(完整)初二数学动点问题归类复习(含例题、练习及答案)
初二数学动点问题练习(含答案) 2 修改版

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD 边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C 同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC 3∴AO =12AC3 .在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形O E CDA α lOCA (备用图)4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.C B AE D 图1 N M A B C D E M N 图2A CB E D N M 图35、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ).AE EF ∴=.A D F CGE B 图1 AD FGE B 图3A DF CG EB 图2AD F C GE B M A DF CG E B N6、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△PAB为等腰三角形的t值;(2)△PAB为直角三角形的t值;(3)若AB=5且∠ABM=45 °,其他条件不变,直接写出△PAB为直角三角形的t值7、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动 ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQv t ===厘米/秒。
动点问题练习(含答案)

动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD 中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/ 秒的速度移动,点Q 从 C 开始沿CB 向点 B 以 2 cm/ 秒的速度移动,如果P,Q分别从A,C 同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC上,且DM=1,N 为对角线AC上任意一点,则DN+MN 的最小值为53、如图,在Rt△ABC 中,ACB=90°,B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l 的旋转角为.1)①当=度时,四边形EDBC是等腰梯形,此时AD的长为;②当=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当= 90°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.B图1B 1∴AB=4,AC=2 3. ∴AO= 2∴BD=2. ∴BD=BC. 又∵∴四边形EDBC是菱形4、在△ABC 中,∠ACB=90°,(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)① ∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90°∴∠BCE+∠ACD=90°∴∠CAD=∠BCE ∵AC=BC∴△ADC≌△CEB② ∵△ADC≌△CEB ∴CE=AD,CD=BE ∴DE=CE+CD=AD+BE(2)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE 又∵AC=BC∴△ACD ≌△CBE ∴CE=AD,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3 的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.AEF =90o,且EF交正方形外角DCG的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE =EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;( 2)小华提出:如图 3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“ AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB上取一点M,使AM =EC,连接M BM =BE.BME = 45°,AME = 135° Q CF是外角平分线,DCF = 45° ,ECF AME =ECF.Q AEB + BAE = 90°,AEB + CEF =90°,BAE =CEF.△AME≌△BCF (ASA (2)正确.证明:在BA的延长线上取一点N.使AN =CE,BN =BE.N = PCE = 45° .Q 四边形ABCD是正方形,AD∥BE.DAE = BEA.NAE=CEF.△ANE≌△ECF (ASA).AE =EF.6、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P MB方向以1 个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB为直角三角形的t值;(3)若AB=5 且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t值沿射线7、如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB =4,BC =6,∠B =60. 求:(1 )求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM⊥EF交BC于点M,过M作MN∥ AB交折线ADC 于点N,连结PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有图5(备用)解(1)如图1,过点E作EG⊥BC于点G.BE =1AB =2.∵E为AB的中点,∴ 2在Rt△EBG中,∠B = 60,∴∠BEG = 30.BG=12BE=1,EG = 22-12= 3.满足要求的x的值;若不存在,请说明理由图 1 图2C 图4(备用)∴△PMN 的周长= PM +PN +MN = 3+ 7+4.②当点N 在线段DC 上运动时,△PMN 的形状发生改变,但△MNC 恒为等边三角形. 当 PM = PN 时,如图 3 ,作 PR ⊥ MN 于 R ,则 MR = NR .3类似①, MR = 3. ∴MN =2MR =3. ∵△MNC 是等边三角形,∴MC = MN =3.2此时,x =EP =GM =BC -BG -MC =6-1-3=2.当 MP = MN 时,如图 4,这时 MC = MN = MP = 3. 此时, x = EP = GM = 6 -1 - 3 = 5 - 3. 当NP =NM 时,如图5,∠NPM =∠PMN =30. 则∠PMN = 120,又∠MNC = 60,∴∠PNM +∠MNC =180. 因此点P 与F 重合, △PMC 为直角三角形. ∴ MC = PM gtan 30= 1. 此时, x = EP = GM = 6 -1 - 1 = 4.综上所述,当x =2或4或(5- 3)时,△PMN 为等腰三角形. 8、如图,已知△ABC中, AB = AC = 10厘米, BC =8厘米,点D 为 AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点 运动即点E 到BC 的距离为 3.(2)①当点N 在线段AD 上运动时,△PMN 的形状不发生改变. ∵ PM ⊥EF ,EG ⊥EF , ∴ PM ∥ EG .∵ EF ∥BC , ∴EP =GM ,PM =EG =3. 同理MN =AB =4. 如图2,过点P 作PH ⊥ MN 于H ,∵ MN ∥AB , ∴∠NMC =∠B = 60,∠PMH =30. ∴PH =12PM =23.∴MH = PM gcos30= 3. 则NH =MN -MH =4-3= 5.2 22在 Rt △PNH 中,PN = NH 2+ PH 2+图2图3①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC三边运动,求经过多长时间点 P 与点Q 第一次在△ABC的哪条边上相遇? 解:(1)①∵t =1秒, ∴BP =CQ =31=3厘米,∵ AB =10厘米,点D 为AB 的中点, ∴ BD = 5厘米.又∵ PC = BC - BP ,BC = 8厘米, ∴PC =8-3=5厘米, ∴PC =BD 又∵AB = AC ,∴B =C , ∴△BPD ≌△CQP .vP vQBP CQ △BPD ≌△CQP B =CBP =PC =4,CQ =BD =580∴经过 3 秒点P 与点Q 第一次在边 AB 上相遇.9、如图所示,在菱形ABCD 中,AB =4,∠BAD =120°,△AEF 为正三角形,点E 、F 分别在菱形的边BC .CD 上滑动,且 E 、F 不与B .C .D 重合.(1)证明不论E 、F 在BC .CD 上如何滑动,总有BE =CF ;(2)当点 E 、F 在 BC .CD 上滑动时,分别探讨四边形 AECF 和△CEF 的面积是否发生变化?如果不 变,求出这个定值;如果变化,求出最大(或最小)值.BP∴点P , 点Q运动的时间3v Q =C t Q= 54= 1543 厘米/秒。
初二数学动点问题练习(含答案)之欧阳史创编

动态问题时间:2021.02.10 创作:欧阳史所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t=时,四边形是平行四边形;6当t=时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为53、如图,在Rt ABC∠=∠=BC=.点O是AC°,°,2ACB B△中,9060的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.12AC在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90°∴∠BCE+∠ACD=90°(备用图)CBAED图1NMA BCDEMN图2ACBEDNM图3∴∠CAD=∠BCE ∵AC=BC∴△ADC≌△CEB②∵△ADC≌△CEB∴CE=AD,CD=BE ∴DE=CE+CD=AD+BE(2) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE又∵AC=BC ∴△ACD≌△CBE ∴CE=AD,CD=BE∴DE=CE-CD=AD-BE(3) 当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90AEF∠=,且EF交正方形外角DCG∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF△≌△,所以AE EF=.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME .BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值ADFC GE B图1ADFC GB图3ADFCGE B 图2AD F GBMADFGE BN7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G .∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG△中,A D E BF C图4(备用)AD EBF C 图5(备用)A D E BF C图1 图2A D E BF C PNM图3A D EBFCPNM (第25题)60B =︒∠,∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC 的距离(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==.如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM ==∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =. 类似①,32MR =.∴23MN MR ==.∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.图1A D E BF CG图2A D E BF CPNMG H当MP MN=时,如图4,这时MC MN MP===此时,615x EP GM===-=当NP NM=时,如图5,30NPM PMN==︒∠∠.则120PMN=︒∠,又60MNC=︒∠,∴180PNM MNC+=︒∠∠.因此点P与F重合,PMC△为直角三角形.∴tan301MC PM=︒=.此时,6114x EP GM===--=.综上所述,当2x=或4或(5时,PMN△为等腰三角形.8、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?图3A DEBFCPNM图4A DEBFCPMN图5A DEBF(P)CMNGGRG解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米,∴PC BD =.又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△.②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
苏教版八年级上册复习专题练习一:动点问题压轴题(含答案)

初二数学期中复习专题一:动点问题3、动点中的旋转问题1、如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上一动点,连接OP,将线段OP 绕点O 逆时针旋转60°得到线段OD.要使点D 恰好落在BC 上,则AP 的长是.2、如图所示:一副三角板如图放置,等腰直角三角板ABC 固定不动,另一块三角板的直角顶点放在等腰直角三角形的斜边中点D 处,且可以绕点D 旋转,在旋转过程中,两直角边的交点G、H 始终在边AB、BC 上.(1)在旋转过程中线段BG 和CH 大小有何关系?证明你的结论.(2)若AB=BC=4cm,在旋转过程中四边形GBHD 的面积是否改变?若不变,求出它的值;若改变,求出它的取值范围.(3)若交点G、H 分别在边AB、BC 的延长线上,则(1)中的结论仍然成立吗?请画出相应的图形,直接写出结论.3、如图1,已知△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点.作正方形DEFG,使点A、C 分别在DG 和DE 上,连接AE,BG.(1)试猜想线段BG 和AE 的数量关系是;(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2 证明你的结论;②若BC=DE=4,当AE 取最大值时,求AF 的值.4、点的移动问题4、如图1,在△ABC 中,点P 为BC 边中点,直线a 绕顶点A 旋转,若B、P 在直线a 的异侧,BM⊥直线a 于点M,CN⊥直线a 于点N,连接PM、PN;(1)延长MP交CN于点E(如图2),①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a 绕点A 旋转到图3 的位置时,点B、P 在直线a 的同侧,其它条件不变,此时PM=PN 还成立吗?若成立,请给予证明;若不成立,请说明理由.5、在△ABC 中,∠BAC=90°,AB=AC.点D 从点B 出发沿射线BC 移动,以AD 为边在AB 的右侧作△ADE,且∠DAE=90°,AD=AE.连接CE.(1)如图1,若点D 在BC 边上,则∠BCE=°;(2)如图2,若点D 在BC 的延长线上运动.①∠BCE 的度数是否发生变化?请说明理由;②若BC=3,CD=6,则△ADE 的面积为.6、在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D 在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.7、一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH 的边长为1 米,∠B=90°,BC=4 米,AC=8 米,当正方形DEFH 运动到什么位置时,即当AE=米时,有DC2=AE2+BC2.8、【新知学习】如果一个三角形有一边上的中线等于这条边的一半,那么我们就把这样的三角形叫做“智慧三角形”.【简单运用】(1)下列三个三角形,是智慧三角形的是(填序号);(2)如图1,已知等边三角形ABC,请用刻度尺在该三角形边上找出所有满足条件的点D,使△ABD 为“智慧三角形”,并写出作法;【深入探究】(3)如图2,在正方形ABCD 中,点E 是BC 的中点,F 是CD 上一点,且CF=CD,试判断△AEF 是否为“智慧三角形”,并说明理由;【灵活应用】(4)如图3,等边三角形ABC 边长5cm.若动点P 以1cm/s 的速度从点A 出发,沿△ABC 的边AB ﹣BC﹣CA 运动.若另一动点Q 以2cm/s 的速度从点B 出发,沿边BC﹣CA﹣AB 运动,两点同时出发,当点Q首次回到点B时,两点同时停止运动.设运动时间为t(s),那么t为.(s)时,△PBQ为“智慧三角形”.动点问题压轴题1、【解答】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD=60°,∴∠APO=∠COD,在△APO 和△COD 中,,∴△APO≌△COD(AAS),即AP=CO,∵CO=AC﹣AO=6,∴AP=6.故答案为6.2、【解答】解:(1)BG和CH为相等关系,如图1,连接BD,∵等腰直角三角形ABC,D 为AC 的中点,∴DB=DC=DA,∠A=∠DBH=45°,BD⊥AC,∵∠EDF=90°,∴∠ADG+∠GDB=90°,∴∠BDG+∠BDH=90°,∴∠ADG=∠HDB,∴在△ADG 和△BDH 中,,∴△ADG≌△BDH(ASA),∴AG=BH,∵AB=BC,∴BG =HC ,(2) ∵等腰直角三角形 ABC ,D 为 AC 的中点,∴DB =DC =DA ,∠DBG =∠DCH =45°,BD ⊥AC ,∵∠GDH =90°,∴∠GDB +∠BDH =90°,∴∠CDH +∠BDH =90°,∴∠BDG =∠HDC ,∴在△BDG 和△CDH 中,,∵△BDG ≌△CDH (ASA ),∴S 四边形 DGBH =S △BDH +S △GDB =S △ABD ,∵DA =DC =DB ,BD ⊥AC ,∴S △ABD = S △ABC ,∴S 四边形 DGBH =S △ABC =4cm 2,∴在旋转过程中四边形 GBHD 的面积不变,(3) 当三角板 DEF 旋转至图 2 所示时,(1)的结论仍然成立,如图 2,连接 BD ,∵BD ⊥AC ,AB ⊥BH ,ED ⊥DF ,∴∠BDG =90°﹣∠CDG ,∠CDH =90°﹣∠CDG ,∴∠BDG =∠CDH ,∵等腰直角三角形 ABC ,∴∠DBC =∠BCD =45°,∴∠DBG =∠DCH =135°,∴在△DBG 和△DCH 中,,∴△DBG ≌△DCH (ASA ),∴BG =CH .3、.【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG 就可以得出结论;(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG 就可以得出结论;②由①可知BG=AE,当BG 取得最大值时,AE 取得最大值,由勾股定理就可以得出结论.【解答】解:(1)BG=AE.理由:如图1,∵△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点,∴AD⊥BC,BD=CD,∴∠ADB=∠ADC=90°.∵四边形DEFG 是正方形,∴DE=DG.在△BDG 和△ADE 中,,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为:BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC 中,D 为斜边BC 中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD 为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG 和△ADE 中,,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG 取得最大值时,AE 取得最大值.如图3,当旋转角为270°时,BG =AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF 中,由勾股定理,得AF==,∴AF=2 .4、【解答】证明:(1)①如图2:∵BM⊥直线a 于点M,CN⊥直线a 于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P 为BC 边中点,∴BP=CP,在△BPM 和△CPE 中,,∴△BPM≌△CPE,(ASA)②∵△BPM≌△CPE,∴PM=PE∴PM=ME,∴在Rt△MNE 中,PN=ME,∴PM=PN;(2)成立,如图3.延长MP 与NC 的延长线相交于点E,∵BM⊥直线 a 于点M,CN⊥直线a 于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P 为BC 中点,∴BP=CP,在△BPM 和△CPE 中,,∴△BPM≌△CPE,(ASA)∴PM=PE,∴PM=ME,则Rt△MNE 中,PN=ME,∴PM=PN.5、【解答】解:(1)∵△ABC和△ADE都是等腰Rt△,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ACE 和△ABD 中,,∴△ACE≌△ABD(SAS);∴∠ACE=∠ABD=45°,∴∠BCE=∠BCA+∠ACE=45°+45°=90°;故答案为:90;(2)①不发生变化.∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°,∵∠BAC=∠DAE=90°∴∠BAC+∠DAC=∠DAE+∠DAC∴∠BAD=∠CAE,在△ACE 和△ABD 中∴△ACE≌△ABD(SAS)∴∠ACE=∠ABD=45°∴∠BCE=∠BCA+∠ACE=45°+45°=90°∴∠BCE 的度数不变,为90°;② 11746、【解答】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD 与△ACE 中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD 与△ACE 中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D 在射线BC 上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD 和△ACE 中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D 在射线BC 的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB 和△AEC 中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.7、【解答】解:如图,连接CD,假设AE=x,可得EC=8﹣x.∵正方形DEFH 的边长为1 米,即DE=1 米,∴DC2=DE2+EC2=1+(8﹣x)2,AE2+BC2=x2+16,∵DC2=AE2+BC2,∴1+(8﹣x)2=x2+16,解得:x=,所以,当AE=米时,有DC2=AE2+BC2.故答案是:.8、【解答】解:(1)因为直角三角形的斜边上的中线等于斜边的一半,所以①是“智慧三角形”.故答案为①(2)用刻度尺分别量取AC、BC 的中点D、D′.点D、D′即为所求.(3)结论:△AEF 是“智慧三角形“.理由如下:如图,设正方形的边长为4a∵E 是BC 的中点∴BE=EC=2a,∵CF=CD∴FC=a,DF=4a﹣a=3a,在Rt△ABE 中,AE2=(4a)2+(2a)2=20a2在Rt△ECF 中,EF2=(2a)2+a2=5a2在Rt△ADF 中,AF2=(4a)2+(3a)2=25a2∴AE2+EF2=AF2∴△AEF 是直角三角形,∠AEF=90°∵直角三角形斜边AF 上的中线等于AF 的一半∴△AEF为“智慧三角形”.(4)如图3 中,①当点P 在线段AB 上,点Q 在线段BC 上时,若∠PQB=90°,则BP=2BQ,∴5﹣t=4t,解得t=1.若∠BPQ=90°,则BQ=2PB,∴2t=2(5﹣t)∴t=.②当点Q在线段AC上时,不存在“智慧三角形”.③当点P 在线段BC 上,点Q 在线段AB 上时,若∠PQB=90°,则BP=2BQ,∴t﹣5=2(15﹣2t),∴t=7,若∠QPB=90°,则BQ=2PB,∴15﹣2t=2(t﹣5),∴t=,综上所述,满足条件的t 的值为1 或或或7.故答案为1 或或或7.。
初二数学动点问题练习(答案)

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.OE CDAαlOCA(备用图)CBAED图1NMA BCDEMN图2ACBEDNM图3(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF Q 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. Q 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G B N7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC 于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),PMN△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴22112132BG BE EG===-=,.A DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=g . 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=g . 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG图1A D EBF CG 图2A D EBFCPNMG H①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
八年级数学综合复习(动点问题)(北师版)(含答案)

学生做题前请先回答以下问题问题1:一次函数背景下研究动点问题的思考方向是什么?问题2:分析运动过程时,需要注意哪几个要素?问题3:存在性问题和动点问题的区别与联系是什么?问题4:等腰三角形存在性(夹角固定,一定两动)问题与等腰三角形存在性(两定一动)问题在处理时的异同有哪些?.综合复习(动点问题)(北师版)一、单选题(共5道,每道20分)1.如图,一次函数的图象与x轴、y轴分别相交于点A,B,直线经过点A,且与y轴交于点C.点P以每秒个单位长度从点B向点C运动,过点P作PD⊥AB,垂足为D,在射线DA上截取DE=DP,连接PE.设点P的运动时间为t,△PDE与△ABC重叠部分的面积为S,则S与t的函数关系式为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题2.如图,直线与x轴、y轴分别交于点A,点B,与直线交于点C.动点E从点B出发,以每秒1个单位长度的速度沿BO方向向终点O运动,动点F同时从原点O出发,以每秒1个单位长度的速度沿折线OC-CB向终点B运动,当一点停止运动时,另一点也停止运动.设点F运动的时间为t(秒).(1)设△OEF的面积为S,则S与t之间的函数关系式为( )A.B.C.D.答案:B解题思路:试题难度:三颗星知识点:一次函数之动点问题3.(上接第2题)(2)当时,若△BEF是等腰三角形,则t的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题4.如图,在平面直角坐标系中,,BC⊥y轴于点C,点A在x轴正半轴上,且∠OAB=45°.动点P从点C出发,以每秒2个单位长度的速度,沿折线CB—BA运动;动点Q从点A出发,以每秒1个单位长度的速度,向终点O运动,当一点停止运动时,另一点也停止运动.设点Q运动的时间为t秒.(1)设△OPQ的面积为S,则S与t的关系式为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题5.(上接第4题)(2)当点P在线段BA上时,存在某个时刻使得△APQ为等腰三角形,则此时t的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数之动点问题。
初二数学动点问题练习(含答案)之欧阳育创编

动态问题时间:2021.02.04创作:欧阳育所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想1、如图1,梯形ABCD 中,AD∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
当t=时,四边形是平行四边形;6 当t=时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=度时,四边形EDBC 是等腰梯形,此时AD 的长为;②当α=度时,四边形EDBC 是直角梯形,此时AD 的长为; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC 是平行四边形在Rt△ABC 中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.. ∴AO=12AC.在Rt△AOD 中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC 是平行四边形, ∴四边形EDBC 是菱形4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD⊥MN 于D,BE⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°(备用图)CB AE D图1 N MA B CDEMN 图2 A CB EDNM图3∴∠CAD=∠BCE ∵AC=BC∴△ADC≌△CEB②∵△ADC≌△CEB∴CE=AD,CD=BE ∴DE=CE+CD=AD+BE(2) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE又∵AC=BC ∴△ACD≌△CBE ∴CE=AD,CD=BE∴DE=CE-CD=AD-BE (3) 当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等)∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90∠=,且EF交正方形外角DCGAEF∠的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证AME ECF△≌△,所以AE EF=.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME .BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t.求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值ADF CGE B图1 ADFC GB图3ADFCGE B 图2A DFGBMADFGE BN7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G .∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG△中,A D E BF C图4(备用)AD EBF C 图5(备用)A D E BF C图1 图2A D E BF C PNM图3A D EBFCPNM (第25题)60B =︒∠,∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==.如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM ==∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==.∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.图1A D E BF CG图2A D E BFCPNMG H当MP MN=时,如图4,这时MC MN MP===此时,615x EP GM===-=当NP NM=时,如图5,30NPM PMN==︒∠∠.则120PMN=︒∠,又60MNC=︒∠,∴180PNM MNC+=︒∠∠.因此点P与F重合,PMC△为直角三角形.∴tan301MC PM=︒=.此时,6114x EP GM===--=.综上所述,当2x=或4或(5时,PMN△为等腰三角形.8、如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?图3A DEBFCPNM图4A DEBFCPMN图5A DEBF(P)CMNGGRG解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =.又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△.②∵P Q v v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
初二动点问题(含答案)

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目•解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题•关键:动中求静•数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD 中,AD // BC,/ B=90 ° , AB=14cm,AD=18cm,BC=21cm,点P 从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P, Q分别从A , C同时出发,设移动时间为t秒。
当t= ______ 时,四边形是平行四边形;6当t= ______ 时,四边形是等腰梯形• 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1 , N为对角线AC上任意一点,则DN+MN的最小值为_________ 53、如图,在Rt A ABC 中,N ACB=90°, N B = 60°, BC=2 •点°是AC 的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D •过点C作CE // AB交直线I于点E,设直线I的旋转角为?•(1)①当'二_____________ 度时,四边形EDBC是等腰梯形,此时AD的长为___________②当〉二__________ 度时,四边形EDBC是直角梯形,此时AD的长为 ___________(2)当- =90°时,判断四边形EDBC是否为菱形,并说明理由.解:(1 [① 30, 1 :② 60, 1.5;(2)当/ a =90°时,四边形EDBC是菱形.•••/ a =/ACB=90 0,「. BC//ED. T CE//AB,二四边形EDBC 是平行四边形在Rt△ ABC 中,/ ACB=900,/ B=600,BC=2, /./ A=300.厂丄AC 厂• AB=4,AC=2 AO= 2八3•在Rt△ AOD 中,/••• BD=2.••• BD=BC. 又•••四边形EDBC是平行四边形,•••四边形EDBC是菱形4、在△ ABC 中,/ ACB=90°, AC=BC,直线MN 经过点C,图1(1) 当直线 MN 绕点C 旋转到图1的位置时,求证:①△ ADC ◎△ CEB •,②DE=AD + BE ;⑵当直线 MN 绕点C 旋转到图2的位置时,求证: DE=AD-BE ;⑶当直线MN 绕点C 旋转到图3的位置时,试问 DE 、AD 、BE 具有怎样的等量关系?请写出这个等量 关系,并加以证明•解:(1 [① •••/ ACD= / ACB=90 •••/ CAD+ / ACD=90 /-Z BCE+ / ACD=90•••/ CAD= Z BCE •/ AC=BCADC ◎△ CEB② •/△ ADC ◎△ CEB • CE=AD , CD=BE • DE=CE+CD=AD+BE(2) T Z ADC= Z CEB= Z ACB=90°ACD= Z CBE又 ■: AC=BCACD ◎△ CBE • CE=AD , CD=BE • DE=CE-CD=AD-BE(3) 当 MN 旋转至U 图 3 的位置时,DE=BE-AD(或 AD=BE-DE , BE=AD+DE 等)•/Z ADC= Z CEB= Z ACB=90° /Z ACD= Z CBE , 又 ■: AC=BC ,ACD ◎△ CBE ,• AD=CE , CD=BE ,• DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题: 如图1,四边形ABCD 是正方形,点E 是边BC 的中点..AEF =90:, 且EF 交正方形外角.DCG 的平行线CF 于点F ,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB 的中点 M 连接 ME 则 AM =EC,易证△ AME ECF ,所以 AE =EF .在此基础上,同学们作了进一步的研究:(1 )小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点 E 是边BC 上(除B, C 外)的任意 一点”,其它条件不变,那么结论“ AE=EF'仍然成立,你认为小颖的观点正确吗?如果正确,写出证明 过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF' 仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.MB 方向以1个单位/秒的速度移动,设 P 的运动时间为t.求(PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;解:(1)正确.证明:在 AB 上取一点M ,使AM 二EC ,连接ME . 二 BM =BE . A Z BME=45° 二N AME =135。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 初二数学动点问题归类复习(含例题、练习及答案) 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想 数形结合思想 转化思想 本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。 一、等腰三角形类:因动点产生的等腰三角形问题 例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°. (1)求ED、EC的长; (2)若BP=2,求CQ的长; (3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.
图1 备用图 思路点拨 1.第(2)题BP=2分两种情况. 2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系. 3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ. 解答:(1)在Rt△ABC中, AB=6,AC=8,所以BC=10.
在Rt△CDE中,CD=5,所以315tan544EDCDC,254EC. (2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是 △ABC的两条中位线,DM=4,DN=3. 由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN. 因此△PDM∽△QDN.
所以43PMDMQNDN.所以34QNPM,43PMQN.
图2 图3 图4 ①如图3,当BP=2,P在BM上时,PM=1.
此时3344QNPM.所以319444CQCNQN. ②如图4,当BP=2,P在MB的延长线上时,PM=5. 2
此时31544QNPM.所以1531444CQCNQN. (3)如图5,如图2,在Rt△PDQ中,3tan4QDDNQPDPDDM. 在Rt△ABC中,3tan4BACCA.所以∠QPD=∠C. 由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ. 因此△PDF∽△CDQ. 当△PDF是等腰三角形时,△CDQ也是等腰三角形. ①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).
此时4433PMQN.所以45333BPBMPM.
②如图6,当QC=QD时,由cosCHCCQ,可得5425258CQ. 所以QN=CN-CQ=257488(如图2所示). 此时4736PMQN.所以725366BPBMPM. ③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).
图5 图6 考点伸展:如图6,当△CDQ是等腰三角形时,根据等角的余角相等,可以得到△BDP也是等腰三
角形,PB=PD.在△BDP中可以直接求解256BP. 二、直角三角形:因动点产生的直角三角形问题 例2:(2008年河南省中考第23题)如图1,直线434xy和x轴、y轴的交点分别为B、C,点A的坐标是(-2,0). (1)试说明△ABC是等腰三角形;
(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S. ① 求S与t的函数关系式; ② 设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由; ③在运动过程中,当△MON为直角三角形时,求t的值. 3
图1 思路点拨: 1.第(1)题说明△ABC是等腰三角形,暗示了两个动点M、N同时出发,同时到达终点. 2.不论M在AO上还是在OB上,用含有t的式子表示OM边上的高都是相同的,用含有t的式子表示OM要分类讨论. 3.将S=4代入对应的函数解析式,解关于t的方程. 4.分类讨论△MON为直角三角形,不存在∠ONM=90°的可能. 解答:
(1)直线434xy与x轴的交点为B(3,0)、与y轴的交点C(0,4). Rt△BOC中,OB=3,OC=4,所以BC=5.点A的坐标是(-2,0),所以BA=5. 因此BC=BA,所以△ABC是等腰三角形. (2)①如图2,图3,过点N作NH⊥AB,垂足为H.
在Rt△BNH中,BN=t,4sin5B,所以45NHt. 如图2,当M在AO上时,OM=2-t,此时 211424(2)22555SOMNHtttt.定义域为0<t≤2.
如图3,当M在OB上时,OM=t-2,此时 211424(2)22555SOMNHtttt.定义域为2<t≤5.
图2 图3 ②把S=4代入22455Stt,得224455tt.
解得1211t,2211t(舍去负值). 因此,当点M在线段OB上运动时,存在S=4的情形,此时211t. ③如图4,当∠OMN=90°时,在Rt△BNM中,BN=t,BM 5t,3cos5B, 4
所以535tt.解得258t. 如图5,当∠OMN=90°时,N与C重合,5t. 不存在∠ONM=90°的可能.
所以,当258t或者5t时,△MON为直角三角形.
图4 图5 考点伸展:在本题情景下,如果△MON的边与AC平行,求t的值.如图6,当ON//AC时,t=3;如图7,当MN//AC时,t=2.5.
图6 图7 三、平行四边形问题:因动点产生的平行四边形问题 例3:(2010年山西省中考第26题)在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=
6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系. (1)求点B的坐标; (2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式; (3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.
图1 图2 思路点拨:1.第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础. 2.讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类, 5
DO与DM、DO与DN为邻边. 解答:(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.
在Rt△ABH中,AH=3,BA=35,所以BH=6.因此点B的坐标为(3,6).
(2) 因为OE=2EB,所以223EBxx,243EByy,E(2,4).
设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得5,24.bkb 解得12k,5b.所以直线DE的解析式为152yx. (3) 由152yx,知直线DE与x轴交于点F(10,0),OF=10,DF=55. ①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M的坐标为(5,52),点N的坐标为(-5,52). ②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8). ③如图5,当DO、DM为菱形的邻边时,NO=5,延长MN交x轴于P.
由△NPO∽△DOF,得NPPONODOOFDF,即551055NPPO.解得5NP,
25PO.此时点N的坐标为(25,5).
图3 图4 考点伸展 如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形.
图5 图6 6
四、相似三角形:因动点产生的相似三角形问题 例4:(2013年苏州中考28题)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、
F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s). (1)当t= s时,四边形EBFB′为正方形; (2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值; (3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.
思路点拨:(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在. 解答:(1)若四边形EBFB′为正方形,则BE=BF,即:10﹣t=3t,解得t=2.5; (2)分两种情况,讨论如下:①若△EBF∽△FCG,则有,即,解得:t=2.8;
②若△EBF∽△GCF,则有,即,解得:t=﹣14﹣2(不合题意,舍去)或t=﹣14+2.∴当t=2.8s或t=(﹣14+2)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似. (3)假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM=BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(6﹣3t)2=(3t)2解得:t=;
过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,