热力学统计物理各章重点总结

合集下载

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结

§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。

这些条件可以利用一些热力学函数作为平衡判据而求出。

下面先介绍几种常用的平衡判据。

oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。

于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。

孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。

如果只有体积变化功,孤立系条件相当与体积不变和内能不变。

因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。

如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。

如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。

熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。

2、自由能判据表示在等温等容条件下,系统的自由能永不增加。

这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。

我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。

这一判据称为自由能判据。

热力学与统计物理第二章知识总结

热力学与统计物理第二章知识总结

§2.1内能、焓、自由能和吉布斯函数的全微分热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。

焓:自由能:吉布斯函数:下面我们由热力学的基本方程(1)即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分•焓、自由能和吉布斯函数的全微分o焓的全微分由焓的定义式,求微分,得,将(1)式代入上式得(2)o自由能的全微分由得(3)o吉布斯函数的全微分(4)从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。

下面从这几个函数和它们的全微分方程来推出麦氏关系。

二、热力学(Maxwell)关系(麦克斯韦或麦氏)(1)U(S,V)利用全微分性质(5)用(1)式相比得(6)再利用求偏导数的次序可以交换的性质,即(6)式得(7)(2) H(S,P)同(2)式相比有由得(8)(3) F(T,V)同(3)式相比(9)(4) G(T,P)同(4)式相比有(10)(7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。

它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。

例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。

§2.2麦氏关系的简单应用证明1. 求选T,V为独立变量,则内能U(T,V)的全微分为(1)熵函数S(T,V)的全微分为( 2)又有热力学基本方程(3)由(2)代入(3)式得(4)•(4)相比可得(5)(6)由定容热容量的定义得(7)2. 求选T 、P为独立参量,焓的全微分为(8)焓的全微分方程为(9)以T、P为自变量时熵S(T、P)的全微分表达式为(10)将(10)代入(9)得(11)(8)式和(11)式相比较得(12)(13)(14)3求由(7) (14)式得(15) 把熵S看作T,V的函数,再把V看成T,P的函数,即对上式求全微分得∴代入(15)式得由麦氏关系得(16)即得证4、P,V,T三个变量之间存在偏导数关系而可证(17)§2.3气体的节流过程和绝热膨胀过程气体的节流过程(节流膨胀)和绝热膨胀是获得低温的两种常用方法,我们利用热力学函数来分析这两种过程的性质一,气体的节流(焦耳---汤姆逊效应)1、定义:如图所示有一由绝热材料制成的管子,中间用一多孔塞(节流阀)隔开,塞子一边维持较高的压强P,另一边维持较低的压强P,在压力的作用下,气体由高压的一边经过多孔塞流向低压的一边。

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结

§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。

这些条件可以利用一些热力学函数作为平衡判据而求出。

下面先介绍几种常用的平衡判据。

oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。

于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。

孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。

如果只有体积变化功,孤立系条件相当与体积不变和内能不变。

因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。

如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。

如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。

熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。

2、自由能判据表示在等温等容条件下,系统的自由能永不增加。

这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。

我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。

这一判据称为自由能判据。

热力学统计物理知识点复习大全

热力学统计物理知识点复习大全

概 念 部 分 汇 总 复 习热力学部分第一章 热力学的基本规律1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。

2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。

3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。

4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。

6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状态方程作了修正之后的实际气体的物态方程。

7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。

8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。

9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。

绝热过程中内能U 是一个态函数:A B U U W −=10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式:Q W U U A B +=−;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ∆+∆=∆,与热力学第一定律的公式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。

12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。

13.定压热容比:p p T H C ⎪⎭⎫⎝⎛∂∂=;定容热容比:VV T U C ⎪⎭⎫⎝⎛∂∂= 迈耶公式:nR C C V p =−14、绝热过程的状态方程:const =γpV ;const =γTV ;const 1=−γγTp 。

云南师范大学热力学统计物理期末复习讲解

云南师范大学热力学统计物理期末复习讲解

各章知识点整理和复习第一章 热力学的基本定律知识点1、热力学第一定律dU dQ dW =+2、热力学第二定律3、热力学基本方程dU TdS pdV =-4、热力学第二定律的数学表述dU TdS pdV ≤-5、克劳修斯熵BRB A Ad Q S S T-=⎰,玻尔兹曼熵ln S k =Ω 6、熵增加原理。

复习题1、简述热力学第二定律及其统计解释。

参考:热力学第二定律的开尔文表述:热不可能全部转变为功而不引起其他变化。

热力学第二定律的克劳修斯表述:热量不能自动地从低温物体传向高温物体。

或第二类永动机不可能。

热力学第二定律的微观意义是,一切自然过程总是沿着分子热运动的无序性(或混乱度)增大的方向进行,系统对应的微观状态数增大,根据玻尔兹曼熵ln S k =Ω,因此系统的熵值增加,即熵增加原理。

2、简述熵增加原理及其统计解释。

参考:孤立系统中所进行的自然过程总是沿着熵增大的方向进行。

根据玻尔兹曼熵公式ln S k =Ω,可知孤立系统中所进行的自然过程总是向着微观状态数(或混乱度)增大的方向进行。

第二章 均匀物质的热力学性质知识点1、基本热力学函数的全微分和麦氏关系的得出。

dU TdS pdV dH TdS Vdp dF SdT pdV dG SdT Vdp=-=+=--=-+ ()()()()()()()()S V S pT V T p T p V ST Vp SS pV T S V p T∂∂=-∂∂∂∂=∂∂∂∂=∂∂∂∂=-∂∂2、麦氏关系的应用。

2、气体的节流过程。

3、特性函数的应用。

4、热辐射(平衡辐射)的热力学结果,斯特方玻尔兹曼定律。

复习题1、写出焦汤系数的数学表达式,简述节流过程的特点;利用焦汤系数分析通过节流产生致冷效应、致温效应和零效应的原理。

(P57)2、证明能态方程T VU p T p V T ∂∂⎛⎫⎛⎫=-⎪ ⎪∂∂⎝⎭⎝⎭。

参考:选T 、V 作为状态参量时,有V TU U dU dT dV TdS pdV T V ∂∂⎛⎫⎛⎫=+=- ⎪ ⎪∂∂⎝⎭⎝⎭V TS S dS dT dV T V ∂∂⎛⎫⎛⎫=+⎪ ⎪∂∂⎝⎭⎝⎭ 得: V T S S dU T dT T p dV T V ⎡⎤∂∂⎛⎫⎛⎫=+- ⎪ ⎪⎢⎥∂∂⎝⎭⎝⎭⎣⎦比较得: T TU S T p V V ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭ 将麦氏关系T V S p V T ∂∂⎛⎫⎛⎫=⎪ ⎪∂∂⎝⎭⎝⎭代入,即得T VU p T p V T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭3、证明焓态方程p TH V V T p T ⎛⎫∂∂⎛⎫=-⎪ ⎪∂∂⎝⎭⎝⎭。

热力学统计总结

热力学统计总结

通过 ln (注意 l 是y的函数),可以将Y表为
Y 1
y
ln
p
1
V
ln


kT
S k ln ln ln
S k ln
玻耳兹曼关系。它给出熵函数S与微观状态数的关系。
i
熵增加原理:系统经绝热过程由初态变到终态,它的熵永 不减少,熵在可逆绝热过程中不变,在不可逆绝热过程后 增加。 熵增加原理是热力学第二定律的数学表述。
如果系统原来经历的过程是绝热的,
SB SA 0
经绝热过程后系统的熵永不减少。等号适用于可逆过程,不等号适 用于不可逆过程。因此经可逆绝热过程后熵不变,经不可逆绝热过程 后熵增加。而且如果系统经绝热过程后熵不变,这个绝热过程是可 逆的,如果经绝热过程后熵增加,这个绝热过程是不可逆的。
等几率原理
对于处在平衡状态的孤立系统,系统各个可能的微观状态出 现的几率是相等的。
1.玻色系统: 2.费米系统:
WB . E
l
(l al 1)! (l 1)! al !
l!
( l a l )! a l !
WF l
l l
3.Boltzmann系统
WM
T,P为独立变数
1 、自由能作为特性函数
dU TdS PdV
F U TdS
dF SdT PdV
S F T ,P F V
物态方程
U F TdS F T
F T
吉布斯-亥姆霍兹方程
2 、吉布斯函数作为特性函数 G=H-TS H=U+PV
Q 2 RT 2 ln V3 V

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结

热力学与统计物理第三章知识总结第一篇:热力学与统计物理第三章知识总结§3.1 热动平衡判据当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。

这些条件可以利用一些热力学函数作为平衡判据而求出。

下面先介绍几种常用的平衡判据。

oisd一、平衡判据1、熵判据熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。

于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。

孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。

如果只有体积变化功,孤立系条件相当与体积不变和内能不变。

因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。

在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。

如果将熵函数作泰勒展开,准确到二级有d因此孤立系统处在稳定平衡态的充分必要条件为既围绕某一状态发生的各种可能的虚变动引起的熵变稳定的平衡状态。

如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。

亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。

如果对于某些变动,熵函数的数值不变,这相当于中性平衡了。

,该状态的熵就具有极大值,是熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。

不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。

2、自由能判据表示在等温等容条件下,系统的自由能永不增加。

这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。

我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。

热力学与统计物理 总复习提要

热力学与统计物理 总复习提要

复习提要第一章 热力学的基本规律热力学的状态描述和物态方程:⎧⎧⎪⎪⎧⎪⎨⎨⎨⎪⎩⎩⎪⎪⎩孤立系统: 系统闭系非孤立系统开系外界⎧⎪⎧⎪⎪⎪⎪⎪⇒⇒→⎨⎨⎪⎪⎪⎪⎩⎪⎪⎩静态(稳恒态) 热平衡力学平衡平衡态热力学平衡热动平衡相平衡化学平衡非平衡态⎧⎫⎪⇒⎨⎬⎪⎭⎩内参量状态参量相互之间的关系物态方程外参量 ⎧⎫⎪⎪⇒⎨⎬⎪⎪⎭⎩膨胀系数压力系数引进了循环公式压缩系数 §2 热力学第零定律−−−−→→→+物态方程第零定律温度温度计温标(三个要素)§3 热力学第一定律()⇒功的概念两个例子活塞做功、电场做功i dX ⇒∑i i外界对系统做功的广义公式dw=Y ↔功:外界系统的能量交换(单位:焦耳)热量的概念:系统与系统之间传递的能量,单位为卡。

是一个过程量,不属于某一个系统。

绝热过程:系统与外界没有热量交换的过程。

内能:系统内无规热运动能量的度量。

是指在绝热过程中,外界对系统做功的多少仅与系统的初态和终态有关,与过程的路径无关。

n T ⎧⎪⎪⎨⎪⎪⎩(1):表示系统内无规热运动能量的度量 (2):是相对量,可表示为给定能量值加一个常数U+U 内能(四点)(3):是系统的状态函数,简称态函数 (4):过程中系统的内能可表示和的函数(公式1.21)⎧⎪⎨⎪⎩能量转化和守恒定律热力学第一定律两种表述数学表达式(dU=dQ+dW)§4 热容量、焓、绝热方程、卡诺循环⎧⎪⎧⎫⎨⎨⎬⎪⎩⎭⎩定义和数学表达式热容量定容热容量是一个过程量他们之间的关系定压热容量H=U+pV ⎧⎪⎨⎪⎩物理意义焓焓的定义式:是状态函数⎧⎨⎩焓是定压条件下引入的概念 内能是在绝热过程引入的概念 绝热方程:P V C C r C ⎛⎫== ⎪⎝⎭rPV , 物态方程:PV RT ='2:T ηη⎧⎪⎪⎪⎨⎪⎪=⎪⎩12112定义T -T 卡诺循环热机效率:=T 逆卡诺循环的工作系数T -T§5 热力学第二定律⎧⎨⎩系统状态变化方向定律热力学第二定律开氏描述和克劳休斯描述 卡诺定理和卡诺热机及其效率:121T T T η-=(理想气体)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学统计物理各章重点总结————————————————————————————————作者:————————————————————————————————日期:第一章概念1.系统:孤立系统、闭系、开系与其他物体既没有物质交换也没有能量交换的系统称为孤立系;与外界没有物质交换,但有能量交换的系统称为闭系;与外界既有物质交换,又有能量交换的系统称为开系;2.平衡态平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。

3.准静态过程和非准静态过程准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。

非准静态过程,系统的平衡态受到破坏4.内能、焓和熵内能是状态函数。

当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关;表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。

这是态函数焓的重要特性克劳修斯引进态函数熵。

定义:5.热容量:等容热容量和等压热容量及比值定容热容量:定压热容量:6.循环过程和卡诺循环循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。

系统经历一个循环后,其内能不变。

理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。

7.可逆过程和不可逆过程不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。

可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。

8.自由能:F和G定义态函数:自由能F,F=U-TS定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1定律及推论1.热力学第零定律-温标如果物体A和物体B各自与外在同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。

三要素:(1)选择测温质;(2)选取固定点;(3)测温质的性质与温度的关系。

(如线性关系)由此得的温标为经验温标。

2.热力学第一定律-第一类永动机、内能、焓热力学第一定律:系统在终态B和初态A的内能之差UB-UA等于在过程中外界对系统所做的功与系统从外界吸收的热量之和,热力学第一定律就是能量守恒定律. UB-UA=W+Q.能量守恒定律的表述:自然界一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化中能量的数量保持不变。

第一类永动机:不需要任何动力的,不断自动做功的机器。

3.焦耳定律-理想气体气体的内能只是温度的函数,与体积无关。

这个结果称为焦耳定律。

对理想气体,第二项为零,则有:4.热力学第二定律-第二类永动机、熵热力学第二定律:1、克氏表述-不可能把热量从低温物体传到高温物体而不引起其他变化;2、开氏表述-不可能从单一热源吸热使之完全变成有用的功而不引起其它变化,第二类永动机不可能造成第二类永动机:能够从单一热源吸热,使之完全变成有用的功而不产生其它影响的机器。

熵取微分形式5.卡诺定理及推论卡诺定理:所有工作于两个一定的温度之间的热机,以可逆机的效率为最大推论:所有工作于两个一定的温度之间的可逆热机,其效率相等6.熵增加原理熵增加原理:系统经绝热过程由初态变到终态,它的熵永不减少,熵在可逆绝热过程中不变,在不可逆绝热过程后增加。

7.最大功原理在等温过程中,系统对外界所作的功-W不大于其自由能的减少。

或系统自由能的减少是在等温过程中从系统所能获得的最大功。

方程第二章概念1.麦氏关系2.焦-汤效应和焦-汤系数在节流过程前后,气体的温度发生了变化。

该效应称为焦-汤效应定义焦—汤系数:焓不变的条件下,气体温度随压强的变化关系。

H=H(T,P)3.特性函数4.平衡辐射和辐射通量密度平衡辐射:当物体对电磁波的吸收和辐射达到平衡时,电磁辐射的特性将只取决于物体的温度,与物体的其它特性无关。

辐射通量密度:单位时间内通过小孔的单位面积向一侧辐射的辐射能量。

与辐射内能密度的关系:5.磁介质的麦氏关系、热力学基本微分方程热力学的基本微分方程dU =TdS- PdV定律1.焦耳定律2.斯特藩—玻耳兹曼定律3.基尔霍夫定律方程第三章概念1.热动平衡判据:熵判据、内能、焓、自由能、吉布斯判据熵判据孤立系dS0U,V不变,平衡态S极大。

对系统的状态虚变动,熵的虚变动2.均匀系统的热动平衡条件和稳定条件3.化学势名为化学势,它等于在温度和压力不变的条件下,增加1摩尔物质时吉布斯函数的改变。

4.巨热力学势巨热力学势J是以T,V为独立变量的特性函数5.单元复相系平衡条件整个系统达到平衡时,两相的温度、压力和化学势必须相等。

这就是复相系达到平衡所要满足的平衡条件。

6.相图、三相点、相平衡曲线AC—汽化线,分开气相区和液相区;AB—熔解线,分开液相区和固相区;OA—升华线,分开气相区和固相区。

A点称为三相点,系统处于该点的状态时,为气,液,固三相共存状态。

C点称为临界点,它是汽化线的终点。

在单元两相系中,由相平衡条件所得到的T-P之间的关系P =P(T),在T-P 图上所描述的曲线称为相平衡曲线。

AC, AB,OA线。

7.一级相变、二级相变、连续相变一级相变:相变时两相的化学势连续,而化学势对温度和压强的一阶偏导数存在突变。

二级相变的特征是,在相变时两相的化学势和化学势的一级偏导数连续,但化学势的二级偏导数存在突变。

朗道(Landau, 1937)连续相变理论:连续相变的特征是物质有序程度的改变及与之相伴随的物质对称性质的变化。

通常在临界温度以下的相,对称性较低,有序度较高,序参量非零;临界温度以上的相,相反,序参量为零。

8.开系的热力学基本微分方程dU =TdS -PdV+dn9.麦克斯韦等面积法则方程1.克拉珀龙方程2.爱伦费斯特方程第四章概念1.多元系、复相平衡、化学平衡多元系是指含有两种或两种以上化学组分的系统。

化学平衡条件:多元系中各组元发生化学反应时系统达到平衡所要满足的条件。

2.多元系的热力学基本微分方程3.单相化学反应式的化学平衡条件4.吉布斯佯谬对于同种气体,混合前后熵不变。

因此,由性质任意接近的两种气体过渡到同种气体,熵增突变为零—吉布斯佯谬。

5.化学反应的平衡常量定义Kp称为化学反应的定压平衡常量,简称平衡常量。

6.绝对熵定律、方程1.吉布斯关系2.吉布斯相律3.杠杆定则4.赫斯定律赫斯定律:如果一个反应可以通过两组不同的中间过程达到,两组过程的反应热之各彼此应当相等。

5.亨利定律亨利(Henry)定律:稀溶液中某溶质蒸气的分压与该溶质在溶液中的摩尔分数成正比6.质量作用律化学反应平衡条件为,称为质量作用律。

7.能斯特定理能斯特(Nerst)定理:凝聚系的熵在等温过程中的改变随绝对温度趋于零。

8.热力学第三定律不可能使一个物体冷却到绝对温度的零度。

即绝对零度不可到达。

第六章概念1.相空间、状态数相空间:以描述粒子运动状态的广义坐标和广义动量为轴构成的一个2r维的正交坐标空间。

状态数:相空间的相体积~相点的集合(即态的集合)2.全同粒子系统全同粒子系统-具有完全相同的内禀属性(质量、电荷、自旋等)的同类粒子组成的系统。

3.近独立粒子组成的系统近独立粒子组成的系统-系统中粒子间相互作用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而可忽略粒子间相互作用。

系统的能量为单个粒子能量之和:4.玻耳兹曼系统、玻色系统、费米系统由费米子组成的系统称为费米系统,遵从泡利(Pauli)不相容原理:一个个体量子态最多能容纳一个费米子。

由玻色子组成的系统为玻色系统,不受泡利不相容原理约束。

玻尔兹曼系统:由可分辨全同近独立粒子组成,且在一个个体量子态上的粒子数不受限制的系统。

5.等概率原理对于处在平衡状态的孤立系统,系统各个可能的微观状态出现的概率是相等的。

6.微观状态、分布玻耳兹曼系统,粒子可以分辨,有与分布{al}相应的系统的微观状态数为:玻色系统,粒子不可分辨,每一量子态能够容纳的粒子数不受限。

与分布{al}相应的微观状态数费米系统,粒子不可分辨,每一个量子态最多一个粒子。

与分布{al}相应的微观状态数在经典统计中与分布{al}相应的微观状态数为7.最概然分布根据等概率原理,处于平衡状态的孤立系统,每一个可能的微观状态出现的概率是相等的。

因此,微观状态数最多的分布,出现的概率最大,称为最概然分布。

8.玻耳兹曼分布、玻色分布、费米分布9.经典极限条件和非简并条件10.定域系统和满足经典极限条件的玻色(费米)系统定域系统和满足经典极限条件的玻色(费米)系统都遵从玻尔兹曼分布。

方程、定律1.自由粒子态密度2.玻耳兹曼系统的微观状态数玻耳兹曼系统,粒子可以分辨,有与分布{al}相应的系统的微观状态数为:3.玻色系统的微观状态数玻色系统,粒子不可分辨,每一量子态能够容纳的粒子数不受限。

与分布{al}相应的微观状态数4.费米系统的微观状态数费米系统,粒子不可分辨,每一个量子态最多一个粒子。

与分布{al}相应的微观状态数5.拉格朗日未定乘子法和拉氏乘子玻耳兹曼统计概念1.配分函数2.玻耳兹曼系统的配分函数量子和经典表达式经典统计理论,其玻耳兹曼经典统计的配分函数为量子表达式:3.玻耳兹曼关系4.满足经典极限条件的玻色(费米)系统的熵5.其特性函数和自由能6.理想气体的经典极限条件7.理想气体的麦克斯韦速度、速率分布率麦克斯韦速度分布律其中f(vx,vy,vz)满足:气体的速率分布其满足:8.其最概然、平均和均方根速率平均速率方均根速率方程、定律1.玻耳兹曼系统的热力学量的统计表达式(内能、广义力、熵、自由能)外界对系统的广义作用力为:熵的统计表达式:自由能的统计表达式:2.其特性函数3.碰壁数和泻流问题4.能量均分定理对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于1/2kT。

5.理想气体的平动、转动、振动配分函数及特征温度平动配分函数为:振动配分函数:转动配分函数为:6.理想气体的熵-萨库尔-铁特罗特公式7.固体热容量的爱因斯坦理论和爱因斯坦特征温度8.顺磁性固体的极限条件下热力学性质玻色统计和费米统计概念1.玻色系统和费米系统的平均分布2.其巨配分函数玻色系统引入巨配分函数:费米系统,巨配分函数改为:3.统计特性函数及其自变量4.弱简并条件及相应玻色、费米系统的内能及差异费米气体的附加内能为正而玻色气体为负量子统计关联使得费米粒子间出现等效的排斥作用,而玻色粒子-吸引作用。

相关文档
最新文档