最新尼泊尔电力系统状况--中英文
白皮书的能源状况与政策中英文对照

-- Energy resources abound.Chinaboasts fairly rich fossil energy resources, dominated by coal. By 2006, the reserves of coal stood at 1, billion tons, and the remaining verified reserves exploitable accounted for 13 percent of the world total, rankingChinathird in the world. The verified reserves of oil and natural gas are relatively small, while oil shale, coal-bed gas and other unconventional fossil energy resources have huge potential for exploitation.Chinaalso boasts fairly abundant renewable energy resources. In 2006, the theoretical reserves of hydropower resources were equal to 6,190 billion kwh, and the economically exploitable annual power output was 1,760 billion kwh, equivalent to 12 percent of global hydropower resources, ranking the country first in the world.
尼泊尔水电项目开发

尼泊尔水电项目开发流程根据笔者的实践经验与调研,尼泊尔水电站项目开发流程概括如图所示。
尼泊尔对水电项目开发提供了以勘测证书和发电证书为中心的许可证系统。
勘测证书为项目开展前期工作的开发权保证,而发电证书是项目在建设期和运营期的开发权保证。
需要说明的是:尼泊尔针对只在其境内售电的外资投资水电项目没有项目特许经营权协议或项目开发协议的法律性形式要求,发电证书即具有一般意义的特许经营权性质,截至目前,也没有一家外资投资者与尼泊尔政府签署该类协议。
尼泊尔市场环境概要一、政治环境2008年5月,尼泊尔制宪会议通过决议,宣布建立尼泊尔联邦民主共和国。
由于国内党派众多、政治势力错综复杂,各党派争夺执政党的权力斗争一直在持续,2008-2016年,尼泊尔前后更换了7届政府。
由于利益群体众多,新宪法的制定工作也迟迟未能完成,国家政治局势还未完全稳定。
虽然尼泊尔政府频繁更迭对于水电资源投资开发是一个不利因素,但后任政府对前任政府做出的决议、签署的协议等结论性文件一直给予认可,并未有否定和推翻的先例。
虽然国家政局还未完全稳定,但尼泊尔国内的主要精力已经开始转向经济社会发展和建设。
二、经济环境中国在尼泊尔的投资规模逐年递增,并在2015年超越印度成为对尼泊尔投资最大的外国投资者,中国企业当年对尼泊尔投资总额为1.7亿美元,而水电开发约占80%。
尼泊尔经济以农业为主,工业品依赖进口,政府预算亦严重依赖外援,劳动力输出是主要创汇来源之一,2015年其国家外汇储备量为85亿美元,因此,尼泊尔有较为严格的外汇管理制度。
三、法律环境尼泊尔是南亚国家中较早实施BOT/BOOT的国家之一,因此与水电投资开发领域相关的法律、法规较为完备。
为了更多地吸引外资发展其境内基础设施,尼泊尔通过《外资和技术转让法案》规定了外国直接投资和资金撤出手续,为外国资金进入和资金撤出提供了法律依据。
中国政府与尼泊尔政府先后签订了关于中国西藏与尼泊尔之间的通商交通和其它有关问题的协定、关于避免双重征税和防止偷税漏税的协定等,目前两国正在就投资保护协定进行谈判。
(电力行业)电力系统继电保护中英文对照表

126Internalfault 内部故障 127Auxiliarycontacts 辅助触点 128Neutralauto-transformer 中性点接地自耦变压器 129Fusebox/fusiblecutout 熔断器 130Pulserelay/surgerelay 冲击继电器
旅长 2005 七 2007-10-2611:14
139Direct-to-groundcapacity 对地电容 140Shuntrunning 潜动 141Trip/opening 跳闸 142Tripswitch 跳闸开关 143Receivermachine 收信机 144High-frequencydirectionfinder 高频测向器 145Capacitycharge 电容充电 146timeover-current 时限过电流 148Surgeguard 冲击防护 149Oscillatorysurge 振荡冲击 150Failsafeinterlock 五防装置 151Differentialmotion 差动 152Capacitivecurrent 电容电流 154Timedelay 延时 156Normalinverse
Businsulator 母线绝缘器 62 Busrequestcycle 总线请求周期 63 Busreactor 母线电抗器 64 Busprotection 母线保护 65 Busrings 集电环 66 Busrod 汇流母线 67 Bussectionreactor 分段电抗器 68 Busstructure 母线支架;总线结构 69 Bustieswitch 母线联络开关 70 Bus-barchamber 母线箱
线圈调节器 81 Coilcurl 线圈 82 Coilcurrent 线圈电流 83 Coilendleakagereactance 线圈端漏电抗 84 Coilinductance 线圈电感 85 Currenttransformerphaseangle 电流互感器相角 86 Distancerelay;impedancerelay 阻抗继电器 87 Powerrheostat 电力变阻器 88 Electricallyoperatedvalve 电动阀门 89 Electricalgoverningsystem 电力调速系统 90
尼泊尔电压标准

尼泊尔电压标准尼泊尔,位于亚洲的喜马拉雅山脉南麓,以其壮丽的自然景观和悠久的历史文化而著名。
然而,对于许多游客和商务旅行者来说,一个值得关注的问题是尼泊尔的电压标准。
尼泊尔的电压标准是多少?这个问题对于计划前往尼泊尔的人来说至关重要。
尼泊尔的电压标准是220伏特,50赫兹。
这与欧洲大陆和亚洲大部分国家的电压标准相同。
然而,与美洲地区和其他一些国家的电压标准不同。
因此,如果你计划前往尼泊尔,并且需要使用电子设备,例如充电器、电脑、手机等,你必须确保你的设备支持220伏特的电压。
否则,你将需要一个电压转换器来适应尼泊尔的电网。
尼泊尔的电压标准源于其所在地区的电力发展历史和国际标准的统一。
尼泊尔并不是一个发达国家,电力供应还存在一些问题。
然而,尼泊尔政府一直在努力改善电力供应,以满足国内外需求。
尼泊尔的电力系统主要由国家电网公司(NEA)管理。
NEA负责供电、输电和配电工作。
尼泊尔的电力系统主要由水电和热能发电站提供电力。
尼泊尔位于喜马拉雅山脉,拥有丰富的水资源,因此水电是尼泊尔主要的清洁能源之一。
尼泊尔政府也积极发展其他可再生能源,例如太阳能和风能,以减少对进口能源的依赖。
尼泊尔的电力供应在城市和农村地区之间存在差异。
尽管尼泊尔政府一直在努力改善农村地区的电力供应,但由于地理条件和经济限制,一些偏远地区仍然面临电力供应不足的问题。
因此,如果你计划前往尼泊尔的边远地区,你可能需要做好无电或电力不稳定的准备。
尼泊尔的电压标准对于旅客和商务旅行者来说至关重要。
如果你计划前往尼泊尔,你应该确保你的电子设备支持220伏特的电压。
否则,你需要购买一个电压转换器,以适应尼泊尔的电网。
此外,你还应该了解尼泊尔的电力供应状况,特别是如果你计划前往农村地区。
总而言之,尼泊尔的电压标准是220伏特,50赫兹。
尽管尼泊尔的电力供应还存在一些问题,但尼泊尔政府一直在努力改善电力供应,以满足国内外需求。
如果你计划前往尼泊尔,你应该确保你的电子设备支持尼泊尔的电压标准,并了解尼泊尔的电力供应状况。
电力系统英文单词精编版

电力系统英文单词精编版MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】电力系统powersystem发电机generator励磁excitation励磁器excitor电压voltage电流current升压变压器step-uptransformer母线bus变压器transformer空载损耗no-loadloss铁损ironloss铜损copperloss空载电流no-loadcurrent有功损耗activeloss无功损耗reactiveloss输电系统powertransmissionsystem 高压侧highside输电线transmissionline高压highvoltage低压lowvoltage中压middlevoltage功角稳定anglestability稳定stability电压稳定voltagestability暂态稳定transientstability 电厂powerplant能量输送powertransfer交流AC直流DC电网powersystem落点droppoint开关站switchstation调节regulation高抗highvoltageshuntreactor 并列的apposable裕度margin故障fault三相故障threephasefault分接头tap切机generatortriping高顶值highlimitedvalue 静态static(state)动态dynamic(state)机端电压控制AVR电抗reactance电阻resistance功角powerangle有功(功率)activepower 电容器Capacitor电抗器Reactor断路器Breaker电动机motor功率因数power-factor定子stator阻抗impedance功角power-angle电压等级voltagegrade有功负载:activeloadPLoad 无功负载reactiveload档位tapposition电阻resistor电抗reactance电导conductance电纳susceptance上限upperlimit下限lowerlimit正序阻抗positivesequenceimpedance 负序阻抗negativesequenceimpedance 零序阻抗zerosequenceimpedance无功(功率)reactivepower功率因数powerfactor无功电流reactivecurrent斜率slope额定rating变比ratio参考值referencevalue电压互感器PT分接头tap仿真分析simulationanalysis下降率drooprate传递函数transferfunction框图blockdiagram受端receive-side同步synchronization保护断路器circuitbreaker摇摆swing阻尼damping无刷直流电机BruslessDCmotor刀闸(隔离开关)Isolator机端generatorterminal变电站transformersubstation永磁同步电机Permanent-magnetSynchronismMotor异步电机AsynchronousMotor三绕组变压器three-columntransformerThrClnTrans 双绕组变压器double-columntransformerDblClmnTrans 固定串联电容补偿fixedseriescapacitorcompensation 双回同杆并架double-circuitlinesonthesametower单机无穷大系统onemachine-infinitybussystem励磁电流Magnetizingcurrent补偿度degreeofcompensation电磁场:Electromagneticfields失去同步lossofsynchronization装机容量installedcapacity无功补偿reactivepowercompensation故障切除时间faultclearingtime极限切除时间criticalclearingtime强行励磁reinforcedexcitation并联电容器shuntcapacitor<下降特性droopcharacteristics线路补偿器LDC(linedropcompensation)电机学ElectricalMachinery自动控制理论AutomaticControlTheory电磁场ElectromagneticField微机原理PrincipleofMicrocomputer电工学Electrotechnics电路原理Principleofcircuits电机学ElectricalMachinery电力系统稳态分析Steady-StateAnalysisofPowerSystem电力系统暂态分析Transient-StateAnalysisofPowerSystem电力系统继电保护原理PrincipleofElectricalSystem'sRelayProtection电力系统元件保护原理ProtectionPrincipleofPowerSystem'sElement 电力系统内部过电压PastVoltagewithinPowersystem模拟电子技术基础BasisofAnalogueElectronicTechnique数字电子技术DigitalElectricalTechnique电路原理实验电气工程讲座Lecturesonelectricalpowerproduction电力电子基础Basicfundamentalsofpowerelectronics高电压工程Highvoltageengineering电子专题实践Topicsonexperimentalprojectofelectronics电气工程概论Introductiontoelectricalengineering电子电机集成系统Electronicmachinesystem电力传动与控制ElectricalDriveandControl电力系统继电保护PowerSystemRelayingProtection主变压器maintransformer升压变压器step-uptransformer降压变压器step-downtransformeroperatingtransformer备用变压器standbytransformer公用变压器commontransformer三相变压器three-phasetransformer单相变压器single-phasetransformer带负荷调压变压器on-loadregulatingtransformer 变压器铁芯transformercore变压器线圈transformercoil变压器绕组transformerwinding变压器油箱transformeroiltanktransformercasing变压器风扇transformerfan变压器油枕transformeroilconservator(∽drum 变压器额定电压transformerretedvoltage变压器额定电流transformerretedcurrent变压器调压范围transformervoltageregulationrage 配电设备powerdistributionequipmentSF6断路器SF6circuitbreaker开关switch按钮button隔离开关isolator,disconnector 真空开关vacuumswitch刀闸开关knife-switch接地刀闸earthingknife-switch 电气设备electricalequipment 变流器currentconverter电流互感器currenttransformer电压互感器voltagetransformer电源powersource交流电源ACpowersource直流电源DCpowersource 工作电源operatingsource 备用电源Standbysource 强电strongcurrent 弱电weakcurrent继电器relay信号继电器signalrelay电流继电器currentrelay电压继电器voltagerelay跳闸继电器trippingrelay合闸继电器closingrelay中间继电器intermediaterelay时间继电器timerelay零序电压继电器zero-sequencevoltagerelay 差动继电器differentialrelay闭锁装置lockingdevice遥控telecontrol遥信telesignalisation遥测telemetering遥调teleregulationbreaker,circuitbreaker少油断路器mini-oilbreaker,oil-mini-mumbreaker 高频滤波器high-frequencyfilter组合滤波器combinedfilter常开触点normallyopenedcontaact常闭触点normallyclosedcontaact并联电容parallelcapacitance保护接地protectiveearthing熔断器cutout,fusiblecutout电缆cabletrippingpulse合闸脉冲closingpulse一次电压primaryvoltage二次电压secondaryvoltage并联电容器parallelcapacitor无功补偿器reactivepowercompensationdevice 消弧线圈arc-suppressingcoil母线Bus,busbar三角接法deltaconnection星形接法Wyeconnectionschematicdiagram一次系统图primarysystemdiagram二次系统图secondarysystemdiagram两相短路two-phaseshortcircuit三相短路three-phaseshortcircuit单相接地短路single-phasegroundshortcircuit 短路电流计算calculationofshortcircuitcurrent 自动重合闸automaticreclosing高频保护high-freqencyprotection距离保护distanceprotectiontransversedifferentialprotection 纵差保护longitudinaldifferentialprotection 线路保护lineprotection过电压保护over-voltageprotection母差保护busdifferentialprotection瓦斯保护Buchholtzprotection变压器保护transformerprotection电动机保护motorprotection远方控制remotecontrol用电量powerconsumption载波carrier故障fault选择性selectivity速动性speed灵敏性sensitivity可靠性reliability电磁型继电器electromagnetic无时限电流速断保护instantaneouslyover-currentprotection 跳闸线圈tripcoil工作线圈operatingcoil制动线圈retraintcoil主保护mainprotection后备保护back-upprotection定时限过电流保护definitetimeover-currentprotection 三段式电流保护thecurrentprotectionwiththreestages 反时限过电流保护inversetimeover-currentprotection 方向性电流保护thedirectionalcurrentprotection零序电流保护zero-sequencecurrentprotection阻抗impedance微机保护MicroprocessorProtection。
电力系统中英文翻译

LINE PROTECTION WITH DISTANCE RELAYSDistance relaying should be considered when overcurrent relaying is too slow or is not selective. Distance relays are generally used for phase-fault primary and back-up protection on subtransmission lines, and on transmission lines where high-speed automatic reclosing is not necessary to maintain stability and where the short time delay for end-zone faults can be tolerated. Overcurrent relays have been used generally for ground-fault primary and back-up protection, but there is a growing trend toward distance relays for ground faults also.Single-step distance relays are used for phase-fault back-up protection at the terminals of generators. Also, single-step distance relays might be used with advantage for back-up protection at power-transformer tanks, but at the present such protection is generally provided by inverse-time overcurrent relays.Distance relays are preferred to overcurrent relays because they are not nearly so much affected by changes in short-circuit-current magnitude as overcurrent relays are, and , hence , are much less affected by changes in generating capacity and in system configuration. This is because, distance relays achieve selectivity on the basis of impedance rather than current.THE CHOICE BETWEEN IMPEDANCE, REACTANCE, OR MHOBecause ground resistance can be so variable, a ground distance relay must be practically unaffected by large variations in fault resistance. Consequently, reactance relays are generally preferred for ground relaying.For phase-fault relaying, each type has certain advantages and disadvantages. For very short line sections, the reactance type is preferred for the reason that more of theline can be protected at high speed. This is because the reactance relay is practically unaffected by arc resistance which may be large compared with the line impedance, as described elsewhere in this chapter. On the other hand, reactance-type distance relays at certain locations in a system are the most likely to operate undesirably on severe synchronizing-power surges unless additional relay equipment is provided to prevent such operation.The mho type is best suited for phase-fault relaying for longer lines, and particularly where severe synchronizing-power surges may occur. It is the least likely to require additional equipment to prevent tripping on synchronizing-power surges. When mho relaying is adjusted to protect any given line section, its operating characteristic encloses the least space on the R-X diagram, which means that it will be least affected by abnormal system conditions other than line faults; in other words, it is the most selective of all distance relays. Because the mho relay is affected by arc resistance more than any other type, it is applied to longer lines. The fact that it combines both the directional and the distance-measuring functions in one unit with one contact makes it very reliable.The impedance relay is better suited for phase-fault relaying for lines of moderate length than for either very short or very long lines. Arcs affect an impedance relay more than a reactance relay but less than a mho relay. Synchronizing-power surges affect an impedance relay less than a reactance relay but more than a mho relay. If an impedance-relay characteristic is offset, so as to make it a modified• relay, it can be made to resemble either a reactance relay or a mho relay but it will always require a separate directional unit.There is no sharp dividing line between areas of application where one or another type of distance relay is best suited. Actually, there is much overlapping of these areas. Also, changes that are made in systems, such as the addition of terminals to a line, can change the type of relay best suited to a particular location. Consequently, to realizethe fullest capabilities of distance relaying, one should use the type best suited for each application. In some cases much better selectivity can be obtained between relays of the same type, but, if relays are used that are best suited to each line, different types on adjacent lines have no appreciable adverse effect on selectivity. THE ADJUSTMENT OF DISTANCE RELAYSPhase distance relays are adjusted on the basis of the positive-phase-sequence impedance between the relay location and the fault location beyond which operation of a given relay unit should stop. Ground distance relays are adjusted in the same way, although some types may respond to the zero-phase-sequence impedance. This impedance, or the corresponding distance, is called the "reach" of the relay or unit. For purposes of rough approximation, it is customary to assume an average positive-phase-sequence-reactance value of about 0.8 ohm per mile for open transmission-line construction, and to neglect resistance. Accurate data are available in textbooks devoted to power-system analysis.To convert primary impedance to a secondary value for use in adjusting a phase or ground distance relay, the following formula is used:where the CT ratio is the ratio of the high-voltage phase current to the relay phase current, and the VT ratio is the ratio of the high-voltage phase-to-phase voltage to the relay phase-to-phase voltage–all under balanced three-phase conditions. Thus, for a 50-mile, 138-kv line with 600/5 wye-connected CT’s, the secondary positive-phase-sequence reactance is aboutIt is the practice to adjust the first, or high-speed, zone of distance relays to reach to80% to 90% of the length of a two-ended line or to 80% to 90% of the distance to the nearest terminal of a multiterminal line. There is no time-delay adjustment for this unit.The principal purpose of the second-zone unit of a distance relay is to provide protection for the rest of the line beyond the reach of the first-zone unit. It should be adjusted so that it will be able to operate even for arcing faults at the end of the line. To do this, the unit must reach beyond the end of the line. Even if arcing faults did not have to be considered, one would have to take into account an underreaching tendency because of the effect of intermediate current sources, and of errors in: (1) the data on which adjustments are based, (2) the current and voltage transformers, and (3) the relays. It is customary to try to have the second-zone unit reach to at least 20% of an adjoining line section; the farther this can be extended into the adjoining line section, the more leeway is allowed in the reach of the third-zone unit of the next line-section back that must be selective with this second-zone unit.The maximum value of the second-zone reach also has a limit. Under conditions of maximum overreach, the second-zone reach should be short enough to be selective with the second-zone units of distance relays on the shortest adjoining line sections, as illustrated in Fig. 1. Transient overreach need not be considered with relays having a high ratio of reset to pickup because the transient that causes overreach will have expired before the second-zone tripping time. However, if the ratio of reset to pickup is low, the second-zone unit must be set either (1) with a reach short enough so that its overreach will not extend beyond the reach of the first-zone unit of the adjoining linesection under the same conditions, or (2) with a time delay long enough to be selective with the second-zone time of the adjoining section, as shown in Fig. 2. In this connection, any underreaching tendencies of the relays on the adjoining line sections must be taken into account. When an adjoining line is so short that it is impossible to get the required selectivity on the basis of react, it becomes necessary to increase the time delay, as illustrated in Fig. 2. Otherwise, the time delay of the second-zone unit should be long enough to provide selectivity with the slowest of (1) bus-differential relays of the bus at the other end of the line(2)transformer-differential relays of transformers on the bus at the other end of the line,or (3) line relays of adjoining line sections. The interrupting time of the circuit breakers of these various elements will also affect the second-zone time. This second-zone time is normally about 0.2 second to 0.5 second.The third-zone unit provides back-up protection for faults in adjoining line sections.So far as possible, its reach should extend beyond the end of the longest adjoining line section under the conditions that cause the maximum amount of underreach, namely, arcs and intermediate current sources. Figure 3 shows a normal back-up characteristic. The third-zone time delay is usually about 0.4 second to 1.0 second. To reach beyond the end of a long adjoining line and still be selective with the relays of a short line, it may be necessary to get this selectivity with additional time delay, as in Fig. 4.THE EFFECT OF ARCS ON DISTANCE-RELAY OPERATIONThe critical arc location is just short of the point on a line at which a distance relay's operation changes from high-speed to intermediate time or from intermediate time to back-up time. We are concerned with the possibility that an arc within the high-speed zone will make the relay operate in intermediate time, that an arc within the intermediate zone will make the relay operate in back-up time, or that an arc within the back-up zone will prevent relay operation completely. In other words, the effect of an arc may be to cause a distance relay to underreach.For an arc just short of the end of the first- or high-speed zone, it is the initial characteristic of the arc that concerns us. A distance relay's first-zone unit is so fast that, if the impedance is such that the unit can operate immediately when the arc is struck, it will do so before the arc can stretch appreciably and thereby increase itsresistance. Therefore, we can calculate the arc characteristic for a length equal to the distance between conductors for phase-to-phase faults, or across an insulator string for phase-to-ground faults. On the other hand, for arcs in the intermediate-time or back-up zones, the effect of wind stretching the arc should be considered, and then the operating time for which the relay is adjusted has an important bearing on the outcome.Tending to offset the longer time an arc has to stretch in the wind when it is in the intermediate or back-up zones is the fact that, the farther an arcing fault is from a relay, the less will its effect be on the relay's operation. In other words, the more line impedance there is between the relay and the fault, the less change there will be in the total impedance when the arc resistance is added. On the other hand, the farther away an arc is, the higher its apparent resistance will be because the current contribution from the relay end of the line will be smaller, as considered later.A small reduction in the high-speed-zone reach because of an arc is objectionable, but it can be tolerated if necessary. One can always use a reactance-type or modified-impendance type distance relay to minimize such reduction. The intermediate-zone reach must not be reduced by an arc to the point at which relays of the next line back will not be selective; of course, they too will be affected by the arc, but not so much. Reactance-type or modified-impendance-type distance relays are useful here also for assuring the minimum reduction in second-zone reach. Figure 5 shows how an impedance or mho characteristic can be offset to minimize its susceptibility to an arc. One can also help the situation by making the second-zone reach as long as possible so that a certain amount of reach reduction by an arc is permissible. Conventional relays do not use the reactance unit for the back-up zone; instead, they use either an impedance unit, a modified-impendance unit, or a mho unit. If failure of the back-up unit to operate because of an arc extended by the wind is a problem, the modified-impendance unit can be used or the mho–or "starting"–unitcharacteristic can also be shifted to make its operation less affected by arc resistance. The low-reset characteristic of some types of distance relay is advantageous in preventing reset as the wind stretches out an arc.Although an arc itself is practically all resistance, it may have a capacitive-reactance or an inductive-reactance component when viewed from the end of a line where the relays are. The impedance of an arc (ZA) has the appearance:where I1 = the complex expression for the current flowing into the arc from the end of the line where the relays under consideration are.I2= the complex expression for the current flowing into the arc from the other end of the line.R A = the arc resistance with current (I1 + I2) flowing into it.Of more practical significance is the fact that, as shown by the equation, the arc resistance will appear to be higher than it actually is, and it may be very much higher. After the other end of the line trips, the arc resistance will be higher because the arccurrent will be lower. However, its appearance to the relays will no longer be magnified, because I2 will be zero. Whether its resistance will appear to the relays to be higher or lower than before will depend on the relative and actual magnitudes of the currents before and after the distant breaker opens.输电线路的距离保护在过电流保护灵敏度低或选择性差时,应当考虑采用距离保护。
尼泊尔电力市场前景概况

上年 增 长约 9 %, 其 中 电 网可 提供 电力 7 1 9 . 6 MW ,
其余 3 3 5 M W 无 法满 足 。 同 时 ,尼 泊 尔 电 力 系 统 电 量 需 求 达 到 5 4 4 6 . 2 8 5 G W・ h , 比上年 增 长约 7 . 7 %, 其中 , 电 网
表 1 尼 泊 尔 水 力 资 源 分 布 M W
尼泊 尔未 来经 济 的发展进 程 。 尼泊尔为南 亚山区 内陆 国家 , 位于喜 马拉雅 山南
麓, 北邻 中国西 藏 自治 区 , 其余 三面 与 印度接 壤 。 国
境线长 3 1 0 0 k m, 国土 面积 l 4 . 7 2万 k m 。境 内山峦
摘要 : 尼 泊 尔拥 有 丰 富 的 水 力 资 源 , 其 理 论 蕴藏 量 约 8 3 0 0 0 M w, 其 中技 术 可 开发 量 约 4 2 0 0 0 MW , 截
至2 0 1 2 / 1 3财政 年 年底 , 尼 泊 尔 已建 电站 总装 机 容 量 达 7 6 2 M W, 仅 占技 术 可 开 发 量 的 1 . 8 %, 开发潜 力 巨
2 0 1 4年 8月 文章 编 号 : 1 0 0 6 - 0 0 8 1 ( 2 0 1 4 ) 0 8 - 0 0 3 4 - 0 4
水 利 水 电 快 报 E WR H I
第3 5卷 第 8期
尼 泊 尔 电 力 市 场 前 景 概 况
毕 小 剑 杨 婷
( 中国水 电顾 问集 团西北 勘 测设计 研 究院 , 陕西 西 安 7 1 0 0 6 5 )
1 概 述
尼泊 尔 水能 资 源 极其 丰富 , 但 其 目前 的 开 发程
度和 利用 水平还 很 低 , 无 法 满 足 国 民经 济 发 展 和人 民生 活所需 , 水 电行 业 的供求 矛盾 随着 国民 经 济 的
尼泊尔MCC协议具体内容

尼泊尔MCC协议具体内容尼泊尔与MCC的协议于2017年9月14日由尼泊尔财政部代表尼政府与美国MCC签署。
协议一共8章40个小节,7个附件,共78页,内容包括项目目标、资金来源、监管等内容。
协议表示,作为协议的双方,MCC与尼泊尔政府致力于促进尼泊尔经济增长和消除贫困的共同目标,援助将支持尼泊尔政府完善政府治理(strengthens good governance)、提升经济自由以及增加对民生的投资,以实现持久的经济增长和消除贫困。
根据协议内容,MCC援助一个输电工程项目和一个道路养护项目。
协议称,自2014年12月以来,MCC和尼泊尔政府一直在研究限制尼泊尔增长的制约因素,在与私营部门、民间社会和发展合作伙伴协商后,尼泊尔政府和MCC最终同意将援助聚焦到电力供应不足和运输成本过高的问题上。
尼泊尔是南亚电力最为短缺的国家之一,电力供应严重不足,急待增加尼泊尔电力部门的投资。
因为电力需求一直超过尼泊尔国内的电力供应,常常导致尼泊尔电网负荷下降,尤其是在水力发电量低的冬季,这种情况尤其严重。
同时,输配电的高损耗进一步加剧了尼泊尔电力供应的不足。
协议称,MCC援助的输电工程项目旨在通过增加现有和未来发电厂的电力流入网络来缓解电力供应不足问题,同时促进与印度的电力贸易。
道路养护项目方面,协议称,由于尼泊尔地处内陆,多山,以公路运输为主,对跨境贸易依赖程度高,而尼泊尔道路覆盖范围不足、道路维护资金严重不足,卡车运输效率低下,海关和边境执法效率低,这限制了尼泊尔经济的发展。
根据协议,MCC将向尼政府提供不超过4.595亿美元实施这两项援助。
此外,还将向尼政府提供4050万美元管理费用供政府用于推动援助项目的实施。
协议也规定,尼泊尔政府不得对MCC提供的援助资金征收任何现有或未来的各种税款,包括海关关税,援助资金不得用于任何违反美国法律或政策的用途,如协助或训练军队、警察、民兵、国民警卫队或其他准军事组织或单位,可能导致美国工作岗位大量流失或美国生产大量转移的活动,以其他方式支持任何可能导致重大环境、健康或安全危害的活动,为实施堕胎支付费用或激励或强迫任何人进行堕胎等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尼泊尔电力系统状况-
-中英文
精品好文档,推荐学习交流
3.3.1 电力系统现状
从发电角度来看,尼泊尔可被称为“水电国家”。
作为一个没有石油储量的内陆国家,现实情况是,在狭窄宽度约 100 km 的范围内,海拔高度从8840 m 至不到 100 m。
冰和融雪水不断地为河流提供可靠的水源。
但是,水电的开发很有限。
理论上的水电蕴藏量有 83290 MW,但是到现在为止只开发了554 MW。
尼泊尔有四大河流流域:最西部地区的马哈卡利一格尔纳利流域,西部地区的根德格流域,中部和东部地区的撒普特一科西流域,以及南部的河流流域。
把尼泊尔的水电作为该地区的高峰用电是非常划算的。
技术上可行的水电蕴藏量有48 000MW,蓄水工程可发电约 52%大约 23 000 MW 是水电。
尼泊尔的国内电力市场,每年高峰电力需求增长 8%,到 2010 年容量需求达到857 MW,预计到 2020 年将达到 1 820 MW。
但系统负荷曲线峰值突出,约是基荷的 2.5 倍。
为满足电力需求建设光伏发电项目是有必要的。
经勘测光伏发电总装机量为10MW和当地电网匹配,本项目装机容量不会对电网的安全运行产生影响。
3.3.1 Current Situation of Power System
From the perspective of electric-power generation, Nepal can be called “hydroelectric power country”. As an inland country with no petroleum reserves, the fact is, in the narrow width of the range of about 100 km, the altitude varies from 8840m to less than 100m. Ice and snow melt water continuously providing reliable supply for the rivers. However, the development of hydroelectric power is limited. The hydroelectric power reservation in theory is 83290 MW, but so far only 554 MW has been developed. Nepal has four major river basins: Mahathir马哈卡利Mahakali一格尔纳利Karnali river basin in the most western region, 根德格Gandak river basin in the west,撒普特科西Sapta Kosi river basin in the central and eastern part, and the river basin in the south part. It is quite cost-effective to utilize the hydroelectric power as power resource during peak hours in the region. The technically feasible hydropower reserves are 48 000MW,water storage projects could generate about 52%, and of which 23000MW is hydropower.On the domestic electricity market in Nepal, the peak-hour power demand increased by 8% every year, so far until 2010 the capacity demand has reached 857MW, and it is estimated that the demand will grow to 1820MW.But the curve peak of system load is prominent, it is about 2.5 times as much as that of the base load. It is necessary to build photovoltaic power projects to meet the demands of electric power. After a survey, the general capacity of photovoltaic power generation is10MW, which matches the local power grid, the installed capacity of this project will not affect the safe operation of the grid.
仅供学习与交流,如有侵权请联系网站删除谢谢1。