免疫算法
免疫算法的七个要素

免疫算法的七个要素
免疫算法的七个要素包括:
1. 识别抗体:把目标函数和约束作为抗体。
2. 生成初始化的抗体:随机生成独特型串维数为M的N个抗体。
3. 计算亲和度:这个步骤是免疫算法的重点,也是最难点。
4. 记忆细胞分化:同人的免疫系统基本一致,与抗原有最大亲和度的抗体加入了记忆细胞。
由于记忆细胞数目有限,因此新生成的抗体将会代替记忆细胞中和它有最大亲和力者。
5. 抗体促进和抑制:通过计算抗体v的期望值,消除那些低期望值的抗体。
6. 产生新的抗体:基于不同抗体和抗原亲和力的高低,使用轮盘赌的方法选择两个抗体。
然后把这两个抗体按一定变异概率做变异,之后再做交叉,得到新的抗体。
重复操作直到产生所有N个新抗体。
可以说免疫算法产生新
的抗体的过程需要遗传算子的辅助。
7. 结束条件:如果求出的最优解满足一定的结束条件,则结束算法。
以上是免疫算法的七个要素,建议查阅关于免疫算法的资料以获取更多信息。
免疫算法的介绍及应用

免疫算法的介绍及应用免疫算法(Immunological Algorithm)是一种受免疫系统机制启发的优化算法,模拟了生物免疫系统的工作原理。
它最早由荷兰科学家de Castro于1999年提出,目的是通过模拟免疫系统的基本运行机制来解决优化问题。
免疫系统是人体的一种重要防御系统,能够识别和消除有害物质,并保持身体健康。
免疫系统具有两个重要的特性:学习能力和记忆能力。
学习能力使免疫系统能够识别新出现的有害物质,而记忆能力使免疫系统能够对先前遭遇过的有害物质做出快速反应。
免疫算法通过模拟免疫系统的学习和记忆机制,将问题转化为一个抗体-抗原的优化过程。
抗体代表解空间中的一个解,而抗原则代表问题的优化目标。
免疫算法通过选择、克隆、变异等操作来更新和改良抗体种群,进而得到最优解。
1.优化问题求解:免疫算法可以应用于函数优化、组合优化、图像处理等各种优化问题的求解。
例如,可以通过免疫算法来求解工程设计问题中的最优设计参数,或者在图像处理中利用免疫算法进行图像分割和图像匹配等优化任务。
2.机器学习:免疫算法可以用于解决机器学习中的分类、聚类和回归等问题。
通过将数据样本表示为抗体,利用免疫算法最佳分类器或聚类策略,可以提高机器学习算法的性能和效果。
3.数据挖掘:在数据挖掘任务中,免疫算法可以应用于特征选择、异常检测和关联规则挖掘等方面。
例如,在特征选择中,可以使用免疫算法来选择最佳的特征子集,以提高数据分类和预测的准确性。
4.优化网络结构:免疫算法可以应用于神经网络、模糊神经网络和遗传算法等算法中,用于寻找最佳的网络结构或参数。
通过免疫算法的和优化,可以改善网络的学习和泛化能力,提高网络在模式识别和预测问题中的性能。
总之,免疫算法是一种灵活且高效的优化算法,具有较广泛的应用领域。
它通过模拟生物免疫系统的学习和记忆机制来解决各种优化问题,具有良好的性能和鲁棒性。
在未来的研究和应用中,免疫算法有望为多样化和复杂化的问题提供更为有效的解决方案。
3.6 免疫算法

免疫应答
抗原
抗体
疫苗
应答过程
免疫系统的整体特性
免疫算法的基本原理 识别的有限性
识别的多样性
免疫算法的目的
亲和力 排斥力
亲和力越大,抗体与抗原之间匹配得越好,覆盖范围越大。
排斥力越大,相异程度越高。
免疫算法的目的
免疫系统的进化
通过反复调整各抗体Hamming距离的方法最终产生亲和力强、排斥力大的抗体;
利用免疫反应中的细胞超变异提高识别多样性能力。
识别抗原
产生初始抗体群
产生新的抗体
更新记忆单元
判断是否满足停止条件
利用免疫算子产生新的抗体群
免疫算法的流程图。
第7章 免疫算法

7.1.2 免疫系统的生物学原理
从人的角度:免疫的主要作用是帮助人体自身的 免疫系统抵制由病毒和细菌引起的疾病。 从生物学角度:免疫或免疫接种是强化个体抵御 外部个体的能力的过程。
7.1.2 免疫系统的生物学原理
相关名词
抗原:被免疫系统看作异体,引起免疫反应的分 子。即能刺激人体免疫的细胞,使人体产生免疫 反应的物质。可以是人体本身固有的,如血液, 也可以是人体内根本不存在的,如某些细菌,病 毒,药物等。 抗体:免疫系统用来鉴别和移植外援物质的一种 蛋白质复合体。每种抗体只识别特定的目标抗原。 当某种抗原刺激人体后,人体对这种抗原会产生 一种能识别它,并抵抗或消灭它的物质。当这种 抗原再次入侵时,人体会产生抵抗(免疫)能力, 从而避免疾病的发生。
7.3.1 负选择算法
监视保护数据S
初始串集合S随机变异若 干部分
检测器R
两集合的串存在匹配 否 探测到非自体
是
没有探测到
7.3.2 克隆选择算法
克隆选择原理图
抗原 抗原决定基 抗体决定簇 10011001 11101001 01100110
成熟
2
12
47
128
死亡
骨髓
克隆选择
2
2
2
2
128
128
7.1.2 免疫算法的生物模型
病原体
皮肤 生理学环境
先天性 免疫应答
巨噬细胞
后天性 免疫应答
受体
B淋巴细胞
图 免疫系统层次示意图
7.1.3 二进制模型
轻链 抗体决定簇 Paratope
图 B细胞抗体结构图
抗体j 重链 抗原决定基 Epitope
抗体k B 淋巴细胞
免疫算法基本流程 -回复

免疫算法基本流程 -回复免疫算法(Immune Algorithm,IA)是仿生学领域的一种元启发式算法,它模仿人类免疫系统的功能,用于解决复杂问题的优化问题。
其基本流程包括问题建模、个体编码、种群初始化、克隆操作、变异操作、选择操作等,接下来本文将从这些方面进一步展开详细描述。
一、问题建模在使用免疫算法解决优化问题之前,需要将问题进行合理的建模。
建模过程主要涉及问题的因素、目标和约束条件等问题,例如在TSP(Traveling Salesman Problem)中,需要定义地图中所有城市之间的距离以及行走路线的长度等因素。
建模完成后,将其转化为适合于免疫算法处理的数学表示形式,这有助于优化算法的精度和效率。
二、个体编码从问题建模后,需要将问题的变量转化为适合免疫算法处理的个体编码,即将问题的解转化成一些序列或数值,这样才能进行算法的操作。
对于不同的问题,需要设计合适的编码方式,例如对于TSP问题,可以将城市序列编码成01字符串等。
三、种群初始化在免疫算法中,需要构建一个种群,种群中的每个个体代表了问题的一个解。
种群初始化是在搜索空间中随机生成一组解,并且保证这些解满足约束条件。
种群大小需要根据问题规模和计算能力来合理安排,一般情况下,种群大小越大,搜索空间越大,但是计算成本也越高。
四、克隆操作在免疫算法中,克隆操作是其中一个重要的基因变异操作。
该操作的目的是产生大量近似于当前最优的个体,增加搜索空间的多样性。
克隆操作的流程如下:1.计算适应度函数值,根据适应度函数值进行排序。
2.选择适应度函数值最优的一部分个体进行克隆操作。
3.对克隆个体进行加密操作,增加其多样性。
5、变异操作变异操作是免疫算法中的一个基本操作,其目的是使部分克隆个体产生和原个体不同的搜索方向,增加搜索空间的变异性。
在变异操作中,采用随机、局部搜索或任意搜索等方法来对某些个体进行改变其参数或某些属性,以期望产生一些新的解。
变异操作的流程如下:1.从克隆群体中随机选择一定数量的个体进行变异操作。
免疫算法资料

免疫算法免疫算法(Immune Algorithm)是一种基于人类免疫系统工作原理的启发式算法,通过模拟人体免疫系统的机理来解决优化问题。
人体免疫系统作为生物体内的防御系统,可以识别并消灭入侵的病原体,同时保护自身免受损害。
免疫算法借鉴了人体免疫系统的自我适应、学习和记忆等特点,将这些特点引入算法设计中,实现了一种高效的优化方法。
算法原理免疫算法中最核心的概念是抗体和抗原,抗体可以看作是搜索空间中的一个解,而抗原则是代表问题的目标函数值。
算法通过不断更新和优化抗体集合,寻找最优解。
免疫算法的工作原理主要包括以下几个步骤:1.初始化种群:随机生成一组初始解作为抗体集合。
2.选择和克隆:根据适应度值选择一部分优秀的抗体,将其进行克隆,数量与适应度成正比。
3.变异和超克隆:对克隆的抗体进行变异操作,引入随机扰动,形成新的候选解。
超克隆即通过一定规则保留部分克隆体,并淘汰弱势克隆体。
4.选择替换:根据新生成解的适应度与原有解的适应度进行比较,更新抗体集合。
应用领域免疫算法由于其模拟人体免疫系统的独特性,被广泛应用于复杂优化问题的求解,如工程优化、图像处理、模式识别、数据挖掘等领域。
免疫算法在这些领域中具有很强的适用性和可扩展性,能够有效地解决局部最优和高维空间搜索问题。
在工程优化方面,免疫算法可以用来解决设计问题、调度问题、控制问题等,提高系统的性能和效率;在图像处理领域,免疫算法可以用来实现图像分割、特征提取、目标识别等任务,有效处理大规模图像数据;在数据挖掘领域,免疫算法可以发现数据之间的潜在关联和规律,帮助用户做出决策。
发展趋势随着人工智能技术的快速发展,免疫算法在解决复杂问题中的优势逐渐凸显。
未来,免疫算法将继续深化与其他优化算法和机器学习领域的整合,发展出更加高效和智能的算法模型。
同时,随着计算机性能的提升和算法理论的不断完善,免疫算法在实际应用中将展现出更广阔的应用前景。
综上所述,免疫算法作为一种启发式优化算法,在工程优化、图像处理、数据挖掘等领域具有广泛的应用前景。
免疫算法公式

免疫算法公式免疫算法是一种新型的优化算法,其基本思想是模拟生物体免疫系统对外界刺激的反应过程,以实现优化问题的求解。
免疫算法涉及到一些基本的公式,包括:1. 抗体与抗原的亲和度计算公式亲和度是指抗体与抗原之间相互作用的强度,通常使用欧几里得距离或哈密顿距离来计算。
欧几里得距离公式如下:$d(x,y)=sqrt{(x_1-y_1)^2+(x_2-y_2)^2+...+(x_n-y_n)^2}$ 其中,$x$和$y$代表两个向量,$n$代表向量维数。
2. 抗体的亲和力更新公式抗体的亲和力可以通过适当的更新策略来调整,以达到最优解。
典型的更新公式包括:$aff_j=aff_j+alphacdot(aff_i-aff_j)$其中,$aff_i$和$aff_j$分别代表两个抗体的亲和力值,$alpha$是调整因子。
3. 克隆选择算子公式克隆选择算子是免疫算法中的核心操作,它通过复制和选择策略来增加优秀抗体的数量。
克隆选择算子的基本公式如下:$n_i=frac{p_i}{sum_{j=1}^Np_j}$其中,$n_i$代表第$i$个抗体的克隆数量,$p_i$代表抗体$i$的适应度值,$N$代表总抗体数量。
4. 基因重组算子公式基因重组算子是免疫算法的另一个重要操作,它通过随机交换抗体基因的方式来产生新的解。
基因重组算子的公式如下:$x_k=left{begin{aligned}&x_{i,k},&rand()<p_c&x_{j,k},&rand( )>=p_cend{aligned}right.$其中,$x_{i,k}$和$x_{j,k}$分别代表两个抗体在第$k$个基因位置的取值,$p_c$是交叉概率,$rand()$是一个均匀分布的随机数。
以上是免疫算法中一些常用的公式,它们在免疫算法的求解过程中起到非常重要的作用。
免疫算法介绍PPT课件

应用领域
免疫算法在多个领域得到广泛应用,如组 合优化、机器学习、数据挖掘、电力系统、 生产调度等。
研究现状
目前,免疫算法的研究已经取得了一定的 成果,但仍存在一些挑战和问题,如算法 的收敛速度和稳定性等。
研究展望
理论完善
未来研究将进一步完善免疫 算法的理论基础,包括免疫 系统的数学模型、算法的收 敛性和稳定性分析等。
缺点分析
计算量大
参数设置复杂
免疫算法需要进行大量的迭代和计算,尤 其在处理大规模优化问题时,计算量会变 得非常大,导致算法的运行时间较长。
免疫算法涉及的参数较多,参数设置对算 法的性能影响较大,如果参数设置不当, 可能导致算法的性能下降甚至无法收敛。
对初始解敏感
适用性问题
免疫算法对初始解有较强的依赖性,如果 初始解的质量较差,可能会导致算法陷入 局部最优解或无法收敛。
新方法探索
跨领域应用
针对免疫算法的改进和变种, 未来研究将探索新的免疫算 法,如基于免疫遗传算法、 免疫粒子群算法等。
随着大数据、人工智能等技 术的快速发展,免疫算法有 望在更多领域得到应用,如 医疗诊断、金融风控等。
与其他算法融合
未来研究将探索免疫算法与 其他优化算法的融合,如混 合算法、协同进化等,以提 高算法的性能和适应性。
控制系统
优化控制系统的参数,提高系 统的性能和稳定性。
02
免疫算法的基本原理
生物免疫系统概述
生物免疫系统是生物体内一套复杂的防御机制,用于识别和清除外来物质,维持内 环境稳定。
免疫系统由免疫器官、免疫细胞和免疫分子组成,具有高度的组织结构和功能分化。
免疫应答是免疫系统对外来抗原的识别、记忆和清除过程,分为非特异性免疫和特 异性免疫两类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1选题依据和意义 (2)1.1研究背景及意义 (2)1.2免疫算法的概述 (2)1.3免疫算法的研究现状 (3)1.4物流配送中心选址的概述 (4)1.5物流配送中心的研究现状: (4)1.6论文组织结构 (5)2基本的免疫算法 (5)2.1免疫算法的相关概念介绍: (6)2.2免疫算法的步骤 (7)2.3免疫算法流程图: (8)2.4选择参数 (11)2.5免疫算法与遗传算法的比较: (12)3物流配送中心选址的数学模型的建立 (13)4免疫算法物流配送中心选址中的应用: (14)5实验: (15)5.1小结 (18)6总结与展望 (18)1选题依据和意义1.1研究背景及意义科技日新月异的发展的21世纪,学科之间的融合成为了各学者的研究新方向,各学科之间相互渗透、相互影响、相互作用成为了新世纪科技发展的新特征。
其中,由计算机科学与生命学科相互结合而产生的新型智能算法——免疫算法就是其中的代表之一。
近年来,随着我国经济的快速发展并逐渐走向全球化的道路,物流已成为了经济发展的重要产业之一,现如今各大城市都建设有自己的物流配送网络,这对于城市的招商引资,资源的优化配置,经济产业的运行效率都有着促进作用。
物流配送中心作为物流业重要的环节,其选址问题吸引着专家学者投身研究当中。
由于物流配送中心一旦选定并进行建设,其位置是固定的,所以在地址的选定上尤为重要。
相比较于传统的选址方法,免疫算法以其收敛速度快,鲁棒性强等特点,得到专家学者们的青睐。
免疫算法是模仿生物免疫机制,结合基因的进化机理,人工地构造出的一种新型智能搜索算法。
免疫算法具有一般免疫系统的特征,免疫算法采用群体搜索策略,一般遵循几个步骤”产生初始化种群→适应度的计算评价→种群间个体的选择、交叉、变异→产生新种群”。
通过这样的迭代计算,最终以较大的概率得到问题的最优解。
相比较于其他算法,免疫算法利用自身产生多样性和维持机制,保证了种群的多样性,克服了一般寻优过程中特别是多峰值的寻优过程中不可避免的“早熟”问题,求得全局最优解。
大量表明,免疫算法能在较少的迭代数能快速收敛到全局最优。
因此,免疫算法在物流配送中心选址问题的研究具有一定的应用价值和参考价值。
1.2免疫算法的概述人们对人工免疫算法的研究从免疫学的基础上开始的。
对免疫算法的深入研究,发现其在解决复杂问题上西安实处了强大的信息处理能力。
1958年澳大利亚学者Burnet率先提出了克隆选择原理[21],1960年因此获得诺贝尔奖。
Famer于1986年基于免疫网络学说理论构造出来的免疫系统的动态模型,展示了免疫系统与其他人工智能方法相结合的可能性,开创了免疫系统研究的先河。
1996年,在日本举行的国际专题研讨会上,提出了免疫系统的概念。
1997年IEEE的SMC组织专门成立了人工免疫系统及应用的分会组织。
免疫算法,是受生物免疫系统的启发,推出的一种新型的智能搜索算法。
对外界入侵的抗原,受抗原的刺激,生物上淋巴细胞会分泌出相应的抗体,其目标是尽可能保证整个生物系统的基本生理功能得到正常运转,并产生记忆细胞,以预防下次相同的抗原入侵时,能够快速的做出反应。
借鉴其相关内容和知识,并将其应用于工程科学的某些领域,收到了良好的效果。
1.3免疫算法的研究现状虽然起步较晚,但免疫算法已成为当今智能计算的研究热点之一。
已在函数优化,人工神经网络设计,智能控制等领域获得了成功的应用。
近几年,网络和智能成为免疫算法发展的的特征之一,也是其重要应用领域。
免疫算法在增强系统的鲁棒性,维持机体动态平衡方面有明显的成效。
经过各位学者的不断专研,免疫算法于其他算法的并行性得到充分发挥。
例如免疫遗传算法,免疫粒子群算法。
这些算法的产生,增加了算法的灵活行。
现主要的应用有机器学习,故障诊断,网络安全,优化设计。
国内虽然对免疫算法的研究起步较晚,但在免疫算法的研究及其应用上也取得了不错的成果。
经研究归纳,免疫算法可分为3种情况:(1)基本免疫算法,模拟免疫系统中抗原与抗体的结合原理。
(2)基于免疫系统中其他特殊机制抽象出来的免疫算法,如克隆选择算法。
(3)免疫算法与其他智能算法的结合形成的新的算法,如免疫遗传算法。
基于这三种主流的算法,国内对免疫算法的研究有对免疫算法的参数问题的研究[1],有对多维教育免疫网络的研究,增强了教育网络的安全性[2]。
有TSP问题求解[3]、装配序列规划问题求解[4]、工程项目多目标优化研究[5]、应用免疫算法进行电网规划研究[6]。
基于混沌免疫进化算法的物流配送中心选址方案[7]。
目前国内的研究主要集中在算法的优化改进上,与其他智能算法相结合的研究。
1.4物流配送中心选址的概述物流配送中心是物流网络的基础节点,是物流能够正常运作的前提,同时,配送中心面向客户,其工作效率不仅直接影响到企业的业绩,而且还影响客户的评价。
物流配送中心选址的重要性:由于物流配送中心的投资规模大,占用大量的城市面积,而且其位置一旦建成后,其地理位置相对固定,对物流业今后的运营情况产生长远的影响。
因此物流配送中心选址的决策必须进行科学的论证后再做定夺。
失败的选址对于物流业来说是致命的,不仅会导致商品运输处于无秩序、低效率的状态,还可能在运输成本上吃紧,如果不能满足客户的需要,还会影响到企业的利润。
因此,科学的物流配送中心选址是很有必要的。
物流配送中心选址问题,要考虑的因素很多,一般地,主要考虑以下几个方面:(1)运营成本:缩减成本一直是企业追求利润的主要方法之一,在创造相同价值的情况下,成本的缩减成为了企业间竞争力的决定性因素。
(2)运输效率:降低运输成本主要的途径之一就是运输效率,协调好各部门的工作能有效的解决这一问题。
(3)服务质量:客户的好评是企业无形的资产,提供优质的服务质量是一个有远见的企业必做的事情。
1.5物流配送中心的研究现状:经过几十年的研究,国内外在物流配送中心选址问题的研究日趋成熟,形成了相对完善选址方法,大体可归纳为:(1)定性分析法:定性分析法主要依赖专家和决策者的先知经验、知识,经过综合分析,统筹规划来确定其地理位置,这些方法主要有专家分析法、德尔菲法。
定性分析法的优点在于利于操作,简单易行,在一定程度上能够利用丰富的经验来解决选址问题。
其确定在于,由于这种选址方法带有个人主观因素,往往会犯主观主义或经验主义的错误。
缺乏科学性,客观性。
导致选址方案的可靠性不高。
(2)定量分析法:定量分析法使用数学模块对数据进行的分析,通过分析可提供给决策者科学合理的建议,让并做出投资判断。
这种方法主要有重心法,混合0-1整数规划法,遗传算法。
其优点是能通过科学的计算分析,求出比较可靠的解。
1.6论文组织结构本论文是以下的结构进行组织的。
本论文的第二部分主要介绍免疫算法的原理,并与遗传算法做对比,比较两者的优劣势。
讨论了针对物流配送中心选址问题免疫算法的实现过程。
第三部分主要描述物流配送中心选址问题,并且构造出数学模型、设置约束条件。
本文的第四部分描述了在MATLAB平台上通过免疫算法求解物流配送中心选址问题实验的结果,并做出分析。
本文的第五部分,总结了本论文的研究内容,指出本论文的优缺点,提出自己的看法。
2基本的免疫算法基本免疫算法基于生物免疫系统基本机制,模仿了人体的免疫系统。
基本免疫算法从体细胞理论和网络理论得到启发,实现了类似于生物免疫系统的抗原识别、细胞分化、记忆和自我调节的功能。
一般来说,免疫反应就是当病原体入侵到人体时,受病原体刺激,人体免疫系统以排除抗原为目的而发生的一系列生理反应。
其中B细胞和T细胞起着重要的作用:B 细胞的主要功能是产生抗体,且每种B细胞只产生一种抗体。
免疫系统主要依靠抗体来对入侵抗原进行攻击以保护有机体。
T细胞不产生抗体,它的直接与抗原结合并实施攻击,同时还兼顾这调节B细胞的活动的作用。
成熟的B细胞产生于骨髓中,成熟的T细胞产生于胸腺之中。
B细胞和T 细胞成熟之后进行克隆增殖、分化并表达功能.正是由于这两种淋巴细胞之间相互影响,相互控制的关系,才使得机体得以维持机体反馈的免疫网络。
免疫算法保留着生物免疫系统中一些主要的元素,免疫算法各元素与生物免疫系统一一对应,如下表所示:2.1免疫算法的相关概念介绍:抗原:在生命科学中,能够诱发机体的免疫系统产生免疫应答,产生抗体进行免疫作用的物质。
在算法中特指的是非最优个体的基因或错误基因。
抗体:在生命科学中,是指免疫系统受抗原刺激后,免疫细胞转化为T细胞并产生能与抗原发生特异性结合的免疫球蛋白,该免疫球蛋白即为抗体。
疫苗:在生物学中指保留了能刺激生物免疫系统的特性,使免疫应答做出反应的预防性生物制品。
在免疫算法中指根据待已有求问题的先知经验中得到的对最佳个体基因的估计。
免疫算子:和生命科学中的免疫理论相对应,免疫算子分为全免疫和目标免疫,前者对应着生命科学中的非特异性免疫,后者则对应的是特异性免疫。
免疫调节:在免疫反应过程中,抗原对免疫细胞的刺激会增强抗体的分化和繁殖。
但大量的抗体的产生会降低这一刺激,从而控制抗体的浓度。
同时产生的抗体之间也存在着相互刺激和抑制的作用,这种抗原与抗体亲和力、抗体与抗体之间的排斥力使抗体免疫反应维持在一定的强度,保证机体的动态平衡。
免疫记忆:能与抗原发生反应的抗体会成功的作为记忆细胞保存记忆下来,当相似的抗原再次侵入时,这类记忆细胞会被当成功的经验,受刺激并产生大量的抗体,从而大量缩短免疫反应时间。
2.2免疫算法的步骤(1)识别抗原:对问题进行可行性分析,构造出合适的目标函数和制定各种约束条件,作为抗原。
(2)产生初始抗体群产生:免疫算法不能直接解决问题空间中的参数,因此必须通过编码把问题的可行解表示成解空间中的抗体,一般在解的空间内随机产生的解中作为初始抗体。
采用简单的编码可以方便计算,实数编码不需要进行数值的转换,因此是比较理想的编码方法,每个抗体为一个实数向量。
(3)对群体中的抗体进行多样性评价:计算亲和力和排斥力,免疫算法对抗体的评价是以期望繁殖概率为标准的,其中包括亲和力的计算和抗体浓度的计算。
(4)形成父代群体:更新记忆细胞,保留与抗原亲和力高的抗体并将它存入记忆细胞中,利用抗体间排斥力的计算,淘汰掉与之亲和力最高的抗体。
(5)判断是否满足结束条件:如果产生的抗体中有与抗原相匹配的的抗体,或满足结束条件,则停机。
(6)利用免疫算子产生新种群:免疫算子包括选择、交叉和变异等操作。
按照“优胜劣汰”的自然法则选择。
亲和力大的抗体有较大的机会被选中。
交叉和变异操作以下会介绍到。
(7)转至(3)。
免疫算法相关计算的介绍。
1、初始抗体群的产生如果记忆库非空,则初始抗体从记忆库中选择生成。
否则,在随机产生初始抗体群。
每个选址方案用一个长度为p(各方案选中的配送中心总数目)的编号序列表示,每个方案编号代表被选为配送中心的需求点的序列。