第3章门电路教案

第3章门电路教案
第3章门电路教案

第3章门电路

一、教学目的:

门电路是数字电路的基本逻辑单元。构成门电路的基本元件是晶体二极管和三极管,本章首先介绍晶体管的开关特性,然后重点讨论目前广泛使用的TTL集成门电路和CMOS集成门电路。对于每一种门电路,除了介绍其电路结构、工作原理和逻辑功能外,还着重讨论它们的电气特性,为实际使用这些器件打下基础。

二、教学题要

在这一章里,首先介绍了晶体管的开关原理,然后介绍分立元件门、TTL集成逻辑门和MOS集成逻辑门等门电路的结构、工作原理和特性。

3.1 概述

TTL和CMOS集成电路是目前数字系统中应用最广的基本电路。在TTL中,有两种载流子参与导电,因此称为双极型集成电路;在CMOS中,只有一种载流子参与导电,因此称为单极型集成电路。尽管TTL和CMOS集成电路在制造工艺方面存在区别,但从逻辑功能和应用的角度上讲,TTL和CMOS集成电路没有多大的区别。从产品的角度上讲,凡是TTL具有的集成电路芯片,CMOS一般也具有,不仅两者的功能相同,而且芯片的尺寸、管脚的分配都相同。换句话说,以TTL为基础设计实现的电路,也可以用CMOS电路来替代。因此,在数字电路系统设计时,不必事先考虑设计目标芯片的类型。

学习集成电路时,应将重点放在它们的外部特性上。外部特性包括电路的逻辑功能和电气特性。集成电路的逻辑功能一般可以用逻辑符号、功能表、真值表、逻辑函数表达式和工作波形来表示。电气特性包括电压传输特性、输入特性、输出特性和动态特性等。

工作速度、抗干扰能力和静态功耗是集成电路的主要技术指标。对于TTL、CMOS和ECL这几种类型的集成电路产品来说,ECL集成电路的速度最快,TTL次之,CMOS最慢;CMOS集成电路的抗干扰能力最强,TTL次之,ECL最弱;CMOS集成电路的静态功耗最低,TTL次之,ECL最大。在设计数字系统时,可以根据需要选择这些产品。

3.2 晶体二极管和三极管的开关特性

半导体器件如晶体二极管、三极管和MOS管都有导通和截止两种状态,在导通状态下,允许电信号通过,在截止状态下,禁止电信号通过,这就是它们的开关特性。半导体器件的开关特性又分为静态特性和动态特性,前者指器件稳定在导通和截止两种状态下的特性,后者指器件在状态发生变化过程中的特性。

3.2.1 晶体二极管的开关特性

3.2.2 晶体三极管的开关特性

3.3 分立元件门

由电阻、电容、二极管、三极管等分立元件构成的逻辑门称为分立元件门。分立元件门的体积大、耗电高、故障多,现在几乎很少使用。这一节介绍的分立元件门,仅作为逻辑门电路学习的入门基础。

3.3.1 二极管与门

3.3.2 二极管或门

3.3.3 三极管非门

3.3.4 复合逻辑门

3.3.5 正逻辑和负逻辑

3.4 TTL集成门

TTL集成电路是一种单片集成电路,其输入端和输出端都是由晶体三极管构成的电路,称为晶体管—晶体管逻辑,简称TTL(Transistor-TransistorLogic)。TTL门是构成数字逻辑系统的基本器件。下面以与非门为典型电路,介绍TIL集成电路的结构、工作原理、外部特性和使用方法。

3.4.1 TTL集成与非门

3.4.2 TTL与非门的外部特性

3.4.3 TTL与非门的主要参数

3.4.4 TTL与非门的改进电路

3.4.5 TTL其他类型的集成电路

3.4.6 TTL集成电路多余输入端的处理

3.5 其他类型的双极型集成电路

在双极型数字集成电路中,TTL电路的应用最广泛。其他种类的双极型集成电路,如二极管三极管逻辑DTL(Diode Transistor Logic)、高阈值逻辑HTL(High Threshold Logic)、发射极耦合逻辑ECL(Emitter Coupled Logic)和集成注入逻辑I2L(Integrated Injection Logic)等,在某些有特殊要求的场合使用。下面简单介绍ECL和12L电路,让读者对它们有一定了解。

3.5.1 ECL电路

3.5.2 I2L电路

3.6 MOS集成门

MOS集成电路是用MOS管作基本元件构成的。MOS管是金属-氧化物-半导体场效应管(Metal Oxide Semiconductor Field Effect Transistor)的简称。在MOS管内,只有一种载流子参与导电,因此MOS集成电路称为单极型集成电路。

3.6.1 MOS管

3.6.2 MOS反相器

3.6.3 MOS门

3.6.4 CMOS门的外部特性

三、教学重点、难点

TTL和CMOS集成电路的逻辑功能和电气特性

四、教学过程及方法

学时:4学时

门电路是数字电路的基本逻辑单元。构成门电路的基本元件是晶体二极管和三极管,本章首先介绍晶体管的开关特性,然后重点讨论目前广泛使用的TTL集成门电路和CMOS集成门电路。对于每一种门电路,除了介绍其电路结构、工作原理和逻辑功能外,还着重讨论它们的电气特性,为实际使用这些器件打下基础。

以二极管与门和或门和三极管非门介绍分离元件的门电路。

以TTL与非门入手介绍TTL电路的各种电气特性和特点,然后介绍OC门和三态门。

以NMOS和PMOS的与非门和或非门入手,介绍CMOS电路的电气特性和特点。

TTL电路和CMOS电路多余端处理的异同。

详见第3章教学过程与方法

五、作业布置及参考资料

第四章习题8、12、13(A),14、15、16 (B),教师网站上公布习题、复习题和课程教案六、教学后记

数字电路第三章习题与答案

第三章集成逻辑门电路 一、选择题 1。三态门输出高阻状态时,()是正确的说法。 A.用电压表测量指针不动B.相当于悬空 C.电压不高不低 D.测量电阻指针不动 2. 以下电路中可以实现“线与”功能的有( ). A。与非门B.三态输出门 C.集电极开路门D。漏极开路门 3。以下电路中常用于总线应用的有( )。 A.TSL门 B。OC门 C.漏极开路门D.CMOS与非门 4。逻辑表达式Y=AB可以用()实现。 A.正或门 B.正非门 C。正与门D。负或门 5.TTL电路在正逻辑系统中,以下各种输入中( )相当于输入逻辑“1”。 A.悬空 B。通过电阻2.7kΩ接电源 C.通过电阻2.7kΩ接地D.通过电阻510Ω接地 6.对于TTL与非门闲置输入端的处理,可以( )。 A。接电源 B.通过电阻3kΩ接电源 C.接地 D.与有用输入端并联 7.要使TTL与非门工作在转折区,可使输入端对地外接电阻RI( ). A.>RON B。<ROFF C。ROFF<RI

第3章-逻辑门电路

3 逻辑门电路 3.1 MOS 逻辑门电路 3.1.2 求下列情况下TTL 逻辑门的扇出数:(1)74LS 门驱动同类门;(2)74LS 门驱动74ALS 系列TTL 门。 解:首先分别求出拉电流工作时的扇出数N OH 和灌电流工作时的扇出数N OL ,两者中的最小值即为扇出数。 从附录A 可查得74LS 系列电流参数的数值为I OH =0.4mA ,I OL =8mA ,I IH =0.02mA,I IL =0.4mA ;74ALS 系列输入电流参数的数值为I IH =0.02mA ,I IL =0.1mA ,其实省略了表示电流流向的符号。 (1) 根据(3.1.4)和式(3.1.5)计算扇出数 74LS 系列驱动同类门时,输出为高电平的扇出数 0.4200.02OH OH IH I mA N I mA === 输出为低电平的扇出数 8200.4OL OL IL I mA N I mA = == 所以,74LS 系列驱动同类门时的扇出数N O 为20。 (2) 同理可计算出74LS 系列驱动74ALS 系列时,有 0.4200.02OH OH IH I mA N I mA === 8800.1OL OL IL I mA N I mA = == 所以,74LS 系列驱动74ALS 系列时的扇出数N O 为20。 3.1.4 已知图题3.1.4所示各MOSFET 管的 T V =2V ,忽略电阻上的压降,试确定其工作状态(导通或截止)。 解:图题3.1.4(a )和(c )的N 沟道增强型MOS ,图题3.1.4(b )和(d )为P 沟道增强型MOS 。N 沟道增强型MOS 管得开启电压V T 为正。当GS V <V T 时,MOS 管处于截止状态;当GS V ≥V T ,且DS v ≥(GS V —V T )时,MOS 管处于饱和导通状态。 对于图题3.1.4(a ),GS V =5V ,DS v =5V ,可以判断该MOS 管处于饱和导通状态。对于图题

第三章 逻辑门电路的一般特性(1)2015 [兼容模式] (1)

第三章逻辑门电路 u逻辑门电路的一般特性 u半导体二极管及其基本电路(模拟第三章) u半导体三极管BJT(模拟4.1) u MOS管(模拟5.1) u 基本逻辑门电路 u MOS逻辑门电路 u TTL逻辑门电路 u正负逻辑的概念 u逻辑门电路使用中的几个实际问题 本章的重点:一般特性;各种器件及门电路的外部特性。 内部工作原理作为了解内容。

条输入信号满足一定条件时,门开启, 开门状态:一、什么是门电路?——用来实现基本逻辑运算和复合逻辑运算的单元电路。(门电路是数字电路最为基本的逻辑单元) §3.1逻辑门电路的一般特性 件开关 允许信号通过。 关门状态:输入信号条件不满足,门关闭, 信号通不过。 与门、或门、非门、与非门、或非门、与或非门、异或门等。 门 因此门电路的输出和输入之间存在着一定的逻辑关系。不同的门电路,输出与输入之间的逻辑关系也不同,如:

二、数字集成电路的分类 1.按工艺结构区分: ?54/74系列?54H/74H 系列?54LS/74LS 系列TTL 电路逻辑门电路的一般特性 ?54AS/74AS 系列?54ALS/74ALS 系列IIL 电路ECL 电路HTL 电路CMOS 电路NMOS 电路PMOS 电路 BiMOS 型 MOS 型双极型 ?54HC/74HC 系列?54HCT/74HCT 系列?4000系列 ?54LVC/74LVC 系列 ?54VHC/74VHC 系列

各种系列逻辑门: 1)74TTL / 54TTL 标准TTL 2)74HTTL / 54HTTL 高速TTL 3)74STTL / 54STTL 肖特基TTL 4)74LSTTL / 54LSTTL 低功耗肖特基 TTL 10mW/ 10ns 22mW/ 6ns 19mW/ 3ns 2mW/ 9.5ns 5)74ALSTTL / 54ALSTTL 先进低功耗肖特基TTL 6)74ASTTL / 54ASTTL 先进肖特基TTL 7)74FTTL / 54FTTL 快速TTL 1mW/ 3.5ns 8mW/ 3ns 4mW/ 3.4ns 8)CC4×××× 标准CMOS 9)74HC / 54HC 高速CMOS 10)74HCT / 54HCT 与TTL 逻辑电平兼容的HC

第3章-门电路-课后答案

第3章-门电路-课后答案

- 2 - 第三章 门 电 路 【题3.1】 在图3.2.5所示的正逻辑与门和图3.2.6所示的正逻辑或门电路中,若改用负逻辑,试列出它们的逻辑真值表,并说明Y 和A,B 之间是什么逻辑关系。 图3.2.5的负逻辑真值表 图3.2.6的负逻辑真值表 【题3.5】已知CMOS 门电路的电源电压5DD V V =,静态电源电流2DD I A μ=,输入信 号为200Z KH 的方波(上升时间和下降时间可忽略不计),负载电容200L C pF =,功 耗电容20pd C pF =,试计算它的静态功耗、

- 3 - 动态功耗、总功耗和电源平均电流。 【解】 静态功耗 621050.01S DD DD P I V mW mW -==??= 动态 功 耗 ()()2 12 5 2 20020102105 1.10D L pd DD P C C fV mW mW -=+=+????= 总功耗 0.01 1.10 1.11TOT S D P P P mW =+=+= 电源平均电流 1.11 0.225 TOT DD DD P I mA mA V = = = 【题3.5】已知CMOS 门电路工作在5V 电源电压下的静态电源电流5A μ,在负载电容100L C pF 为,输入信号频率为500Z KH 的 方波时的总功耗为1.56mW 试计算该门电路的功耗电容的数值。 【解】 首先计算动态功耗 ()31.565510 1.54D TOT S TOT DD DD P P P P I V mW mW -=-=-=-??≈ 根据()2 D L pd DD P C C fV =+得 312252 1.541010010135105D pd L DD P C C F pF fV --???= -=-?≈ ?????

第3章_门电路 课后答案

第三章 门 电 路 【题3.1】 在图3.2.5所示的正逻辑与门和图3.2.6所示的正逻辑或门电路中,若改用负逻辑,试列出它们的逻辑真值表,并说明Y 和A,B 之间是什么逻辑关系。 图3.2.5的负逻辑真值表 图3.2.6的负逻辑真值表 【题 3.5】已知CMOS 门电路的电源电压5DD V V =,静态电源电流 2DD I A μ=,输入信号为200Z KH 的方波(上升时间和下降时间可忽略不 计),负载电容200L C pF =,功耗电容20pd C pF =,试计算它的静态功耗、动态功耗、总功耗和电源平均电流。 【解】 静态功耗 6 21050.01S D D D D P I V m W m W -==??= 动态功耗 ()()2125220020102105 1.10D L pd DD P C C fV mW mW -=+=+????= 总功耗 0.01 1.10 1.11T O T S D P P P m W =+=+= 电源平均电流 1.11 0.225 TOT DD DD P I mA mA V = = = 【题3.5】已知CMOS 门电路工作在5V 电源电压下的静态电源电流5A μ,在负载电容100L C pF 为,输入信号频率为500Z KH 的方波时的总功耗为1.56mW 试计算该门电路的功耗电容的数值。 【解】 首先计算动态功耗

()31.565510 1.54D TOT S TOT DD DD P P P P I V mW mW -=-=-=-??≈ 根据() 2 D L pd DD P C C fV =+得 312252 1.541010010135105D pd L DD P C C F pF fV --???= -=-?≈ ????? 【题3.7】 试分析图P3.7 中各电路的逻辑功能,写出输出逻辑函数式。 A B C DD Y V DD Y (b) A

第三章 门电路

第三章门电路

第三章门电路 3.1 概述 TTL电路问世几十年来,经过电路结构的不断改进和集成工艺的逐步完善,至今仍广泛应用,几乎占据着数字集成电路领域的半壁江山。 把若干个有源器件和无源器件及其连线,按照一定的功能要求,制做在同一块半导体基片上,这样的产品叫集成电路。若它完成的功能是逻辑功能或数字功能,则称为逻辑集成电路或数字集成电路。最简单的数字集成电路是集成逻辑门。 集成逻辑门,按照其组成的有源器件的不同可分为两大类:一类是双极性晶体管逻辑门;另一类是单极性绝缘栅场效应管逻辑门,简称MOS门。 双极性晶体管逻辑门主要有TTL门(晶体管-晶体管逻辑门)、ECL门(射极耦合逻辑门)和I2L门(集成注入逻辑门)等。 单极性MOS门主要有PMOS门(P沟道增强型MOS 管构成的逻辑门)、NMOS门(N沟道增强型MOS管构成的逻辑门)和CMOS门(利用PMOS管和NMOS管构成的互补电路构成的门电路,故又叫做互补MOS门 门电路:实现基本运算、复合运算的单元电路,如与门、与非门、或门…… 门电路中以高/低电平表示逻辑状态的1/0

获得高、低电平的基本原理如图1所示。 图1 高/低电平都允许有一定的变化范围如图2所示。 正逻辑:高电平表示1,低电平表示0 负逻辑:高电平表示0,低电平表示1 图 2 3.2 半导体二极管门电路 二极管的结构如图3所示: PN结+ 引线+ 封装构成 图3 3.2.1二极管的开关特性 如图4,高电平:V IH=V CC,低电平:V IL=0

图4 3.2.2二极管与门 最简单的与门可以用二极管和电阻组成,图5是有两个输入端的与门电路。图中A,B为两个输入变量,Y为输出变量。 图5 二极管与门电路及图形符号 设VCC=5V,A,B输入端的高、低电平分别为VIH=3V,VIL=0V,二极管D1,D2的正向导通压降VDF=0.7V。由图可见,A,B当中只要有一个是低电平0V,则必有一个二极管导通,使Y=0.7V。只有A,B同时为高电平3V时,Y才为3.7V。将输出与输入逻辑电平的关系列表,即得如表1 电路的逻辑电平表电路的真值表 如果规定3V以上为高电平,用逻辑1表示,0.7V

数字电路教案-阎石第三章逻辑门电路

第3章逻辑门电路 3.1 概述 逻辑门电路:用以实现基本和常用逻辑运算的电子电路。简称门电路。用逻辑 1和o 分别来 表示电子电路中的高、低电平的逻辑赋值方式,称为正逻辑,目前在数字技术中,大都采用正逻 辑工作;若用低、高电平来表示,则称为负逻辑。本课程采用正逻辑。 获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态。 在数字集成电路的发展过程中,同时存在着两种类型器件的发展。一种是由三极管组成的双极 型集成电路,例如晶体管-晶体管逻辑电路(简称 TTL 电路)及射极耦合逻辑电路(简称 ECL 电 路)。另一种是由MOS 管组成的单极型集成电路, 例如N-MOS 逻辑电路和互补 MOS (简称COMS ) 逻辑电路。 3.2 分立元件门电路 3.3.1二极管的开关特性 性NPN 型三极管截止、放大、饱和 3种工作状态的特点 工作状态 截 止 放 大 饱 和 条 件 i B = 0 0 v i B < I BS i B > I BS 工 作 吐 偏置情况 特 占 发射结反偏 集电结反偏 U BE <0, U BC <0 发射结正偏 集电结反偏 U BE >0, U BC <0 发射结正偏 集电结正偏 U BE >0, U BC >0 A ID (mA) 4- - / UD (V) 0 5 0.7 伏安特性二极管导通。 气W )V 时的等效电路 U]-0V 时,二极管截止, 如同开关断开,W 0 = OV S 屮弋时的等奴电路 a 3 = ?二极管导通,如 ^|0.7V 的电压源.% = 二极管的反向恢复时间限制了二极管的开关速度, 3.2.2 三极管的开关特

课后习题答案 第3章 门电路

数字电子技术基础第三章习题答案 3-1如图3-63a~d所示4个TTL门电路,A、B端输入的波形如图e所示,试分别画出F1、F2、F3和F4的波形图。 略 3-2电路如图3-64a所示,输入A、B的电压波形如图3-64b所示,试画出各个门电路输出端的电压波形。 略 3-3 答: F与 (2)图 A B F 000 010 100 111 F与A、B之间相当于正逻辑的“与”操作。

3-4试说明能否将与非门、或非门、异或门当做反相器使用?如果可以,各输入端应如何连接? 答:三种门经过处理以后均可以实现反相器功能。(1)与非门:将多余输入端接至高电平或与另一端并联;(2)或非门:将多余输入端接至低电平或与另一端并联;(3)异或门:将另一个输入端接高电平。 3-5为了实现图3-65所示的各TTL 门电路输出端所示的逻辑关系,请合理地将多余的输入端进行处理。 答:a )多余输入端可以悬空,但建议接高电平或与另两个输入端的一端相连; b)多余输入端接低电平或与另两个输入端的一端相连; c)未用与门的两个输入端至少一端接低电平,另一端可以悬空、接高电平或接低电平; d )未用或门的两个输入端悬空或都接高电平。 3-6如要实现图3-66所示各TTL 门电路输出端所示的逻辑关系,请分析电路输入端的连接是否正确?若不正确,请予以改正。 答:a )不正确。输入电阻过小,相当于接低电平,因此将?50提高到至少2K ?。b)不正确。第三脚V CC 应该接低电平。 c )不正确。万用表一般内阻大于2K ?,从而使输出结果0。因此多余输入端应接低电平,万用表只能测量A 或B 的输入电压。 3-7(修改原题,图中横向电阻改为6k ?,纵向电阻改为3.5k ?,β=30改为β=80)为了提高TTL 与非门的带负载能力,可在其输出端接一个NPN 晶体管,组成如图3-67所示的开关电路。当与非门输出高电平V OH =3.6V 时,晶体管能为负载提供的最大电流是多少? 答:如果输出高电平,则其输出电流为(3.6-0.7)/6=483u A ,而与非门输出高电平时最大负载电流是400u A ,因此最大电流L I (4000.7/3.5)8016mA =?×=。

数字电路与逻辑设计习题-3第三章集成逻辑门

第三章集成逻辑门 一、选择题 1. 三态门输出高阻状态时,是正确的说法。 A.用电压表测量指针不动 B.相当于悬空 C.电压不高不低 D.测量电阻指针不动 2. 以下电路中可以实现“线与”功能的有。 A.与非门 B.三态输出门 C.集电极开路门 D.漏极开路门 3.以下电路中常用于总线应用的有。 A.T S L门 B.O C门 C.漏极开路门 D.C M O S与非门 4.逻辑表达式Y=A B可以用实现。 A.正或门 B.正非门 C.正与门 D.负或门 5.T T L电路在正逻辑系统中,以下各种输入中相当于输入逻辑“1”。 A.悬空 B.通过电阻 2.7kΩ接电源 C.通过电阻 2.7kΩ接地 D.通过电阻510Ω接地 6.对于T T L与非门闲置输入端的处理,可以。 A.接电源 B.通过电阻3kΩ接电源 C.接地 D.与有用输入端并联7.要使T T L与非门工作在转折区,可使输入端对地外接电阻R I。 A.>R O N B.<R O F F C.R O F F<R I<R O N D.>R O F F 8.三极管作为开关使用时,要提高开关速度,可。 A.降低饱和深度 B.增加饱和深度 C.采用有源泄放回路 D.采用抗饱和三极管 9.C M O S数字集成电路与T T L数字集成电路相比突出的优点是。 A.微功耗 B.高速度 C.高抗干扰能力 D.电源范围宽 10.与C T4000系列相对应的国际通用标准型号为。 A.C T74S肖特基系列 B.C T74L S低功耗肖特基系列 C.C T74L低功耗系列 D.C T74H高速系列 二、判断题(正确打√,错误的打×) 1.TTL与非门的多余输入端可以接固定高电平。() 2.当TTL与非门的输入端悬空时相当于输入为逻辑1。() 3.普通的逻辑门电路的输出端不可以并联在一起,否则可能会损坏器件。() 4.两输入端四与非门器件74LS00与7400的逻辑功能完全相同。() 5.CMOS或非门与TTL或非门的逻辑功能完全相同。() 6.三态门的三种状态分别为:高电平、低电平、不高不低的电压。() 7.TTL集电极开路门输出为1时由外接电源和电阻提供输出电流。() 8.一般TTL门电路的输出端可以直接相连,实现线与。()

第3章门电路课后答案

第三章 门 电 路 【题3.1】 在图3.2.5所示的正逻辑与门和图3.2.6所示的正逻辑或门电路中,若改用负逻辑,试列出它们的逻辑真值表,并说明Y 和A,B 之间是什么逻辑关系。 图3.2.5的负逻辑真值表 图3.2.6的负逻辑真值表 【题 3.5】已知CMOS 门电路的电源电压5DD V V =,静态电源电流 2DD I A μ=,输入信号为200Z KH 的方波(上升时间和下降时间可忽略不 计),负载电容200L C pF =,功耗电容20pd C pF =,试计算它的静态功耗、动态功耗、总功耗和电源平均电流。 【解】 静态功耗 6 21050.01S DD DD P I V mW mW -==??= 动态功耗 ()()2 125220********* 1.10D L pd DD P C C fV mW mW -=+=+????= 总功耗 0.01 1.10 1.11TOT S D P P P mW =+=+= 电源平均电流 1.11 0.225 TOT DD DD P I mA mA V = = = 【题3.5】已知CMOS 门电路工作在5V 电源电压下的静态电源电流5A μ,在负载电容100L C pF 为,输入信号频率为500Z KH 的方波时的总功耗为1.56mW 试计算该门电路的功耗电容的数值。 【解】 首先计算动态功耗

()31.565510 1.54D TOT S TOT DD DD P P P P I V mW mW -=-=-=-??≈ 根据() 2D L pd DD P C C fV =+得 312252 1.541010010135105D pd L DD P C C F pF fV --???= -=-?≈ ????? 【题3.7】 试分析图P3.7 中各电路的逻辑功能,写出输出逻辑函数式。 A B C DD Y V DD Y (b) A

第3章-逻辑门电路

3 逻辑门电路 MOS 逻辑门电路 3.1.2 求下列情况下TTL 逻辑门的扇出数:(1)74LS 门驱动同类门;(2)74LS 门驱动74ALS 系列TTL 门。 解:首先分别求出拉电流工作时的扇出数N OH 和灌电流工作时的扇出数N OL ,两者中的最小值即为扇出数。 从附录A 可查得74LS 系列电流参数的数值为I OH =,I OL =8mA ,I IH =,I IL =;74ALS 系列输入电流参数的数值为I IH =,I IL =,其实省略了表示电流流向的符号。 (1) 根据(3.1.4)和式()计算扇出数 74LS 系列驱动同类门时,输出为高电平的扇出数 0.4200.02OH OH IH I mA N I mA === 输出为低电平的扇出数 8200.4OL OL IL I mA N I mA = == 所以,74LS 系列驱动同类门时的扇出数N O 为20。 (2) 同理可计算出74LS 系列驱动74ALS 系列时,有 0.4200.02OH OH IH I mA N I mA === 8800.1OL OL IL I mA N I mA = == 所以,74LS 系列驱动74ALS 系列时的扇出数N O 为20。 3.1.4 已知图题所示各MOSFET 管的 T V =2V ,忽略电阻上的压降,试确定其工作状态(导 通或截止)。 解:图题3.1.4(a )和(c )的N 沟道增强型MOS ,图题(b )和(d )为P 沟道增强型MOS 。N 沟道增强型MOS 管得开启电压V T 为正。当GS V <V T 时,MOS 管处于截止状态;当GS V ≥V T ,且DS v ≥(GS V —V T )时,MOS 管处于饱和导通状态。

相关文档
最新文档