊁硝酸盐和硅酸盐显著高于我国其他河口海域[2 ̄3].营养盐含量从近海向河口区逐渐递增ꎬ导致河口海域成为高生产力区[4 ̄5].长江径流带来的营养物质ꎬ孕育了大量的浮游生物和滩涂植物ꎬ为水生动物和底栖生物提供了充足的食源[6 ̄7]ꎬ是众多溯河性和降河性长途洄游性物种ꎬ如中华鲟(Acipensersinensis)㊁鳗鲡(Anguillajaponica)等鱼类的必经通道[8 ̄11]ꎬ是我国凤鲚(Coiliamystus)和中华绒螯蟹(Eriocheirsinensis)的最主要产卵场之一ꎬ还是珍稀物种中华鲟幼鲟的集中分布区[12 ̄17].滩涂湿地是鸟类亚太迁徙路线中的重要驿站[18].但是随着人类干扰的不断增多ꎬ长江口海域的㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷生态环境状况也受到了严重影响ꎬ生境破碎化严重ꎬ生态系统长期处于亚健康状态ꎬ其保护和修复工作亟需更高质量的推进.中共中央㊁国务院高度重视长江生态环境保护工作ꎬ推动长江经济带发展是党中央作出的重大决策ꎬ是关系国家发展全局的重大战略.随着长江大保护的持续推进ꎬ长江经济带地表水环境质量呈好转趋势ꎬ总体优于全国平均水平ꎬ并且生态环境质量正逐渐好转ꎬ保护和修复成果显著.而海纳百川ꎬ长江最终于崇明岛以东汇入我国东海ꎬ海洋是其保护成效的最终体现者之一ꎬ长江口作为重要的陆海连接区域ꎬ是长江保护和修复成效的重要体现者ꎬ所以长江口海域的生态环境质量评价工作对于评估长江保护和修复的成效具有重要意义ꎬ其生态环境状况尤为重要.该研究系统总结了近20年来长江口海域的业务化监测结果ꎬ对生态环境状况及其变化趋势进行了分析ꎬ剖析长江口海域存在的主要生态问题ꎬ并提出了相应的保护修复和管理对策ꎬ以期为长江经济带的保护成效评估提供参考ꎬ为长江口海域的保护和修复工作提供科学依据.1㊀长江口海域生态环境状况及其变化趋势1 1㊀长江口海域水体和沉积物环境1 1 1㊀长江口径流和泥沙特性长江口是我国最大的河口ꎬ近10年来ꎬ长江流域及长三角区域经济发展迅速㊁人口相对集中㊁海上倾废㊁海洋运输㊁污染物的排放及水利工程的建设等对河口及其邻近海域水动力和水环境条件㊁地貌演变等都产生了重要影响.长江口的水体环境与流域自然因素和人类活动影响密切ꎬ而在长江经济带的发展中ꎬ人类活动加剧ꎬ长江上游兴建了大量的水利水电工程ꎬ特别是三峡工程的关闸蓄水ꎬ中下游实施了大量的诸如滩涂围垦㊁河道整治㊁取排水㊁采砂㊁深水航道建设等工程ꎬ在一定程度上对长江的水文㊁泥沙特性产生了影响[19].长江三峡水利枢纽工程是中国也是世界上最大的水利枢纽工程ꎬ具有巨大的防洪㊁发电㊁航运㊁水资源利用等综合效益.但是三峡工程的建设和运营并未对长江年径流量和日均流量产生明显影响ꎬ自20世纪50年代至今ꎬ长江年径流量和日均流量均呈现波动变化ꎬ总体趋势和周期变化不明显[20]ꎬ2003年以前大通站年均流量㊁年最大流量㊁年最小流量的历史平均值分别为28635㊁60114和8428m3∕sꎬ2003年后历史平均值分别为26443㊁52191和9486m3∕sꎬ可见三峡工程运营以来ꎬ年均流量变幅不显著ꎬ年最大流量减少ꎬ年最小流量增加[21].对于最大日流量ꎬ2003年为最大日流量的显著拐点.2003年前ꎬ最大日流量呈现增加趋势ꎻ而2003年后ꎬ最大日流量值明显小于历史平均ꎬ且具有下降趋势.而日均流量在2003年前后并未发生显著差异ꎬ其趋势也不明显[21].而由于人为控制水文动力过程ꎬ三峡工程对径流年内变化趋势㊁突变特性和分配特征产生了一定的影响ꎬ洪枯季和最大日流量都有明显变化趋势ꎬ流量年内分配不均ꎬ主要集中于洪季ꎬ枯季占比较小.大通站流量丰枯率(为汛期与非汛期径流总量的比值ꎬ体现径流量年内分配)在20世纪五六十年代均较大ꎻ60年代中期到80年代末期有所减小ꎻ90年代增大ꎬ且在90年代末出现极大值ꎻ进入21世纪初以来ꎬ开始减少ꎬ并保持于一个相对较小值内[22].三峡工程的修建拦截了一部分径流ꎬ同时ꎬ水土保持及水库建成等造成的截沙效应超过水土流失造成的增沙效应ꎬ入河口输沙量降低[19]ꎬ直接影响长江口的径流来沙量ꎬ下游来沙量大幅减少ꎬ且这种减少也不是简单的数量减少[23].据统计ꎬ2003年三峡工程蓄水以来ꎬ60%~70%的上游来沙被拦截在库内ꎬ尽管坝下游河床冲刷补偿了一部分泥沙ꎬ但入河口输沙量较之前仍约下降了1∕3[19].蓄水后ꎬ长江口水文泥沙特性发生了明显变化ꎬ洪季泥沙中值粒径大于枯季ꎬ汛初流量增大阶段泥沙粗于汛末流量减小阶段ꎬ多年平均中值粒径基本不变ꎬ但泥沙有逐年变粗的趋势[19].1 1 2㊀长江口海域水质状况和沉积物质量长江口海域一直是我国近岸海域水质状况污染较严重的区域.近15年来ꎬ长江口严重污染海域主要集中在近岸ꎬ长江口北支到杭州湾南岸区域均为GB3097 1997«海水水质标准»劣Ⅳ类水质ꎬ而优良(Ⅰ类和Ⅱ类)水质面积占比不足50%(见图1).1999 2018年长江口海域主要环境要素的年际变化如图2所示.近20年来ꎬ长江口海域海水盐度整体呈下降趋势ꎬ1999 2003年波动较大ꎬ变化范围为6 88~33 16ꎬ2003年后整体趋于稳定ꎬ并呈逐年递减的趋势ꎬ2004 2018年盐度变化范围为17 00~26 79ꎬ由2004年的26 02降至2018年的18 41ꎻ海水DO年均浓度呈波动变化ꎬ整体呈上升趋势ꎬ由1999年的6 45mg∕L升至2018年的8 13mg∕Lꎬ变化范围为5 67~8 13mg∕Lꎬ其中2002年最低ꎬ2018年最高ꎻpH较稳定ꎬ变化范围为7 89~8 60ꎻ无机氮和活性磷酸盐年均浓度呈波动变化ꎬ但其年均浓度总体较高ꎬ且整体均呈上升趋势.无机氮年均浓度除20008911第5期王孝程等:长江口海域生态环境状况及保护对策㊀㊀㊀注:数据来源于2005 2018年«中国海洋环境状况公报»ꎻⅠ㊁Ⅱ㊁Ⅲ㊁Ⅳ㊁劣Ⅳ类均为GB3097 1997«海水水质标准»水质等级.图1㊀2005—2018年长江口海域水质状况趋势分布Fig.1TrendmapofwaterqualityintheYangtzeestuaryfrom2005to2018年㊁2002年和2018年外均高于0 5mg∕Lꎬ显示长江口海域长期属于GB3097 1997劣Ⅳ类水质ꎬ活性磷酸盐年均浓度2003年后长期高于0 03mg∕Lꎬ显示其多数时期属于GB3097 1997Ⅳ类水质.盐度㊁DO㊁pH㊁活性磷酸盐和无机氮等主要指标浓度在2003年前年际波动均较大ꎬ而2003年后相对较小(见图2)ꎬ这可能与人为活动的干扰有关.2003年ꎬ三峡水库开始进行一期蓄水ꎬ自蓄水后ꎬ整个长江口海域的主要指标较之前明显稳定ꎬ这可能是由于水利工程人为干预了长江径流量ꎬ从而使得长江口海域的长江径流输入㊁盐度和其他指标更加趋于稳定ꎬ长江水利工程的建设在一定程度上也对保持长江口海域水环境的稳定起到了重要作用.多年连续监测结果表明ꎬ长江口海域表层海水环境状况较差ꎬ营养盐污染严重ꎬ尤其是无机氮超标严重.长江及钱塘江径流携带东海沿岸发达的工农业生产所产生的大量污染物入海ꎬ同时每年径流也携带了大量的营养盐类ꎬ海水氮㊁磷及化学需氧量浓度超标ꎬ是造成长江口海域大面积污染的主要原因.根据«中国海洋环境状况公报»的监测结果ꎬ长江口沉积物类型为粘土质粉砂和粉砂ꎬ2005 2018年ꎬ长江口海洋沉积环境总体质量状况良好ꎬ综合质量等级年际变化基本稳定ꎬ绝大部分站位的沉积物质量最多只有一项超标要素ꎬ超标率低ꎬ而2015 20189911㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷注:数据来源于1999 2004年长江口海域业务化监测结果和2005 2018年«中国海洋环境状况公报».图2㊀1999—2018年长江口海域主要环境要素的年际变化Fig.2Inter ̄annualchangeofmajorenvironmentalfactorsintheYangtzeestuaryfrom1999to2018年ꎬ长江口沉积物质量良好点位的比例已连续4年达到100%.1 2㊀长江口海域海洋生物群落和生态健康状况2011 2018年长江口海洋生物状况主要指标的年际变化如图3所示.由图3可见ꎬ浮游植物群落密度自2011年起有明显降低ꎬ2015年后有所波动ꎬ并呈逐年上升的趋势.浮游植物多样性指数呈波动状态ꎬ2011 2018年浮游植物多样性指数变化范围为0 91~2 18ꎬ整体多样性水平较低ꎬ这与逐渐增高的赤潮发生率表现出一定的相关性.综合以往的研究结果ꎬ近35年来长江口区浮游植物群落结构不断演变ꎬ种类组成趋向简单ꎬ种类个体数量分布不均匀[24]ꎬ少数优势种类(如中肋骨条藻)在环境条件合适时易大量增殖形成赤潮[25].群落结构中硅藻为浮游植物中主要类群ꎬ数量上占绝对优势ꎬ但多年来其占比呈缓慢下降趋势ꎬ甲藻种类占比缓慢增加[24].2011 2018年浮游动物密度年际波动较大ꎬ整体呈上升趋势ꎬ变化范围为288~2942ind.∕m3.浮游动物多样性指数波动较小ꎬ变化范围为1 81~2 41ꎬ多样性水平相对较高ꎬ但整体呈下降趋势.综合以往的研究结果ꎬ近35年来浮游动物群落结构趋向简单化ꎬ优势种以桡足类为主ꎬ且桡足类的组成比例有下降趋势[24]ꎬ其百分比的降低ꎬ显示浮游动物的群落结构正逐渐发生变化ꎬ这与长江口海域生境条件的日益恶化有很大关系.2011 2018年大型底栖生物密度和多样性指数年际波动较大ꎬ变化范围分别为53~175ind.∕m3㊁1 30~2 48ꎬ整体呈上升趋势.长江口及其邻近海域是我国最大的河口渔场ꎬ在我国渔业生产中居重要地位.淡水渔业资源ꎬ如凤鲚㊁刀鲚(Coiliaectenes)㊁前额间银鱼(Hemisalanxprognathus)㊁鳗鲡㊁白虾(Exopalaemon)和中华绒螯蟹ꎬ素有长江口六大渔业之称[25]ꎻ海水渔业资源ꎬ如带鱼(Trichiurusjaponicus)㊁小黄鱼(Larimichthyspolyactis)㊁大黄鱼(Larimichthyscrocea)和银鲳(Pampusargenteus)等均属该区域海洋渔业的主要捕捞对象[26].近10年来ꎬ长江口及邻近海域渔业资源因过度捕捞㊁水域生态环境和水质恶化而受到严重损害ꎬ刀鲚㊁凤鲚㊁带鱼㊁大黄鱼和小黄鱼等资源量急剧下降ꎬ低龄化和小型化明显[27]ꎬ鱼类资源量的衰退可能使甲壳类资源量相对增加[28 ̄29].由于长江口及其邻近海域受到重金属和有机物的污染ꎬ2000 2002年该海域生态环境总体质量处于重污染水平[30]ꎬ污染导致该海域渔业资源衰退[31].2005年后杭州湾可能已经成为长江口海域重金属元素重要的沉积 汇 ꎬ而长江口及其邻近海域表层沉积物中重金属0021第5期王孝程等:长江口海域生态环境状况及保护对策㊀㊀㊀注:数据来源于2011 2018年«中国海洋环境状况公报».图3㊀2011 2018年长江口海域海洋生物状况主要指标的年际变化Fig.3Inter ̄annualchangeofmajorindicatorsofmarineorganismintheYangtzeestuaryfrom2011to2018元素含量整体上均呈逐步降低的趋势ꎬ生态环境总体质量有所恢复[32].注:数据来源于2006 2018年«中国海洋环境状况公报».图4㊀2006 2018年长江口海域生态系统的健康状况Fig.4MarineecosystemhealthintheYangtzeestuaryfrom2006to20182006 2018年ꎬ长江口海域生态系统处于亚健康状态(见图4)ꎬ生态健康评价指数一直呈波动变化ꎬ范围为52 8~71 3ꎬ均低于90ꎬ其中2016年最低ꎬ2014年最高.生态健康的评价主要包含5种指标ꎬ即水环境㊁沉积环境㊁生物质量㊁栖息地和生物群落.长江口海域水环境和沉积环境基本稳定ꎬ其中沉积环境较好ꎬ而水环境一直处于较差状态ꎬ这使得栖息地环境受到威胁ꎬ由于水生生物对环境非常敏感ꎬ对水环境和栖息地的变化反应较强烈ꎬ长期处于恶劣的水质和栖息地环境下ꎬ导致生物质量整体较低ꎬ生物多样性水平较差ꎬ群落结构不稳定ꎬ生态系统健康状况处于亚健康状态.2㊀长江口海域主要的生态问题2 1㊀海水污染严重ꎬ水环境质量较差长江㊁钱塘江等江河的径流每年携带了大量的营养盐类进入长江口海域ꎬ该海域水体污染物浓度较高ꎬ氮㊁磷及化学需氧量浓度均超过GB3097 1997Ⅳ类水质标准限值[33 ̄35].无机氮年均浓度显示长江口海域长期属于劣Ⅳ类水质ꎬ而活性磷酸盐年均浓度显示其多数时期属于Ⅳ类水质.目前ꎬ长江口海域是我国海水水质极差的海域之一.除多年水质极差外ꎬ«中国海洋环境状况公报»显示ꎬ长江口海域生物体内的油类㊁总汞㊁砷㊁铅和滴滴涕等指标浓度也普遍超标.环境质量差是致使长江口海域多年来处于亚健康的主要原因之一.2 2㊀海洋工程和人类活动干扰强烈ꎬ生境破坏严重上海长江隧桥工程㊁杭州湾大桥工程㊁长兴岛造船基地工程㊁长兴 崇明 启东桥隧工程项目㊁长江口深水航道三期疏浚工程和洋山深水港工程等工程1021㊀㊀㊀环㊀境㊀科㊀学㊀研㊀究第33卷的施工和完成ꎬ导致长江口海区海洋生物栖息地严重破碎化.另外ꎬ滩涂养殖的过度发展ꎬ也使余姚和慈溪沿岸的滩涂生物简单化ꎬ基本形成了由单一养殖物种组成的滩涂湿地生物结构ꎬ大大降低了滩涂湿地的物种多样性.同时海洋工程占用了海洋生物的生存空间及洄游路线ꎬ使多个自然洄游通道遭到不同程度的破坏.生境的破碎化和洄游通道的阻断ꎬ加之大型船只频繁穿梭等干扰(包括噪声污染等)ꎬ不仅影响一般过河口性和定居性生物的产卵㊁育幼㊁生长和生存ꎬ而且经常造成许多珍稀动物的非正常死亡.2 3㊀低氧区长期存在ꎬ成为生态安全的重要潜在威胁长江口海域水体中DO浓度虽然近20年有所升高ꎬ但是仍监测到低氧区的存在[36 ̄38].2002年ꎬ科学家们在长江口及其邻近海域底层发现存在面积约为13700km2㊁DO浓度小于2mg∕L的低DO区域ꎬ最低处仅为1mg∕L[39]ꎬ而2007年在长江口外海区发现了一个更大的近20000km2的低氧区域[40].研究[41]发现ꎬ20世纪90年代后ꎬ低氧现象的发生概率已逐渐升至90%.低氧区的存在ꎬ可导致大量海洋生物窒息死亡ꎬ而低氧区消除和恢复则需要漫长的时间ꎬ但迄今未见有消除和恢复迹象.随着长江口海域水体中DO浓度的变化ꎬ低氧区的范围和程度可能进一步扩大和加剧ꎬ成为长江口海域生态系统的重要潜在威胁ꎬ最终成为长江口生态系统中的生物死亡区或无生物区.2 4㊀生物群落状况较差ꎬ生态系统健康总体欠佳由于长江口海域生境条件的日益恶化ꎬ浮游植物群落种类组成发生明显变化ꎬ浮游植物中硅藻的占比有所下降ꎬ甲藻有所上升[24]ꎬ赤潮种类数量异常增殖引发赤潮ꎻ浮游动物种类明显减少ꎬ密度普遍偏低ꎬ原来的优势种类桡足类的种类和数量均呈下降趋势ꎬ结构趋于简单化[42 ̄44]ꎬ2004年桡足类占浮游动物种类数的50%ꎬ2005年㊁2006年分别降至46%和42%ꎬ2007年降至30%以下ꎬ2008年因种类数㊁生物量和密度均呈较大幅度升高ꎬ桡足类的占比也有所反弹ꎬ2009年之后一直在较低水平波动[24].渔业资源衰退明显ꎬ长江口及杭州湾传统渔场接近消失边缘[45].长江口海域生态系统健康状况欠佳ꎬ其主要原因是:①捕捞压力过大ꎬ近10年来优质渔业资源严重衰退ꎻ长三角海域近岸鳗鱼苗网密布ꎬ对近岸鱼类产卵场㊁索饵场及洄游通道影响极大.②近年来ꎬ三峡水利工程建设和上游工农业用水量增大ꎬ虽对年均径流量无明显影响ꎬ但人为的干预对径流年内变化趋势㊁突变特性和分配特征产生了一定的影响ꎬ使得水流对于岸滩的冲击作用发生改变ꎬ严重地改变了河口生境ꎬ导致产卵场和育幼场功能逐渐丧失㊁鱼类等生物生殖及生长洄游通道受阻ꎬ河口生态系统的生态服务功能丧失严重.③海洋生物饵料来源不稳定ꎬ磷酸盐和无机氮污染严重ꎬ饵料生物的种类组成和优势种类年际变化较大.2 5㊀外来生物入侵ꎬ赤潮频发随着上海国际航运中心的确立和运营ꎬ洋山港和北仑港大型港口经由远洋船只压舱水携带等途径带来的外来海洋生物日益增多ꎬ特别是外来浮游植物入侵种类的数量越来越多ꎬ土著硅藻种类占比日趋减少ꎬ甲藻类中的有毒赤潮生物的种类和数量不断增多ꎬ时常引发赤潮[46 ̄47]ꎬ其主要原因是:①由于长江口生态系统日趋恶化和脆弱化ꎬ为外来种提供了生存㊁增殖和引发赤潮的条件ꎻ②环境条件的变化致使土著种类不再具有适宜的生境条件ꎬ多数土著种类的种群数量减少甚至消失ꎬ但对于少数土著种类ꎬ如广生性和耐污性较强的中肋骨条藻ꎬ在环境条件合适时也会大量增殖ꎬ并形成赤潮.总体而言ꎬ浮游植物种类多样性明显下降ꎬ群落结构趋向简单化且不稳定.3㊀长江口海域保护修复及管理对策3 1㊀加强顶层设计ꎬ推进落实陆海统筹通过对长江口海域生态环境质量现状的分析和科学评价ꎬ认为在长江口海域生态环境管理中ꎬ应高度重视陆海统筹与区域协调机制的建设. 湾区经济 已经成为带动全球经济发展的增长极ꎬ推动湾区发展已然成为世界各国发展开发型经济㊁确立战略优势的重要经验.长江口海域作为我国极其重要的流域㊁海域交汇区ꎬ其良好的生态环境质量不仅关乎海洋生态环境ꎬ更关乎整个区域的经济社会发展.对长江口海域的生态环境治理必然要加强落实陆海统筹的顶层设计.a)规划引领.规划是进行区域调控和管理的重要工具ꎬ具有前瞻性㊁战略性㊁地域性和约束力.落实«中共中央国务院关于加快推进生态文明建设的意见»和«水污染防治行动计划»部署ꎬ按照«长江经济带生态环境保护规划»的要求ꎬ依据有关海洋环境保护法律法规㊁生态市建设规划和海洋经济发展规划等ꎬ编制海洋生态环境保护与建设相关专项规划ꎬ通过规划引领区域环境合作行动.b)建立区域协调机制.2018年的机构改革ꎬ在生态环境保护领域打通了陆地和海洋ꎬ破除了陆域㊁海域环境保护与管理之间的体制壁垒ꎬ为生态环境保2021第5期王孝程等:长江口海域生态环境状况及保护对策㊀㊀㊀护管理的陆海统筹奠定了良好基础.应充分发挥我国生态环境领域改革的制度优势ꎬ整合和发挥生态系统整体性的经济规模效应和污染治理的规模效应ꎬ建立区域协调机制ꎬ全流域 一盘棋 考虑ꎬ加快促进河(湖)长制㊁湾长制等流域㊁海域环境治理协调机制在治理对象㊁治理范围㊁技术标准等方面的有效衔接ꎬ倒逼和统筹河流㊁海域的污染控制目标和考核指标ꎬ突破现有陆海污染物管控不衔接问题ꎬ进一步制定落实流域㊁海域生态环境管理的政策措施体系ꎬ实施河口海湾区域生态环境治理的合理规划㊁共治共管ꎬ强化不同环境政策之间的协同和协调ꎬ为海洋环境保护奠定区域环境合作的政策基础.c)强化科技创新有效供给.充分发挥国家长江生态环境保护修复联合研究中心的平台枢纽作用ꎬ切实强化长江流域科技创新的有效性供给ꎬ推动国家水体污染控制与治理科技重大专项等重大专项成果转化ꎬ重点强化污染物来源解析与综合诊断技术ꎬ地表 地下㊁河 海多过程协同的流域水环境调控技术研究ꎻ加强农业农村污染防治㊁生态保护修复适用技术推荐ꎻ以污染物及其生态效应管控为目标ꎬ开展陆域㊁水体统筹兼顾的治理优先区识别ꎬ引领投资与保护方向.3 2㊀科学规划临港产业空间布局ꎬ完善陆海统筹的治污体系临港产业布局事关海洋经济的长远发展ꎬ事关人民群众福祉.合理的临港产业布局有利于充分利用各种要素资源ꎬ发挥比较优势ꎬ有利于防止生态环境污染ꎬ维持生态平衡ꎬ提高土地集约利用ꎬ是区域经济持续㊁健康发展的必要条件之一ꎬ对区域经济发展具有非常显著的影响.应科学规划临港产业空间布局ꎬ完善陆海统筹的治污体系.a)优化临港产业空间布局规划.按照生态环保优先㊁人与自然和谐㊁陆地与海洋统筹㊁海洋生态环境保护与临海产业发展统筹安排的原则ꎬ做好临港产业布局顶层设计ꎬ统筹产业发展规划ꎬ从源头控制临港产业海洋环境污染.针对临港产业布局现状ꎬ客观分析存在的问题ꎬ进一步调整优化临港产业布局ꎬ以实现海洋经济建设与海洋生态环境保护更为协调发展.b)加强涉海产业的污染管理.将长江口流域的污染治理与海洋环境保护结合起来ꎬ建立陆海统筹的生态修复与污染防治联动机制ꎬ分清轻重缓急ꎬ分级分区实现精准施策.依据长江口流域㊁海域生态环境污染防治的特征ꎬ系统全面推进水污染综合治理ꎬ加大在治水体制和生态补偿机制等方面的技术与政策支持ꎬ加快流域㊁海域水环境质量的全面改善.禁止在沿岸及岛屿新建㊁扩建污染海洋生态环境的项目ꎬ对现有的企业事业单位超过标准排放污染物的ꎬ要依法限期治理ꎬ对污染严重㊁难于治理或治理后仍达不到要求的涉海产业ꎬ要按照管理权限坚决依法予以关停.3 3㊀加强污染物入海排放管控ꎬ提升海洋环境保护意识通过实施环评㊁总量控制等制度ꎬ优化排污口布局ꎬ严格管理围填海活动ꎬ加强污染物入海排放管控ꎬ逐步减少入海污染物总量.具体措施包括:①严格海洋环评制度.发展海洋经济必须以环境容量为前提ꎬ要加强涉海工程的建设监督管理ꎬ严格执行海洋经济发展规划与项目的环境影响评价和环保设施 三同时 制度ꎬ排放非达标项目坚决一票否决ꎬ确保海洋经济可持续发展.②严格管理围填海活动.严格围填海项目审查ꎬ严格执行围填海禁填限填要求ꎬ从严限制单纯获取土地性质的围填海项目ꎬ制定并严格执行围填海规划ꎬ除政府组织的海域海岸带整治少量填海外ꎬ在港口航道附近和港湾区域要禁止围填海.③严格涉海产业准入.制订严格的涉海产业准入标准ꎬ项目选址要进行科学论证ꎬ特别是要强化对布局密集㊁规模庞大的化工㊁钢铁㊁火电㊁炼油项目环评论证ꎬ严格落实涉海产业准入和环保要求ꎬ择优发展临港工业ꎬ禁止高污染㊁高排放企业在临港落户.④对主要工业污水实行深度处理和废水回用ꎬ提高污水处理脱氮㊁脱磷效率ꎬ实现工业污水达标排放和有毒有害污染物 零排海 .加强城市污水处理设施㊁沿岸污水管网系统和中水回用系统建设ꎬ提升生活污水处理能力ꎬ实现城市污水100%处理ꎬ再生水100%回用.重视农业面源污染的治理ꎬ发展高效农业和先进的施肥方式ꎬ降低化肥㊁农药使用量.⑤以 三磷 综合整治㊁城镇污水收集与治理能力提升为抓手ꎬ继续强化磷污染工业和生活点源污染全过程防控.与此同时ꎬ大力推进重点区域面源污染综合管控.结合面源普查㊁污染通量测算等结果ꎬ宜将湖北省㊁湖南省㊁江苏省㊁安徽省㊁江西省5个省份作为重点区域ꎬ将汛期水质恶化河流∕湖泊作为重点对象ꎬ切实强化污染治理.⑥合理调整养殖布局和结构ꎬ控制养殖自身污染.推进生态渔业建设ꎬ建立和优化鱼㊁贝㊁藻间养和轮养复合生态养殖模式ꎬ重点鼓励发展浅海藻类养殖ꎬ根据养殖环境容量ꎬ调整和优化海水网箱养殖布局ꎬ开展养殖网箱标准化改造建设ꎬ推广应用配合饲料.3 4㊀保障海洋生态建设资金ꎬ强化海洋生态保护与建设3021。
长江口南支沉积物元素地球化学分区与环境指示意义

分 区 的 空 问 分 布 来 分 析 , 两个 分 区 元 素 之 间 的 差 异 反 映 的 是 沉 积 水 动 力 条 件 - 积介 质 物 化 性 质 这 两个 环 境 要 这 9沉
素 空 问分 布 的 差 异 性 , 即在 研 究 区 内 , 层 沉 积 物元 素 地 球 化 学 空 问分 布 的 差 异 性 实 质 上 反 映 了沉 积 环 境 空 问分 表 布的差异性。 关 键 词 : 江 口; 素 地 球 化 学 ; 积 环境 ; 长 元 沉 系统 聚 类分 析 法
化 学 分 析 。 在 此 基 础 上 , 用 系统 聚 类 法对 该 区域 进 行 了元 素 地 球 化 学 分 区 。研 究 结 果 表 明 , 究 区主 要 可 以分 应 研 为 两 大 地 球 化 学 分 区: I区 以相 对 富 集 SOzS ,r 素 为典 型特 征 , 要 涵 盖 5m 等 深 线 以浅 的 长 江 三 角 洲 前 缘 i ,rZ 元 主 区; Ⅱ区 以相 对 富集 Al , F z ( 铁 )Mg P z T eOa 全 03 , O,b元 素 为 典 型 特 征 , 盖 了前 三 角 洲 的广 大 区 域 。 从 地 球 化 学 涵
通过 对河 口地 区沉 积物 中元 素丰 度 、 存状 态 、 赋 时空分 布 规律 及 其控 制 因 素 的研 究 , 以有 效 地 反演 流 域 内 可
的风化过 程 与 区域 地质 、 积物 人海后 的输 运范 围与趋势 、 积介 质性质 与 沉积作 用 等 。 沉 沉 长江 口作 为我 国三 大河 口之 一 , 底质 沉积 物元 素地 球 化学 的研 究历 史 较 长 。凡 涉及 到长 江 口的底 质 其 调 查项 目均 对该 区域 内表层 沉 积物 的元 素地球 化学 组成 、 元素 含量 的空 间分 布 、 元素 地球 化学 分 区进行 过分 析 【 ] 目前 , l。 。 长江 口表层 沉 积物 的元 素地球 化学 研 究成 果 涉 及 到常 、 量 元 素地 球 化 学 特征 r ] 稀 土元 素 微 4、 地 球化 学特 征【 、 素 的定量 识别 及元 素 赋存相 态 的分 析 r9 各 方 面 。同 时 , 7元 ] 7] _等 当前 河 口沉 积物 元 素 地 球化 学 的研 究 中一个 重要 的 内容是将 我 国三 大河 口的沉积物 地 球 化学 特 征进 行 对 比研 究 , 仅探 讨 其 地质 背景 不 意义 , 而且 也从 元素 组成对 沉 积物物 源 的示踪 意 义方 面进行 有益 的探 讨 , 据此 寻找 各河 口沉 积物 的定 量 判 并 别 标 志 , 而应 用于 对黄 海沉 积物物 源 的定性 判别 r ¨ 。虽然 已有 的研究 表 明 , 积环 境对沉 积 物 的元 素 地 进 l ] 沉 球化 学组成 有 着显 著影 响 , 在 已有 的研究 中 , 为缺 乏将 元 素 地球 化 学 与沉 积 环境 进 行对 应分 析 , 但 较 即元 素 地球 化学空 间分布 的差 异性 与沉 积环境 的空间分 布 特征 之 间 的相关 关 系 尚缺 乏 足 够 的探 讨 。为 此 , 文 选 本 择 长江 口南 支外海 域作 为研究 区 , 对高 密度 采样 所获 取 的底质 沉积 物样 品进行 元 素地 球化 学分 析 , 方 面获 一 取 研究 区 内元 素地球 化 学分 布特 征 , 另一方 面对 元 素地球 化 学分 区与沉 积 环境 分 区之 间 的关 系 进行 有 益 的 探 讨 。选 择这 一研 究 区域 , 基 于两方 面 的考 虑 : 一 , 是 其 长江 口目前 主要 的沉 积作 用发 生 在南支 口外 , 表层 沉 积 物 的沉积 过程 相对 连续 ; 其二 , 江 口南 支外 的沉 积环 境 目前 已有 比较 清楚 的认 识 , 与元 素 地球 化 学 分 长 为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
监测 数据 , 分析 了 19 2 0 9 6~ 0 5年沉 积 物环境 质量 变化
趋势。
值 的改变 , 将产 生 吸 附 、 析 、 解 絮沉 、 解 、 机 质 降 解 溶 有
等 复杂 的物 理 、 学 和生 物 作 用 过 程 , 许 多 化 学 物 化 使 质, 包括重 金属 富集 于此 。在河 口地 区 , 大部分 颗粒 态
1 采 样 与 分 析 方 法
1 1 研 究 海 域 .
20 0 5年 1 1月 于 长 江 口及 毗邻 海 域 共 设 4 9个 研 究站 位 , 分别分 布在 3个 区 2 3个 站位 ( l~1 ,M1~ M ) 位 于杭 州湾 0 8J J5 ,
流 域 及 河 口的 治 理 。
关 键 词 : 重金 属 含 量 ;环 境评 价 ; 江 口 ; 州 湾 ; 山海 区 长 杭 舟
中 图 法 分 类 号 : 3 5 P 3X 2 文献 标 志码 : A
河 口是淡 水和 海水 的交 汇 区域 , 不仅 截 留 了大 量 径流 所携 带 的固相颗 粒 , 而且伴 随着 盐度 的增加 和 p H
第4 3卷 第 l 0期 2 0 12 年 5 月 文章 编 号 :0 1 4 7 ( 0 2 1 0 6 0 1 0 — 19 2 1 ) 0— 0 8— 4
人 民 长 江
Ya g z Ri e n te vr
V0 J l 43. No. 0 1 Ma 2 2 y, 01
( 0 0 S 2 ; 海 工 学 院 引 进 人 才 科 研 启 动 基 金 资 助 项 目( Q 9 1 ) 2 1H 1 ) 淮 K 0 0 6
作者简 介: 方 涛 , , 师 , 士 , 要 从 事 河 口海 岸 生 态与 环 境 的 研 究 。 E— i: m af g yho cr c 男 讲 博 主 ma t to n@ ao .o . i lo a n q
度 。
研究 沉积 物 中重金 属 元 素 的含 量 和分 布 , 仅 可 不 以揭 示重 金属 元素 在河 口地 区迁移 富集 的规 律 , 而 进 探 讨 水动力 和 沉积 条件 的变 化 , 且 对 于水 资 源 保 护 而 与开 发利用 、 区域环 境 评价 及 经 济 发 展都 具 有 重 要 意 义, 因而 近 年 来 越 来 越 受 到 国 内外 学 者 的重 视 。 。
分析 方法 测定 , 、 镉 铅则 为 无 火 焰 原 子 吸 收 法 , 采用 砷
原子 荧光 法 , 汞为冷 原子 荧光 法 , 品 的采集 、 处理 、 样 预
分 析 与 鉴 定 均 按 《 洋 监 测 规 范 》( B 7 7 . 海 G l3 8 5一
资 助项 目 : 家 自然 科 学基 金 青 年 科 学基 金 项 目(0 0 04 ; 海 工 学 院 江 苏省 海 洋 生 物 技 术 重 点 建 设 实验 室 研 究 基 金 项 目 国 49 6 5 ) 淮
长 江 口及 近 海 区沉 积 物 重金 属 与 底 质 环境 评 价
方 涛 2, 道 季2, 静 亮。, 志 华 李 唐 冯
( . 海 工 学 院 江 苏省 海 洋 生物 技 术 重 点建 设 实 验 室 , 苏 连 云 港 22 0 ; 2 华 东 师 范 大 学 河 口海 岸 学 国家 1淮 江 2 05 .
海 域 有 6个 站 位 ( O 2 ,5 2 ,9,4 , 于 舟 山 海 2 ,3 2 ,6 2 3 ) 位
重金 属都 进入 沉积物 中 , 当水体 的 p E H、 h等 条件 变 化
时, 污染物 将会 释放 出来 , 水 环境 产 生 二 次 污染 , 对 因 而可 用沉 积 物 中重 金 属 的含 量 来 指 示 环 境 污 染 的 程
低 的特 征 , 高值 区 不仅 出现 在 长 江 口 水质 浑 浊水 域 , 出现 在杭 州 湾 湾 口海域 , 州湾 可 能 已经 成 为 长 江 口 海 也 杭
域 重 金 属 元 素 的 另一 重 要 的 沉 积 “ ” 长 江 口及 邻 近 海 域 表 层 沉 积 物 中重 金 属 元 素 含 量 整 体 上 呈 逐 步 降 低 汇 。 的 趋 势 ,0 5年 沉 积 物 各 项 指 标 均 符 合 国 家《 洋沉 积 物 质 量 》 类标 准 , 因可 能 是 三峡 工 程 蓄 水 和 近 年 来 20 海 一 原
域有 2 0个 站位 (M ,9 2 ,2 2 ,7 2 ,0~3 ,5 J 6 1 , 1 2 ,4 2 ,8 3 3 3
~
4 。 3)
1 2 取 样 与 处 理 方 法 .
使用 D Y型采 泥器取 海底 表层 沉积 物 , 品经 风 A 样 干、 磨、 研 过筛 处理 , 中铜 、 含量 采用 火焰 原 子吸 收 其 锌
重 点实 验 室 , 海 2 0 6 ; 3 舟 山海 洋 生 态 环境 监 测 站 , 江 舟 山 3 6 0 ) 上 00 2 . 浙 10 0
摘 要 : 了评 价 长 江 口及 毗 邻 海 域 重 金 属 环 境 污染 情 况 , 为 用评 价 区 4 9个 站位 的 实 测 资料 对 表层 沉 积 物 重 金 属 含 量 与 分 布 变化 情 况 进 行 了分 析 。 结 果表 明 : 查 海 域 中 , 调 沉积 物 中锌 的含 量 最 高 , 次 为 铜 、 , 汞 的 含 量 其 铅 而 最 低 , 铜 和 锌 具 有 明 显 的 线性 相 关 关 系 ; 金 属 含 量 分 布 呈 南 高 北 低 ( 别 是 调 查 区 东 北 部 ) 近 岸 高 远 岸 且 重 特 、
本文 根据 20 0 5年监 测结 果 , 析 了长江 口及 其邻 近 海 分
区沉 积物 中铜 、 、 、 、 和 汞 的 含量 变 化及 分 布 , 锌 镉 砷 铅 并对 沉积 物 中重金属 污 染 状 况进 行 了评 价 , 合 历 年 结
收 稿 日期 :0 2— 1 7 2 1 0 —1