电力电缆的在线监测分析
电力电缆绝缘在线监测方法分析

电力电缆绝缘在线监测方法分析发布时间:2022-05-12T07:18:40.419Z 来源:《福光技术》2022年10期作者:张永[导读] 电缆是电网的重要组成部分,所以电缆的绝缘性好坏也在很大程度决定了电网的安全运行。
国网福州供电公司自贸区供电服务中心福建福州 350015摘要:电缆是电网的重要组成部分,所以电缆的绝缘性好坏也在很大程度决定了电网的安全运行。
导致电缆绝缘性降低的因素很多,例如电缆内部放电也会使电缆绝缘性发生改变,一旦电缆的绝缘性降低了,将会使电网的安全运行存在很大的潜在威胁。
除了内部放电会带来影响,很有很多的影响因素造成电缆绝缘性破坏。
例如铺设的电缆绝缘层材料厚度不足并且将该电缆置于高压高温环境下,则很容易使电缆的绝缘层发生氧化、热裂解,从而导致绝缘击穿。
电缆敷设于污水沟底下,受到污水侵蚀,绝缘损坏发生相间短路,引燃污水附近沼气,发生爆炸。
这些导致电缆绝缘性遭到破坏的因素会使电力系统存在重大的安全隐患。
因此,对电缆进行实时在线绝缘监测是一个必然发展趋势。
关键词:电力电缆;绝缘在线监测;方法1电力电缆绝缘在线监测的优势电缆绝缘水平在线监测装置能够让电力部门在不断电的情况下进行操作,这样可以对电缆的故障问题进行实时排查,从而延缓电缆使用寿命,让电缆能够更加长期稳定的运行。
除了对电缆使用情况进行实时监测,装置还能够通过采集到的新数据和装置中以前保存的数据进行对比分析,对电缆绝缘状况进行在线评估并且预测出未来电缆绝缘老化速度的快慢,从而可以让电力部门对电缆进行预防性的检修。
影响电缆绝缘水平变化的因素有很多,和传统的离线检测相比,在线绝缘监测装置对电缆绝缘状态进行在线监测有以下优点:(1)相对于离线绝缘监测,在线监测不需要进行断电操作,这避免了预防性试验带来的经济损失,而且装置采集到的数据具有实时性,能让电力部门对电缆出现的问题更快的进行检修。
(2)在线绝缘监测相对于离线监测技术,还在很大程度上降低了维护成本。
高压电力电缆护层电流在线监测及故障诊断技术

高压电力电缆护层电流在线监测及故障诊断技术摘要:在电缆的实际应用中,故障的发生可能是从理论上讲,通过深化电缆保护层电流在线监测的研究与分析,可以为解决实际故障提供参考。
在此基础上,分析了高压电力电缆护层电流的主要故障以及电流在线监测的原理进行分析,结合实际故障监测诊断技术的应用,进行了详细的探讨,希望通过这一理论研究,有助于有效地解决。
关键词:高压电力电缆;保护层电流;监测技术引言高压电力电缆使用中受多种因素影响的故障存在问题,要解决该故障,必须科学地采取重点解决故障的措施,保证故障第一时间消除。
1、高压电力电缆护层电流主要故障及原因分析1.1高压电力电缆护层电流主要故障分析高压电力电缆保护层电流故障一般具有多种类型、复杂原因等特点,除实际运行情况外,主要包括以下几个方面:(1)电缆接头松脱。
这些障碍在实际工作中更常见。
一般来说,这些障碍的原因主要在两个方面。
1)在电缆接头安装过程中,工人无法按操作规范工作,未安装到位,导致电缆接头部分松动。
(2)受外力影响,电缆接头部分松动,甚至电缆断开,无法形成闭合回路。
(2)交叉连接箱水。
这种问题在实际工作中也经常发生,影响比较大。
图1是J2连接器上的交叉连接盒被淹没的示意图。
此时导体直接接地,将正常的3个保护层电路变更为6个故障回路。
像这样的问题,如果连接盒表面发生泄漏等,降雨量频繁,降水量大,容易诱发,最终电缆保护层电流会短路,所以要充分注意。
(3)电缆连接器外部环氧预制件制动闸。
需要注意的是,这些障碍问题往往会产生更大的影响。
具体地说,这些问题会导致电缆两侧的金属保护层连接,整个交叉互连系统受到影响,同时保护层电流瞬间升高,导致连接器内环氧预制件加热,从而产生不同级别的安全风险。
此外,如果发生这种问题,还会影响两个保护层电流,威胁电缆线的安全使用,严重影响电力系统的正常供电,给电网的安全稳定运行带来巨大风险。
1.2高压电力电缆护层电流故障原因分析一般来说,实际导致高压电力电缆保护层电流故障的原因有多种,而其中主要原因往往集中在超负荷运行方面。
常见的电力电缆状态在线监测方法综述

2 电力 电缆绝缘在线监测
研究 表 明 , 电力 电缆 的树 枝 状 放 电是 造 成 绝 缘 劣
化和 击穿 的主 要原 因 , 针 对水 树 枝 产 生 的直 流 电流 分
至今 已有百 余年 的历 史 。 电力 电缆 在使 用 过 程 中 , 由 于 电磁 、 热、 机械 、 化 学等 多方 面 的作 用会 逐渐 老 化 , 进 而产生 破 坏性 的故 障。早 期 电缆 以本体 故 障 为主 , 近 期 以过 载性 故 障居 多 , 当前 电 缆终 端 和 中间 接 头故 障
成为电缆ቤተ መጻሕፍቲ ባይዱ障的主要原 因。对 电缆状态进行监测 , 是
预 防电缆 故 障发生 的重要 手段 。传 统 的 电力 电缆预 防
性 试验 需停 电检 测 、 试 验 电压 低 、 试 验 周期 长 , 属 于离 线检测 ¨ . 2 J , 已经 越 来 越 不 能 适 应 电力 不 问 断生 产 和
g r o u n d i n g c u r r e n t a n d t e mp e r a t u r e a nd S O o n. Th e pa s s a g e i n t r o d u c e s e x i s t i n g o n — l i n e mo n i t o r i n g me t h o d s o f p o we r c a b l e i n s u l a t i o n a n d t e mp e r a t u r e a t h o me a nd a b r o a d, a n a l y s e s t h e a d v a n t a g e s a n d d i s a d v a n t a g e s o f t h e s e me t h o d s, p r e d i c t s t h e d e v e l o pme n t t r e n d o f t h e m.
电力电缆绝缘在线监测方法分析

电力电缆绝缘在线监测方法分析毛振宇1伍振园1吴颖煜1王朋朋2杜璇2(1.广西电网有限责任公司桂林供电局,广西桂林541002;2.上海博英信息科技有限公司,上海200240)摘要:随着电力需求的增加,电力电缆的稳定运行成为供电可靠性和供电质量的重要保障,因此,电力电缆绝缘在线监测势在必行。
现对直流法、交流叠加法、介质损耗因数法、局部放电法等绝缘在线监测方法的原理进行了梳理,总结了各种监测方法的优缺点,并分析了绝缘在线监测技术存在的问题及发展方向。
关键词:电力电缆;绝缘在线监测;寿命评估0引言随着我国经济实力的不断增长,人们对电力的需求日渐提高,供电质量也成为电力部门重要的考核指标。
电力电缆作为电网运行不可或缺的组成部分,其举足轻重的地位不言而喻。
由于大多数电缆铺设在地下,不仅不容易查找故障点位置,如果不能及时排除还会造成停电的风险。
电缆绝缘在线监测可以实时监控电缆的运行状态,及时发现故障隐患,进行绝缘老化趋势分析,并预测电缆寿命,对电缆的可靠运行有深远的影响。
因此,电力电缆绝缘在线监测势在必行。
电缆绝缘在线监测系统需根据电缆的分布情况布置监测点,监测点数量相对较多,与之匹配的监控终端和系统通信节点都要相应增加,这从设备成本上就限制了该技术的发展。
更有一些监测点需要在铺设电缆的同时布置,增加了老旧线路的改造困难。
由于现场强电磁场的干扰,系统对通信设备的抗干扰能力、精度、响应时间都有着较高的要求;同时,要实现多点实时监测,这就对通信技术的高速传输和系统的稳定性提出了更高的要求。
1电力电缆绝缘在线监测方法的原理分析在国外,日本早在20世纪80年代初就对电缆在线监测领域进行了探索,并开发了多种监测技术,如直流分量法和介电损耗法,为在线监测技术的发展打下了基础。
西方国家也相继开展了大量电缆在线监测技术的相关研究,并制定了行业标准,也取得了丰硕的成果[1]。
在在线监测方面,我国的相关研究比较滞后。
研究单位主要是高校和电力方面的科研院所,清华大学、上海交大、武汉高电压研究所等机构在这方面的研究上都取得了长足进展。
谈电缆运行状态智能综合在线监测技术

谈电缆运行状态智能综合在线监测技术电缆是电力系统中重要的输电和配电设备,在电力系统中起到传输电能和分配电能的作用。
电缆的运行状态对电力系统的安全稳定运行具有重要影响。
随着电力系统的不断发展和电缆在电力系统中的广泛应用,电缆的运行状态智能综合在线监测技术成为当前研究的热点之一。
电缆的运行状态是指电缆在运行过程中的参数变化、故障发生以及运行状态的异常等情况。
传统的电缆运行状态监测方法主要采用人工巡检和离线检测的方式,这种方法工作量大、费时费力,并且不能及时准确地监测电缆的运行状态。
通过引入智能综合在线监测技术可以实现对电缆运行状态的实时监测、数据分析和故障诊断,提高电缆的安全稳定运行水平。
1. 传感器技术。
传感器是电缆运行状态监测的核心技术,它可以将电缆运行过程中的参数变化转化为电信号输出,通过信号处理和分析可以得到电缆的运行状态。
常用的传感器包括温度传感器、电流传感器、电压传感器和振动传感器等。
这些传感器可以实时监测电缆的温度变化、电流电压变化以及振动情况,从而判断电缆的运行状态是否正常。
2. 数据采集与处理技术。
通过传感器采集到的数据需要进行处理和分析,以提取有用的信息。
数据采集与处理技术主要包括数据采集、数据传输、数据清洗和数据分析等过程。
在数据采集方面,可以采用现场总线技术、无线传输技术等方法进行数据采集;在数据处理方面,可以采用数据清洗、数据压缩、数据融合、数据分析等方法进行数据处理,以实现对电缆运行状态的监测和诊断。
3. 运行状态评估与故障诊断技术。
通过对电缆运行状态的监测和分析,可以对电缆的运行状态进行评估和故障诊断。
运行状态评估主要是根据电缆运行参数的变化情况,采用故障诊断技术对电缆的运行状态进行评估,判断电缆是否出现故障。
故障诊断是在评估的基础上,通过对电缆运行参数的分析和比较,找出故障原因和位置,为电缆的维护和修复提供依据。
4. 运维决策支持技术。
电缆运行状态智能综合在线监测技术不仅可以对电缆的运行状态进行监测和诊断,还可以提供运维决策支持。
高压电缆线路接地系统在线监测分析

高压电缆线路接地系统在线监测分析随着电力供应体系的不断扩大和电力设备的不断发展,高压电缆线路在输电中的作用日益重要。
高压电缆线路接地系统是保证电网安全运行的重要组成部分,其良好的接地系统能够确保电网设备正常运行、人身安全,以及保护电网免受雷击等电力故障的影响。
对高压电缆线路接地系统的在线监测分析具有重要的意义。
高压电缆线路接地系统在线监测分析主要包括接地电阻监测、接地电位监测和接地电流监测等。
接地电阻是衡量接地系统性能的重要指标,通过对接地电阻的在线监测可以及时判断接地系统是否出现故障,确保接地系统的可靠性。
接地电位是指接地点与地面之间的电位差,通过对接地电位的在线监测可以了解接地系统是否存在漏电现象,及时排除隐藏的安全隐患。
接地电流是指通过接地系统的电流,通过对接地电流的在线监测,可以判断接地系统是否存在漏电或者过载等问题,及时进行修复。
高压电缆线路接地系统在线监测分析的方法主要有传统的实时监测和新兴的无线传感器网络监测两种。
传统的实时监测方法通常通过安装感应电阻器、测量电压表等设备,对接地电阻、接地电位和接地电流进行监测,并通过采集数据进行分析评估接地系统的性能。
这种方法需要人工进行监测和数据分析,操作繁琐,成本较高。
而新兴的无线传感器网络监测方法则采用无线传感器网络技术,通过部署在电缆线路接地系统上的传感器节点,实时采集接地系统的信息,并通过网络传输到监测中心进行数据分析和处理。
这种方法不仅可以实现接地系统的在线监测,还可以实现自动化操作,减轻人工负担,提高监测效率。
高压电缆线路接地系统在线监测分析的关键技术主要包括传感器技术、数据传输技术和数据分析技术。
传感器技术主要涉及接地电阻传感器、接地电位传感器和接地电流传感器等,需要具备高精度、高可靠性和低功耗的特点,能够在恶劣的环境条件下工作。
数据传输技术主要包括有线传输和无线传输两种,有线传输主要通过电缆进行数据传输,无线传输则通过无线传感器网络进行数据传输。
高电压设备测试试验之电缆在线监测

光信号测温
无源传感技术的优势
(1)采用无源传感器技术的温度在线监测传感器可以在电力设备生命周期内免维 护,提升了电力设备温度在线监测系统的可靠性各种先进的计算方法 对监测数据进行分析,以便及时发现设备的故障隐患,采取预 防措施,实现科学的设备故障诊断和状态检修,对电力系统运 行的可靠性、安全性具有重要意义。国家电网公司早在2010 年颁发了《变电设备在线监测系统技术导则》并开始全面推广 实施设备状态检修,全面提升设备智能化水平,推广应用智能 设备和技术,实现电网安全在线预警和设备智能化监控
(2)每个无线温度传感器具有唯一的32bits编号,实 际安装使用时需要记录每个传感器的安装地点,并与编号一 起存入温度监测工作站计算机数据库中;
(3)接收无线温度模块发送的温度数据和对应模块编 号,这些数据被缓冲存储在其内部存储器中。当收到温度监 测工作站的通信命令后把各传模块的编号和温度测量数据发 送出去;
• 电缆长度为5025米,共8个中间接头,脉冲反射法测得电 缆长度及中间接头数量与实际相符,说明没有发生电缆开 路故障,之后经弧反射法测得距离电缆起始点约1303米处 有对地放电信号,并且采用双音频精定点仪沿线航进行声 磁同步测试,测得1303米处有明显的放电声音。最终通过 开挖发现,电缆受损情况严重,故确定该故障点位置。
(2)不需要电池,没有高温爆炸的安全隐患,安全性高;同时,能够持续对电力 设备的高温进行监测,让用户能够在事故发生前及时发现设备隐患和故障。
(3)无源传感技术的应用,能够大量减少电池的使用,减少了电池带来的各种污 染,对环境保护做出了贡献,具有一定的社会价值。
电力设备在线监测的现状与发展分析

实践证明:由于灵敏度低和现场抗干扰能力差的原因,脉冲电流检测法主要用于GIS制造厂家的实验室局放试验和现场的验收试验,不适用于GIS 在线局放的监测。
由于超声波在GIS中的传播复杂,故在故障监测上很难做到定量判断,可作为一种辅助的测量方法。超声波监测法主要用于定位监测。
5.超高频法
采用超高频(Ultra High-Frequency,UHF)法检测GIS 中的局部放电是20世纪80年代初期由英国中央电力局(Central Electricity Generating Board,CEGB)提出,并应用于英国Torness 420kV GIS 的检测。Torness 电站的多年运行经验验证了该方法的可行性,使超高频法得到了行业的认可。在2000年修订的IEC60270及IEC50517标准中,均将这一方法作为GIS局放检测的主要方法之一。
电力设备在线监测的现状与发展分析
一.在线监测的诞生
测量、监视、控制等多功能二次设备以及现场测试或实时测量对电力设备运行可靠性起了重要作用。 现场测试或实时测量的发展而诞生了在线监测。
主要电力设备
耦合电容器、电容型套管、电容型电流互感器、电容型电压互感器、避雷器、绝缘子、变压器、GIS、电力电缆、发电机和高压断路器
*超声脱气法是采用超声波装置,使气液两相迅速达到平衡。利用电声换能器,对压电晶体的逆压电效应,通过施加交变电压,使之发生交替的压缩和拉伸而引起振动,使所加频率在超声的频率范围内(即大于20Hz),超声波在介质中所引起的介质微粒振动,即使振幅极小,也足可使介质微粒间产生很大的相互作用力,使气体分子从油中逸出。
在线检测目前并不能完全取代常规预防性试验: 大多局限于测量工频运行电压下的绝缘参量; 无法测量电力设备在高于运行电压下的参量; 迄今尚未形成统一的判断标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电缆绝缘的劣化和诊断内容
交联聚乙烯塑料电缆应用广泛,替代了油纸绝缘 一、绝缘劣化原因 1 、热劣化 温度过高,材料氧化分解,导致电缆绝缘电阻和耐压性能下降 可通过检测其直流高压下的泄漏电流和测量交流电压下的介质 损耗角正切
2、电气劣化 电晕放电发展树枝状放电 监测电缆局部放电 3、水树枝劣化 有机材料的长期吸水形成水树枝劣化 研究表明介质损耗的大小随水树技老化的程度而增加,在 0.1~50Hz之间的损耗因数与水树技老化程度有很好的相关性 检测介质损耗角正切或直流泄漏电流
4 、化学性劣化 化学部门,有溶解,龟裂等现象 测量介质损耗角正切和直流泄漏电流 二、电缆在线监测参数 介质损耗角正切 局部放电 直流泄漏电流
第六章 电中的电缆大多采用图1-1所示的 结构。从内到外主要分为线芯、绝缘层和护层.
1)线芯 ? 电力电缆线芯的作用主要是传送电流,线芯的损耗主
要由导体截面积和电导系数来决定。为了减少电力电 缆线芯中的损耗和电压降,电缆线芯一般由具有高电 导系数的金属材料铜或铝制成。 ? 电力电缆必须保证一定的柔韧性和可弯曲度,因此, 较大截面的电缆线芯要由多根较小直径的导线绞合而 成。实际上,根据线芯的外形可分为圆形线芯、中空 圆形线芯、扇形线芯、椭圆形线芯四类。由于圆形线 芯的电气特性比较均匀,在35KV及以上电压等级的电 力电缆中主要采用圆形线芯,其它形式的线芯在低压 线路中也有一定的运用。
? 2)由于电力电缆线路一次性投资较大,其直接成本是架空线 路的4倍,如果计及拆迁、土建等间接费用,其投资成本约是 架空线路的10多倍。电缆线路也就成为输配电网络的瓶颈, 特别是用电高峰季节,大约有72%的电缆线路长期处于过负 荷运行状态且不能够及时进行维护。同时,由于受到经济条 件限制,部分区域或企业将过去投运的6KV油纸绝缘电力电缆 升压至10KV电压系统中运行,造成电缆线路运行事故明显增 加。
? 3)在我国城市规划工作中,自来水、煤气、通讯、市政、路 桥、房地产、电力以及环卫、绿化等基础建设工程缺乏系统 管理,造成电力电缆线路外力破坏故障大幅上升。加之从业 人员素质参差不起,电力电缆线路敷设安装质量和运行维护 得不到保证。
电力电缆故障成因分析
电缆故障分类
电缆故障分为:开路故障、低阻故障和高阻故障三种类型
? 统计结果表明:10KV~220KV电力电缆 的平均运行故障率由1999年的11.5次/ (百km.年),逐年下降至2003年度的 5.6次/(百km.年。
? 与经济发达国家相比,我国电力电缆运行故障率高出许多。 造成电缆线路故障率较高的原因主要在以下三个方面:
? 1)二十世纪七十年代至八十年代投入运行的XLPE绝缘电力电 缆产品均采用1+2挤出的生产设备和湿法蒸汽交联工艺,有近 40,000km质量不稳定的电力电缆产品投入输配电网运行,且 基本进入高故障率时期。
电力电缆的电气参数
? 电力电缆的主要电气参数有线芯的有效电阻、 电感、绝缘电阻以及电容四个参数 ,这些统称为 电缆的一次参数。电力电缆的波阻抗、衰减常 数、相位移常数则成为电缆的二次参数,二次 参数可以从一次参数计算而得。电缆的电气参 数决定电缆的传输性能,如电缆线路的电压调 整率就主要是由电缆线芯的电阻和电感来决定 的(对于长电缆线路,绝缘电阻和电容也影响 到电压调整率)。
3)护层 ? 为使电缆适应各种使用环境的要求,在电缆绝缘层外施加了覆盖
层,统称为护层。 ? 电缆的护层是构成电缆的三大组成部分之一,它的主要作用是保
护电缆绝缘层在敷设和运行过程中,免受机械损伤和各种环境因 素的影响,如水、日光、生物、火灾等的破坏,以保持电缆长时 间的电气稳定性。因此,电缆护层的运行状况直接关系到电缆的 使用寿命。 ? 电缆护层所用材料繁多,主要可分为两大类。一类是由金属材料, 如铝、铅、钢铜等,主要用以制造密封护套、铠装或屏蔽。由于 金属材料具有不透水性,因此可以防止水分和其它有害物质进入 电缆的绝缘层。另一类是非金属材料,主要有橡皮、塑料、涂料 以及各种纤维制品。由于电缆金属材料的腐蚀属于电化学腐蚀范 畴,因此,为了防止对金属护层的腐蚀,常采用非金属材料作为 金属护层的外部保护。
电缆绝缘的在线监测
一、直流法 导电芯发生水树时,从导电芯到外皮有一个负电流流过,即水 树枝整流作用(在交流电压下) 该电流(纳安级)与水树枝长度之间有一定相关性,以此可以 判断水树或绝缘的劣化
相间或相对地绝缘电阻 高,但工作电压不能传 输到终端或带载能力差
电缆相间或相对地绝缘 受损,其绝缘电阻小到 能用低压脉冲法测量的 一类故障
相对于低阻 故障而言
? 对电缆绝缘在线监测的注意力主要集中在主绝 缘上,开发了一些电缆主绝缘在线监测仪。日 本从二十世纪八十年代起就开始对 XLPE电缆主
绝缘老化的诊断问题开始研究,提出了直流分 量法、叠加电压法和电介质损耗法等多种诊断 技术,并在 80年代后期研制出多种可供实验室
2)绝缘层 ? 作为电力电缆的绝缘层材料,必须具有以下几个特性: ? (1)较高的击穿场强(脉冲、工频等); ? (2)较低的介质损耗系数; ? (3)相当高的绝缘电阻; ? (4)优良的耐树枝放电、局部放电能力; ? (5)一定的机械强度和柔韧性; ? (6)电气及物理性能的长期稳定性等。
目前在高压电缆的生产工艺上,一般采用三层共挤 的生产方式(内屏蔽层、绝缘层、外屏蔽层)。
故障率统计
? 长期积累的电力电缆试验研究结果证实:电力 电缆护层、电力电缆附件是电缆线路中绝缘结 构相对薄弱、容易发生运行故障的部分。其次, 电力电缆在制造、敷设施工、运行维护过程中, 不可避免地会出现产品质量、过负荷运行以及 外力破环等问题,也是导致电缆线路中电缆本 体发生运行故障的直接原因。然而这一试验研 究结果需要经实际运行情况的验证,这里以故 障率做为统计量。