第八章 原子吸收光谱分析法作业

合集下载

原子吸收光谱法思考题与练习题

原子吸收光谱法思考题与练习题

1.原子吸收光谱和原子荧光光谱是如何产生的?比较两种分析方法的特点。

2.解释下列名词:⑴ 谱线轮廓;⑵ 积分吸收;⑶ 峰值吸收;⑷ 锐线光源;⑸ 光谱通带。

3.表征谱线轮廓的物理量是哪些?引起谱线变宽的主要因素有哪些?4.原子吸收光谱法定量分析的基本关系式是什么?原子吸收的测量为什么要用锐线光源?5.原子吸收光谱法最常用的锐线光源是什么?其结构、工作原理及最主要的工作条件是什么?6.空心阴极灯的阴极内壁应衬上什么材料?其作用是什么?灯内充有的低压惰性气体的作用是什么?7.试比较火焰原子化系统及石墨炉原子化器的构造、工作流程及特点,并分析石墨炉原子化法的检测限比原子化法高的原因。

8.火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?试举例说明。

9.原子吸收分光光度计的光源为什么要进行调制?有几种调制的方式?10.分析下列元素时,应选用何种类型的火焰?并说明其理由:⑴ 人发中的硒;⑵矿石中的锆;⑶ 油漆中的铅。

11.原子吸收光谱法中的非光谱干扰有哪些?如何消除这些干扰?12.原子吸收光谱法中的背景干扰是如何产生的?如何加以校正?13.说明用氘灯法校正背景干扰的原理,该法尚存在什么问题?14.在测定血清中钾时,先用水将试样稀释40倍,再加入钠盐至0.8mg/mL,试解释此操作的理由,并说明标准溶液应如何配制?15.产生原子荧光的跃迁有几种方式?试说明为什么原子荧光的检测限一般比原子吸收低?16.与测定下列物质,应选用哪一种原子光谱法,并说明理由:⑴血清中的Zn和Cd(~Zn2mg/mL,Cd0.003ug/mL);⑵鱼肉中的Hg(~xug/g数量级);⑶水中的As(~0.x ug/mL);⑷矿石La、Ce、Pr、Nd、Sm(0.00x~0.x%)⑸废水中Fe、Mn、Al、Ni、Co、Cr(x ug/mL~x mg/mL)。

17.镁的共振线285.21nm是跃迁产生的,试计算在2430K时,激发态和基态的原子数之比。

原子吸收光谱分析-下

原子吸收光谱分析-下

体元素不同可能带来影响。
(2)标准溶液浓度应使 A ~ C 在直线的范围内, C
不能太大,一般控制A在0.2~0.8之间。
(3) 测定过程中应保持测定条件不变。 • 标准曲线法简便、快速,适用于组分比较简单的样 品,适用于大批量的样品分析。但样品的情况不清 或很复杂时分析误差较大,可用其他方法定量。
检测限 (Detection limit, DL)
• 检出限不仅与灵敏度有关,而且还考虑 到仪器噪声!因而检测限比灵敏度具有更 明确的意义,更能反映仪器的性能。只有 同时具有高灵敏度和高稳定性时,才有低 的检出限。
——测定条件的选择 • 分析方法的精密度和准确度除了与仪器的性能有 关外,还与测定条件有关,注意选择: 1、试样取量及处理
用有机溶剂
(二)化学干扰及其抑制
指待测元素与其它组分之间的化学作用所引起的干扰效应 ,主要 影响到待测元素的原子化效率,是选择性干扰,为主要干扰源
1. 化学干扰的类型
(1)待测元素与其共存物质作用生成难挥发的化合物,致使参 与吸收的基态原子减少。 a、铝、硅、硼、钛、铍在火焰中易生成难熔化合物 b、硫酸盐、磷酸盐与钙生成难挥发物。 (2)待测原子发生电离反应,生成离子,不产生共振吸收,总 吸收强度减弱,电离电位≤6eV的元素易发生电离,火焰温度越高 ,干扰越严重,(如碱及碱土元素)。
• 氘灯是连续光谱( 190-360nm ),它和空心阴极灯的锐线
光源通过切光器交替照射在原子化器上。 氘灯的能量被背景和被测元素吸收,但被测元素是线吸收,
它占整个连续光谱的吸收信号很小,可以忽略。因此可以
认为,氘灯测得的就是背景吸光度。 A氘=A背 • 空心阴极灯测得的是被测元素吸光度和背景吸光度,
例如:钙电离,在溶液中加入大量易电离的 钾或铯,有大量电子存在,抑制钙的电离,提高 测定灵敏度。 K ---- K+ + e

原子吸收题解

原子吸收题解

习题1 试述原子吸收光谱法分析的基本原理,并从原理、仪器基本结构和方法特点上比较原子发射光谱与原子吸收光谱的异同点。

2 试述原子吸收光谱法比原子发射光谱灵敏度高、准确度好的原因。

3 原子吸收光谱法中为什么要用锐线光源?试从空心阴极灯的结构及工作原理方面,简要说明使用空心阴极灯可以得到强度较大、谱线很窄的待测元素共振线的道理。

4 阐述下列术语的含义:灵敏度,检出线,特征浓度和特征质量。

它们之间有什么关系,影响它们的因素是什么?5 通常为何不用原子吸收光谱法进行定性分析?应用原子吸收光谱法进行定量分析的依据是什么?6 简述光源调制的目的及其方法。

7 解释原子吸收光谱分析工作曲线弯曲的原因。

并比较标准曲线法和标准加入法的特点。

8 解释下列名词:(1)原子吸收; (2)吸收线的半宽度; (3)自然宽度; (4)多普勒变宽; (5)压力变宽; (6)积分吸收; (7)峰值吸收; (8)光谱通带。

9 原子吸收光谱分析中存在哪些干扰?如何消除干扰? 10 比较火焰法与石墨炉原子化法的优缺点。

11 原子荧光产生的类型有哪些?各自的特点是什么?12 比较原子荧光分析仪、原子发射光谱分析仪和原子吸收光谱分析仪三者之间的异同点。

13 已知钠的3p 和3s 间跃迁的两条发射线的平均波长为 nm, 计算在原子化温度为2500K 时,处于 3p 激发态的钠原子数与基态原子数之比。

提示:在3s 和3p 能级分别有2个和6个量子状态,故3260==p p j 解:处于 3p 激发态的钠原子数与基态原子数之比,由玻耳兹曼方程计算:kTE j j ep p N N ∆-=kTchj ep p λ-=25001038.11058921000.31063.6237103436⨯⨯⨯⨯⨯⨯----=e41069.1-⨯=14 原子吸收光谱法测定某元素的灵敏度为0.01?g?mL -1/1%A ,为使测量误差最小,需要得到的吸收值,在此情况下待测溶液的浓度应为多少? 解:灵敏度表达式为:%1/0044.01-=gmL AcS μ 100.10044.0436.001.00044.0-=⨯=⨯=gmL A S c μ15 原子吸收分光光度计三档狭缝调节,以光谱通带, 和 nm 为标度,其所对应的狭缝宽度分别为, 和1.0 mm ,求该仪器色散元件的线色散率倒数;若单色仪焦面上的波长差为mm ,狭缝宽度分别为, , 和2.0 mm 四档,求所对应的光谱通带各为多少? 解:光谱通带为:1-⨯=L D S W mm nm S W D L /9.11.019.01===- ,05.0nm S = nm D S W L 1.00.205.01=⨯=⨯=- ,1.0nm S = nm D S W L 2.00.21.01=⨯=⨯=- ,2.0nm S = nm D S W L 4.00.22.01=⨯=⨯=- ,0.2nm S = nm D S W L 0.40.20.21=⨯=⨯=-16 有A 、B 、C 三台原子吸收分光光度计,它们的部分技术指标如下表所示。

5.3原子吸收光谱分析法

5.3原子吸收光谱分析法

火焰温度的选择:
(a)保证待测元素充分离解为基态原子的前提下,尽量 采用低温火焰。 (b)火焰温度越高,产生的热激发态原子越多。
(c)火焰温度取决于燃气与助燃气类型,常用空气—乙
炔最高温度2600K能测35种元素。
02:21:02
火焰类型:
化学计量火焰:
温度高,干扰少,稳定,背景低,常用。
富燃火焰:
(1)火焰法
cDL=3Sb/Sc
(2)石墨炉法 mDL=3Sb/Sm Sb:标准偏差;
单位:μgmL-1
Sc(或Sm):待测元素的灵敏度,即工作曲线的斜率。
02:21:02
二、测定条件的选择
1.分析线
一般选待测元素的共振线作为分析线,测量高浓度 时,也可选次灵敏线。
2.通带(可调节狭缝宽度改变)
02:21:02
2.标准加入法
取若干份体积相同的试液(cX),依次按比例加入不 同量的待测物的标准溶液(c0),定容后浓度依次为: cX , cX +cO , cX +2c0 , cX +3c0 , cX +4 c0 …… 分别测得吸光度为:AX,A1,A2,A3,A4……。
抑制方法:
(1)释放剂—与干扰元素生成更稳定化合物,释放出待测元素。 例:锶和镧可有效消除磷酸根对钙的干扰。
(2)保护剂—与待测元素形成稳定的络合物,防止待测元素与干扰元素
作用。 例:加EDTA生成EDTA-Ca,避免磷酸根与钙作用。 (3)加入基体改进剂---石墨炉原子化法 例如测定海水中的镉时,大量的钠 离子和氯离子干扰,加入EDTA可消除干扰。 当以上方法都不能消除干扰时,只能采用化学分离的手段。如溶剂萃取,离 子交换吸附等。
02:21:02

原子吸收习题

原子吸收习题

1.分析化学何先莉、赵淑珍、武少华,北京工业大学出版社,1996年9月,(1997年9月第2次印刷)P323:第十章原子吸收光谱法习题1.原子核吸收分光光度计主要由哪几部分组成?每部分的作用是什么?在构造上与分光光度计有什么不同?为什么?2.什么是积分吸收?峰值吸收?实际分析中为什么可以用峰值吸收代替积分吸收?3.何为锐线光源?在原子吸收中为什么要用锐线光源?4.计算2000K和3000K时Cu324.75nm的多普勒宽度为多少?5.浓度为0.2μg/ml的镁溶液,在原子核吸收分光光度计测得吸光度为0.220,试计算镁元素的特征浓度。

(0.004μg/ml/1%)6.原子吸收光谱法测定某元素的特征浓度的0.1μg/ml/1%吸收,为使测量误差最小,需要得到0.436的吸收值,求在此情况下待测溶液的浓度应为多少?7.某原子吸收分光光度计测定某元素的光谱通带为 1.0nm,而该仪器的倒线色散率为2.0nm/mm,应选择的狭缝宽度为多少?8.使用取血清2ml用纯水稀释到50ml,测其吸光值为0.213,求血清中Mg的含量(以mg/L 表示)。

(13.5mg/L)9.用原子吸收法测某废液中Cd含量,从废液排放口准确量取水样100.0ml,经适当酸化处理后,准确加入10ml甲基异丁基酮(MIBK)溶液萃取浓缩,被测元素在波长228.8nm 下进行测定,测得吸光值为0.182,在同样条件下,测得Cd标准系列的吸光度如下:用作图法求该厂废液中Cd的含量(以mg/L表示),并判断是否超标(国家规定Cd的排放标准是0.1mg/L)?10.用原子吸收光谱法测某聚醚样品中K的含量,称取聚醚样10.0mg溶解后,转移至50ml 容量瓶中,稀释至刻度。

吸取相同体积的试液于25ml容量瓶中,分别加入不同体积的11.用原子吸收光谱法测定Cu的浓度,取10ml未知Cu试液,放入25ml容量瓶中,稀释至刻度,测得吸光度为0.302,另取10.0ml未知液和2.00ml、50μg/ml的Cu标准溶液,也放入25ml容量瓶中稀释至刻度,测得吸光度为0.760,求未知液中Cu的浓度。

原子吸收光谱实验报告

原子吸收光谱实验报告

原子吸收光谱实验报告篇一:原子吸收光谱实验报告原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:XX012127 一、实验目的:1.了解石墨炉原子吸收分光光度计的使用方法。

2.了解石墨炉原子吸收分光光度计进样方法及技术关键。

3. 学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。

二、实验原理:在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。

相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。

石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。

石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至XX ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。

样品用量也少,仅5 ~ 100 uL。

还能直接分析固体样品。

该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。

本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。

三、仪器和试剂:1.仪器由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。

镉元素空心阴极灯容量瓶 50 mL(5只)微量分液器 0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液四、实验步骤:1.测定条件分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。

原子吸收光谱法

原子吸收光谱法
D
ln 2
N0kL
KLN0
上式的前提条件:
(1) Δνe<Δνa ; (2)发射线与吸收线的中心频率一致。
2020年5月3日星期日
五、基态原子数与原子化温度表
原子吸收光谱是利用待测元素的原子蒸气中基态原子与
特征谱线吸收之间的关系来测定的。
需要考虑原子化过程中,原子蒸气中基态原子N0与待测 元素原子总数N之间的定量关系。
——雾化器和燃烧器。
(1)雾化器
结构如图所示
主要缺点:雾化效率低。
2020年5月3日星期日
(2)燃烧器
它的作用是产生火焰,使进入火焰的试样
气溶胶蒸发和原子化。燃烧器是用不锈钢材料 制成,耐腐蚀、耐高温。燃烧器所用的喷灯有 “孔型”和“长缝型”两种。预混合型燃烧器 中,一般采用吸收光程较长的长缝型喷灯。喷 灯的缝长和缝宽随火焰而不同,
(2)各种元素的基态第一激发态(共振线)
最易发生,吸收最强,最灵敏线,分析线。
(3)利用待测原子蒸气对同种元素的特征谱线 (共振线)的吸收可以进行定量分析
2020年5月3日星期日
三、谱线的轮廓与谱线变宽
原子结构较分子结 构简单,理论上应产 生线状光谱吸收线。 实际上用不同频率 辐射光照射(强度为 I0)时,
2020年5月3日星期日
2.峰值吸收测量法
吸收线中心频率处的吸收系数K0为峰值吸收系数,简称 峰值吸收。
1955年沃尔什提出采用锐线光源(能发射谱线半宽度很 窄的发射线的光源),峰值吸收与火焰中被测元素的原子浓 度也成正比。
因为当采用锐线光源进行测量
,则Δνe<Δνa ,由图可见,在辐射线 宽度范围内,峰值吸收与积分吸收
2020年5月3日星期日

原子吸收光谱法分析实验

原子吸收光谱法分析实验

原子吸收光谱法分析实验实验目的:掌握原子吸收光谱法分析的基本原理和实验操作技能,了解其在分析化学中的应用。

实验步骤:1.样品预处理:将待分析的样品经过适当处理,如消解、稀释等,以达到适合原子吸收光谱分析的条件。

2.仪器调试:根据仪器说明书进行调试,设置合适的波长、燃烧温度等参数。

3.校准曲线绘制:用标准物质制备一系列浓度不同的标准溶液,测量各标准溶液的吸光度,并绘制校准曲线。

4.样品测试:将样品溶液加入原子吸收光谱仪中,测量其吸光度,并根据校准曲线计算出样品中所含物质的浓度。

实验原理:原子吸收光谱法利用原子对特定波长的光的吸收来分析样品中的元素。

当样品中的元素原子处于基态时,它们会吸收特定波长的光线,使得处于基态的原子变为激发态,并从激发态返回基态时,会放出吸收的能量,产生特定的谱线。

根据元素的谱线特征和吸光度与浓度之间的线性关系,可以计算出样品中该元素的浓度。

实验注意事项:1.样品预处理要仔细,避免干扰物质的影响。

2.仪器调试时要按照说明书进行,以确保测量精度。

3.校准曲线的制备要求准确,要使用多个浓度的标准溶液制备校准曲线,并检查其线性和精度。

4.测量样品时要保持仪器稳定,避免环境和操作误差的影响。

结论:通过本次实验,我们了解了原子吸收光谱法分析的基本原理和实验操作技能,掌握了校准曲线的制备和样品测量的方法。

同时,我们也了解了原子吸收光谱法在分析化学中的重要应用,具有较高的精度和灵敏度,可以应用于多种样品中元素的定量分析。

再写一个光度法测定维生素C含量实验实验目的:通过光度法测定果汁中维生素C的含量,掌握光度法的基本原理和实验操作技能,了解其在食品分析中的应用。

实验步骤:1.样品制备:取适量果汁样品,将其加入稀释液中稀释到适宜浓度,以便于测量和操作。

2.标准曲线制备:制备一系列不同浓度的维生素C标准溶液,用分光光度计测量其吸光度,并绘制标准曲线。

3.样品测试:将待测果汁样品稀释后加入分光光度计中,测量其吸光度,并根据标准曲线计算出其维生素C的含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章 原子吸收光谱分析法 一、简答题 1.原子吸收光谱和原子荧光光谱是如何产生的?比较两种分析方法的特点。 2.解释下列名词: ⑴ 谱线轮廓; ⑵ 积分吸收; ⑶ 峰值吸收; ⑷ 锐线光源; ⑸ 光谱通带。 3.表征谱线轮廓的物理量是哪些?引起谱线变宽的主要因素有哪些? 4.原子吸收光谱法定量分析的基本关系式是什么?原子吸收的测量为什么要用锐线光源? 5.原子吸收光谱法最常用的锐线光源是什么?其结构、工作原理及最主要的工作条件是什么? 6.空心阴极灯的阴极内壁应衬上什么材料?其作用是什么?灯内充有的低压惰性气体的作用是什么? 7.试比较火焰原子化系统及石墨炉原子化器的构造、工作流程及特点,并分析石墨炉原子化法的检测限比原子化法高的原因。 8.火焰原子化法的燃气、助燃气比例及火焰高度对被测元素有何影响?试举例说明。 9.原子吸收分光光度计的光源为什么要进行调制?有几种调制的方式? 10.分析下列元素时,应选用何种类型的火焰?并说明其理由: ⑴ 人发中的硒; ⑵ 矿石中的锆; ⑶ 油漆中的铅。 11.原子吸收光谱法中的非光谱干扰有哪些?如何消除这些干扰? 12.原子吸收光谱法中的背景干扰是如何产生的?如何加以校正? 13.说明用氘灯法校正背景干扰的原理,该法尚存在什么问题? 14.在测定血清中钾时,先用水将试样稀释40倍,再加入钠盐至0.8mg/mL,试解释此操作的理由,并说明标准溶液应如何配制? 15.产生原子荧光的跃迁有几种方式?试说明为什么原子荧光的检测限一般比原子吸收低? 二、填空题 1.原子吸收光谱分析法与发射光谱分析法,其共同点都是利用原子光谱,但二者在本质上有区别,前者利用的是 现象,而后者利用的是 现象。 2.根据玻耳兹曼分布定律,基态原子数远大于激发态原子数,所以发射光谱法比原子吸收法受 的影响要大,这就是原子吸收法比发射光谱法 较好的原因。 3.澳大利亚物理学家瓦尔什提出用 吸收来代替 吸收,从尔解决测量吸收的困难。 4.空心阴极灯发射的光谱,主要是 的光谱,光强度随着 的增大而增大。 5.Mn共振线是403.3073nm,若在Mn试样中含有Ga,那么用原子吸收法测Mn时,Ga的共振线403.2982nm将会有干扰,这种干扰属于 干扰,可采用 的方法加以消除。 6.在原子吸收光谱线变宽的因素中,多普勒变宽是由于 ;洛伦兹变宽是由于 所一起的。 7.火焰原子化法中,妨碍灵敏度进一步提高的原因是试样的雾化效率低(约10%)和火焰高速燃烧的稀释作用降低了 和 。 8.试样在原子吸收过程中,除离解反应外,可能还伴随着其他一系列反应,在这些反应中较为重要的是 、 、 反应。 9.测定鱼、肉和人体内脏器官等生物组织中汞,较简单的方法可采用 。 10.原子吸收法测定钙时,为了抑制 PO43-的干扰,常加入的释放剂为 ;测定镁时,为了抑制 Al3+的干扰,常加入的释放剂为 ;测定钙和镁时,为了抑制Al3+的干扰,常加入保护剂 或 。 11.原子吸收分光光度计带有氘灯校正装置时, 由于空心阴极灯发射 辐射,因此 吸收和 吸收均不能忽略; 而氘灯则是发射 光谱,所以 吸收可以忽略。 12.在原子吸收法中, 提高空心阴极灯的灯电流可增加 ,但若灯电流过大, 则 随之增大, 同时会使发射线 。 13.双光束原子吸收分光光度计由于两光束是由 光源发出, 并且使用 器, 因此可消除 的影响, 但不能消除 的影响。 14.原子吸收光谱法测定背景干扰包括 和 两部分, 石墨炉原子化器比火焰原子化器的背景干扰 。 15.在石墨炉原子化器中, 试液首先在其中低温 ,然后升温 ,最后生成 。 三、计算题 1.镁的共振线285.21nm是11013S-3P跃迁产生的,试计算在2430K时,激发态和基态的原子数之比。 2.用原子吸收光谱法测定试样中的Tl,使用丙烷—氧气火焰,其温度为2800K,分析线为377.6nm,它是由6P1电子跃迁至7S1产生的。试问火焰中Tl原子的激发态和基态数之比是多少? 3.测定水样中 Mg 的含量,移取水样 20.00mL 置于 50mL 容量瓶中,加入 HCl溶液酸化后,稀至刻度,选择原子吸收光谱法最佳条件, 测得其吸光度为 0.200,若另取20.00mL 水样于 50mL 容量瓶中,再加入含 Mg为 2.00μg/mL 的标准溶液 1.00mL并用 HCl溶液酸化后,稀至刻度。在同样条件下,测得吸光度为 0.225,试求水样中含镁量 (mg/L)。 4.测定血浆中Li的浓度,将两份均为0.430mL血浆分别加入到5.00mL水中,然后向第二份溶液加入20.0μL 0.0430mol/L的LiCl标准溶液。在原子吸收分光光度计上测得读数分别为0.230和0.680,求此血浆中Li得浓度(以μg/mLLi表示) 5.用原子吸收光谱测定水样中Co的浓度。分别吸取水样10.0mL于50mL容量瓶中,然后向各容量瓶中加入不同体积的6.00μg/mL Co 标准溶液,并稀释至刻度,在同样条件下测定吸光度,由下表数据用作图法求得水样中Co的浓度。

溶液数 水样体积/mL Co标液体积/mL 稀释最后体积/mL 吸光度 1 2 3 4 0 10.0 10.0 10.0 0 0 10.0 20.0 50.0 50.0 50.0 50.0 0.042 0.201 0.292 0.378 6.用双标准加入法原子吸收光谱测定二乙基二硫代氨基甲酸盐萃取物中的铁,得到如下的数据,求试液中铁的浓度。 吸光度读数 铁标准加入量 mg/200mL 空白溶液 试样溶液 0.020 0.214 0.414 0.607 0.090 0.284 0.484 0.677 0 2.00 4.00 6.00

7.原子吸收法测定某试液中某离子浓度时,测得试液的吸光度为0.218,取1.00mL浓度为10.0g/mL的该离子的标准溶液加入到9.00mL试液中,在相同条件下测得吸光度为0.418,求该试液中该离子的质量浓度(以mg/L表示)。 8.已知某原子吸收光谱仪的倒线色散率为15.1mmnm。测定Mg时,采用了 285.2nm的特征谱线。为了避免285.5nm谱线的干扰,宜选用的狭缝宽度为多少? 9.A、B两个仪器分析厂生产的原子吸收分光光度计,对浓度为12.0gg的镁 标准溶液进行测定,吸光度分别为0.042、0.056。试问哪一个厂生产的原子吸收 分光光度计对Mg特征浓度低。 10.测定一系列Ca和Cu试样中每种元素的吸光度值如下。

5 6 10.0 10.0 30.0 40.0 50.0 50.0 0.467 0.554

1/mLgcCa 7.422A 1/mLgc

Cu

7.324A

1.00 2.00 3.00 4.00 0.086 0.177 0.259 0.350 1.00 2.00 3.00 4.00 0.142 0.292 0.438 0.576 (1)计算当Cu和Ca相等时所产生的平均相对吸光度(A324.7/A422.7); (2)Cu用作Ca测定的内标,已知试样种铜浓度147.2mLg时,A324.7=0.269,A422.7=0.218。计算钙的浓度,以1mLg计。 11.1050.0mLg的Co标准溶液,在石墨炉原子化器的原子吸收分光光度计上, 每次以L5与去离子水交替连续测定10次,测定的吸光度如下表所示。求该原 子吸收分光光度计对Co的检出限。 测定次数 1 2 3 4 5 6 7 8 9 10

吸光度 0.165 0.170 0.166 0.165 0.168 0.167 0.168 0.166 0.170 0.167

12.某试样水溶液中钴的测定如下:各取10.0mL的未知液注入四个50.0mL的容量瓶中,再加不同量的123.6mLg钴标准液于各瓶中,最后再将各容量瓶加水稀释至刻度。请由下列数据,计算试样中钴的浓度。 试样 未知液/mL 标准液/mL 吸收度 空白 0.0 0.0 0.042 A 10.0 0.0 0.201 B 10.0 10.0 0.292 C 10.0 20.0 0.378 D 10.0 30.0 0.467 E 10.0 40.0 0.554

13.用原子吸收法测定某溶液中Cd的含量时,得吸光度为0.141,在50mL这种试液中加入1mL浓度为0.001mol/L的Cd标准溶液后,测得吸光度为0.235,而在同样条件下,测是重蒸馏水的吸光度为0.010,试求未知液中Cd的含量和该原子吸收光度计的灵敏度(即1%吸光度时的浓度)。 14.测定血浆试样中锂的含量,将二份0.500ml血浆分别加到5.00ml水中,然后在这二份溶液中加入(1)0μL(2)10.0μL,0.0500MliCl标准溶液,在原子吸收分光光度计上测得读数(任意单位)依次为(1)23.0(2)45.3计算此血浆中锂的ppm数(重量/体积)。 15.精确吸取四份0.5ml某待测样品,分别放入10ml容量瓶中,然后在这四个容量瓶中分别精确加入0,1,2,3ml浓度为0.15μg/mL的锂标准溶液,稀释至刻度,在原子吸收光谱仪上测得上述溶液的吸光度依次为0.06,0.125,0.185,

相关文档
最新文档