贪心算法Tsp实习报告1
实验三-贪心算法

for(inti=0;i<s.length();i++){
buf.append(getEachCode(s.substring(i,i+1)));
}
returnbuf.toString();
}
publicString getEachCode(String name){
for(inti=0;i<buffer.length();i++){
if(name.equals(codes[i].name)){
returnhuffstring[i];
}
}
return"";
}
publicvoidgetCode(intn,String[] thecodes,String thebuffer){
importjava.util.Scanner;
classHuffmanCode{
Stringname;
doubleweight;
intlc,rc,pa;
publicHuffmanCode(){
name="";
weight=0;
lc=-1;rc=-1;pa=-1;
}
}
publicclassHuffman1 {
dist[j]=newdist;prev[j]=u;}}}}
(3)运行结果
3、题目三
(1)问题分析
设G=(V,E)是连通带权图,V={1,2,…,n}。构造G的最小生成树的Prim算法的基本思想是:首先置S{1},然后,只要S是V的真子集,就进行如下的贪心选择:选取满足条件i∈S,j∈V-S,且c[i][j]最小的边,将顶点j添加到S中。这个过程一直进行到S=V时为止。过程中所取到的边恰好构成G的一棵最小生成树。
贪心算法实验报告算法实验贪心法实验报告

贪心算法实验报告算法实验贪心法实验报告西安邮电大学(计算机学院)课内实验报告实验名称:贪心算法专业名称:班级:学生姓名:学号(8指导教师:实验日期:一. 实验目的及实验环境1.练习掌握最有分解问题的规划设计与实现;2.熟练掌握递归算法的设计及应用,怎样才能使算法的空间复杂度和时间复杂度最低;基于Linux系统下的ubuntu或其他的编辑器二. 实验内容1. 设n是一个正整数,现在要求将n分解为若干互不相同的自然数的和,且使这些自然数的乘积最大三.方案设计1.先将这个数分解成以2开始的连续的若干因子,它们的和加起来是n,将此数在后项优先的方式下均匀地分给前面各项。
保证正整数所分解出的因子之差的绝对值最小,即| a – b |最小,可以保证分解乘积越大。
四.测试数据及运行结果1.正常测试数据(3组)及运行结果;A.2.非正常测试数据(2组)及运行结果A.B.五.总结1.实验过程中遇到的问题及解决办法;在实验过程中错误不断地出现,我认真地查阅书籍,研究课本上例题,并且在同学的帮助下纠正了自己的错误,得出了正确的结果。
2.对设计及调试过程的心得体会。
在程序的运行与调试过程中出现了很多错误,但是通过自己复习课本知识、查询资料等,修改后得出了正确的结果。
而且我觉得自己一定要敢于尝试,即使没有结果但是勇于实践就会有意想不到的收获。
所以在以后的学习中我觉得我们一定要集中精力、端正自己态度,提高自己的成绩。
当然我也认识到了自己的薄弱之处,因此我一定争取做的能让自己满意,做的更好。
六.附录:源代码(电子版)#include#includevoid open_file(int n){FILE *fp;if((fp=fopen(“input.txt”,”wt”))==NULL) {printf(“the file write failed.\n”);exit(1);}fprintf(fp,”%2d\n”,n);fclose(fp);}void save_file(int sum){FILE *fp;if((f p=fopen(“output.txt”,”wt”))==NULL) {printf(“ the file save failed!.\n”);exit(1);}fprintf(fp,”%2d\n”,sum);fclose(fp);if((fp=fopen(“output.txt”,”r”))==NULL) {printf(“save file failed!\n”);exit(1);}fscanf(fp,”%2d”,&sum);printf(“\n鏈€澶х?d\n”,sum);fclose(fp);}int MAX(int n){int i=2,j=0,data[n],sum=0,max=1; int lenth; while(sum+i{sum+=i;data[j]=i;i++;j++;}lenth=j;i=n-sum;while(i>0){if(j{data[j+i]+=1;i--;j--;}else{data[j-1]+=1;i--;j--;}}for(i=0;imax*=data[i];return max;}int main(){int n,max;srand((unsigned)time(NULL)); n=rand()%100; open_file(n);printf(“ 杩欎釜鏁版槸%d:\n”,n); max=MAX(n); save_file(max);return 0; }百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆。
贪心算法 实验报告

贪心算法实验报告贪心算法实验报告引言:贪心算法是一种常用的算法设计策略,它通常用于求解最优化问题。
贪心算法的核心思想是在每一步选择中都选择当前最优的解,从而希望最终能够得到全局最优解。
本实验旨在通过实际案例的研究,探索贪心算法的应用和效果。
一、贪心算法的基本原理贪心算法的基本原理是每一步都选择当前最优解,而不考虑整体的最优解。
这种贪婪的选择策略通常是基于局部最优性的假设,即当前的选择对于后续步骤的选择没有影响。
贪心算法的优点是简单高效,但也存在一定的局限性。
二、实验案例:零钱兑换问题在本实验中,我们以零钱兑换问题为例,来说明贪心算法的应用。
问题描述:假设有不同面值的硬币,如1元、5元、10元、50元和100元,现在需要支付给客户x元,如何用最少的硬币数完成支付?解决思路:贪心算法可以通过每次选择当前面值最大的硬币来求解。
具体步骤如下:1. 初始化一个空的硬币集合,用于存放选出的硬币。
2. 从面值最大的硬币开始,如果当前硬币的面值小于等于待支付金额,则将该硬币放入集合中,并将待支付金额减去该硬币的面值。
3. 重复步骤2,直到待支付金额为0。
实验过程:以支付金额为36元为例,我们可以通过贪心算法求解最少硬币数。
首先,面值最大的硬币为100元,但36元不足以支付100元硬币,因此我们选择50元硬币。
此时,剩余待支付金额为36-50=-14元。
接下来,面值最大的硬币为50元,但待支付金额为负数,因此我们选择下一个面值最大的硬币,即10元硬币。
此时,剩余待支付金额为-14-10=-24元。
继续选择10元硬币,剩余待支付金额为-24-10=-34元。
再次选择10元硬币,剩余待支付金额为-34-10=-44元。
最后,选择5元硬币,剩余待支付金额为-44-5=-49元。
由于待支付金额已经为负数,我们无法继续选择硬币。
此时,集合中的硬币数为1个50元和3个10元,总共4个硬币。
实验结果:通过贪心算法,我们得到了36元支付所需的最少硬币数为4个。
贪心算法实验报告心得

贪心算法实验报告心得前言贪心算法是一种常见且重要的算法设计思想,通过每一步都选择当下最优的解决方案,以期望最终得到全局最优解。
在学习与实践贪心算法的过程中,我有了许多心得与体会。
什么是贪心算法?贪心算法是一种求解问题的算法思想,它的特点是每一步都选择当前最优的解决方案,而不考虑该选择对以后步骤的影响。
贪心算法通常适用于可以将问题分解为若干个子问题,并且通过每次选择当前最优解来得到整体最优解的情况。
贪心算法的基本步骤贪心算法的基本步骤可以总结为以下几个方面:1.确定问题的解空间,并找到问题的最优解。
贪心算法通常通过穷举法或者利用问题的特殊性质来确定解空间。
2.制定贪心策略。
贪心算法的核心是确定每一步选择的贪心策略,即选择当前最优解。
3.确定贪心策略的正确性。
贪心算法的一个关键问题是如何证明贪心策略的正确性。
可以通过数学证明、反证法或者举反例等方式来进行证明。
4.实现贪心算法。
将贪心策略转化为实际可执行的算法步骤,编写代码来求解问题。
贪心算法实验结果分析在本次实验中,我使用贪心算法解决了一个经典问题:找零钱问题(Change-Making Problem)。
给定一定面额的硬币和需找的金额,我们的目标是使用最少的硬币来完成找零钱。
贪心算法的思路是每次选择面额最大的硬币进行找零。
实验设计1.实验输入:我设计了多组输入来测试贪心算法的性能。
每组输入包括一个需找的金额和一个硬币集合。
2.实验输出:对于每组输入,贪心算法输出一个最优的硬币找零方案,以及使用的硬币数量。
3.实验评价:我使用了实际需找金额与贪心算法计算得到的找零金额的差值来评估算法的准确性,并统计了算法的时间复杂度。
实验结果从多组实验结果中可以观察到,贪心算法在大部分情况下给出了正确的找零金额,并且算法的时间复杂度较低。
结果分析贪心算法在找零钱问题中的应用是合理的。
每次选择面额最大的硬币进行找零,可以快速接近最优解,并且相对其他算法具有较低的时间复杂度。
贪心算法Tsp实习报告1

2.2.2 贪心算法的缺陷
贪心算法(又称贪心算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。 也就是说,不从整体最优上加以考虑,它所做出的仅是在某种意义上的局部最优解。贪心算 法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解 或者是整体最优解的近似解。
1.3 贪心算法的概念
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。 也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算 法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解 或者是整体最优解的近似解。
为了解决问题,需要寻找一个构成解的候选对象集合,它可以优化目标函数,贪心算 法一步一步的进行。起初,算法选出的候选对象的集合为空。接下来的每一步中,根据选择 函数,算法从剩余候选对象中选出最有希望构成解的对象。如果集合中加上该对象后不可行, 那么该对象就被丢弃并不再考虑;否则就加到集合里。每一次都扩充集合,并检查该集合是 否构成解。如果贪心算法正确工作,那么找到的第一个解通常是最优的。
3. 课程实习报告内容
3.1 了解并掌握贪心算法
贪心算法(Greedy algorithm)是一种对某些求最优解问题的更简单、更迅速的设计技 术。用贪心法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作 最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费 的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将
2. 课程实习题目描述和要求.........................................................................................................1 2.1 TSP 问题介绍.................................................................................................................1 2.2 贪心算法的特性.............................................................................................................2 2.2.1 贪心算法的特性:............................................................................................ 2 2.2.2 贪心算法的缺陷................................................................................................ 2 2.3 关于贪心算法的备注.................................................................................................... 2
贪心算法实验报告

(2)实验设计的数据结构及说明
--------------------------可以编辑的精品文档,你值得拥有,下载后想怎么改就怎么改--------------------------==========================================================
测试数据也预期结果相同。
toFill = findMax(r, n); r[toFill] = -1; if((remain - w[toFill]) >= 0) {
s[toFill] = 1.0; remain = remain - w[toFill]; } else { s[toFill] = (w[toFill] - remain)*1.0 / w[toFill]; remain = 0; } } free(r);
实验报告
2009 – 2010 学年第 一 学期 任课老师: 王璇
设分治算法设计技术的
实验时间
应用
实验开始日期:2010/11/02 报告提交日期:2010/11/10
实验目的、要求
(1)实验题目
1.利用贪心策略解决背包问题。现有载重为 M 公斤的背包和 n 种货物。第 i 种货物的重量为 Wi,它的总价值为 Pi,假定 M、Wi、Pi 均为整数。设计程序给出装货方法,使装入背包的货物总 价值达到最大。
--------------------------可以编辑的精品文档,你值得拥有,下载后想怎么改就怎么改--------------------------==========================================================
《算法设计与分析》课程实验报告 (贪心算法(一))

《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。
编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。
若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。
用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。
3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。
设计一个有效的贪心算法进行安排。
(这个问题实际上是著名的图着色问题。
若将每一个活动作为图的一个顶点,不相容活动间用边相连。
使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。
)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。
(2)掌握通过迭代求最优的程序实现技巧。
(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。
三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。
(2)给出题1的贪心选择性质的证明。
(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。
算法实验报告贪心

一、实验背景贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。
贪心算法并不保证能获得最优解,但往往能获得较好的近似解。
在许多实际应用中,贪心算法因其简单、高效的特点而被广泛应用。
本实验旨在通过编写贪心算法程序,解决经典的最小生成树问题,并分析贪心算法的优缺点。
二、实验目的1. 理解贪心算法的基本原理和应用场景;2. 掌握贪心算法的编程实现方法;3. 分析贪心算法的优缺点,并尝试改进;4. 比较贪心算法与其他算法在解决最小生成树问题上的性能。
三、实验内容1. 最小生成树问题最小生成树问题是指:给定一个加权无向图,找到一棵树,使得这棵树包含所有顶点,且树的总权值最小。
2. 贪心算法求解最小生成树贪心算法求解最小生成树的方法是:从任意一个顶点开始,每次选择与当前已选顶点距离最近的顶点,将其加入生成树中,直到所有顶点都被包含在生成树中。
3. 算法实现(1)数据结构- 图的表示:邻接矩阵- 顶点集合:V- 边集合:E- 已选顶点集合:selected- 最小生成树集合:mst(2)贪心算法实现```def greedy_mst(graph):V = set(graph.keys()) # 顶点集合selected = set() # 已选顶点集合mst = set() # 最小生成树集合for i in V:selected.add(i)mst.add((i, graph[i]))while len(selected) < len(V):min_edge = Nonefor edge in mst:u, v = edgeif v not in selected and (min_edge is None or graph[u][v] < graph[min_edge[0]][min_edge[1]]):min_edge = edgeselected.add(min_edge[1])mst.add(min_edge)return mst```4. 性能分析为了比较贪心算法与其他算法在解决最小生成树问题上的性能,我们可以采用以下两种算法:(1)Prim算法:从任意一个顶点开始,逐步添加边,直到所有顶点都被包含在生成树中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江农林大学信息工程学院课程实习报告课程名称:数据结构实习班级:电信****班题目: TSP问题的贪心算法组长: ******* 成员: ******* 指导教师: *******2014年6月17 日目录1.课程实习目的 (1)1.1贪心算法实习的目的 (1)1.2TSP问题的解决及贪心算法的应用 (1)1.3贪心算法的概念 (1)2.课程实习题目描述和要求 (1)2.1TSP问题介绍 (1)2.2贪心算法的特性 (2)2.2.1贪心算法的特性: (2)2.2.2贪心算法的缺陷 (2)2.3关于贪心算法的备注 (2)3.课程实习报告内容 (2)3.1了解并掌握贪心算法 (2)3.2设计内容 (3)3.2.1问题描述 (3)3.2.2设计思想 (3)3.3需求分析 (3)3.3.1程序的功能: (3)3.3.2输入输出的要求 (4)3.4贪心算法解决TSP问题的流程图 (4)3.5贪心算法解决TSP问题的步骤 (5)4.总结 (5)5.任务分配 (5)1.课程实习目的1.1贪心算法实习的目的此次实习通过贪心算法来解决TSP问题。
假设有n个城市,任意两个城市之间都有路径相通,并设第i个城市与第j个城市之间的距离为Dij,求从某个城市出发经过所有城市并且只经过一次又回到原点的都短距离。
首先,本文运用Visual C++集成开发环境将贪心算法编程实现,并解决TSP问题。
然后通过改变各个参数的值来观察计算结果,接着对运算结果的进行对比分析,从而验证各个参数对贪心算法的影响。
1.2TSP问题的解决及贪心算法的应用旅行商问题(Traveling Salesman Problem, TSP),是一个著名的组合优化问题,该类问题具有非常广泛的运用背景。
如物流的调度问题、数控机床上的最优钻孔路线的选取、电路板的焊接都属于旅行商问题。
因此旅行商问题受到了各方面的关注,有效解决TSP问题在计算理论和实际应用上都有很高的价值。
目前解决TSP的主要方法有贪心算法、遗传算法、模拟退火算法、蚁群算法、启发式搜索法、Hopfield神经网络算、二叉树描述算法。
此次实习主要介绍了应用贪心算法来解决TSP问题。
1.3贪心算法的概念贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。
为了解决问题,需要寻找一个构成解的候选对象集合,它可以优化目标函数,贪心算法一步一步的进行。
起初,算法选出的候选对象的集合为空。
接下来的每一步中,根据选择函数,算法从剩余候选对象中选出最有希望构成解的对象。
如果集合中加上该对象后不可行,那么该对象就被丢弃并不再考虑;否则就加到集合里。
每一次都扩充集合,并检查该集合是否构成解。
如果贪心算法正确工作,那么找到的第一个解通常是最优的。
2.课程实习题目描述和要求2.1TSP问题介绍TSP问题,也称旅行商问题。
已知n个城市之间的相互距离,现有一个推销员必须遍访这n个城市,并且每个城市只能访问一次,最后又必须返回出发城市。
如何安排他的访问顺序,可使其旅行的总长度最短。
用图论的术语来说,假设有一个图g=(v , e),其中v是顶点集,e是边集,设d=d ij是由顶点i和顶点j之间距离所组成的距离矩阵,旅行商问题就是要求出一条通过所有顶点且每个顶点只通过一次的具有最短距离的回路。
这个问题可分为对称旅行商问题( d ij = d ji )任意(i , j=1,2,3,···,n)和非对称旅行商问题(d ij≠d ji)任意i , j=(1,2,3,···,n)。
城市v={v1,v2,v3,···,v n的一个访问顺序为t(t1,t2,t3,···,ti,···,tn),其中ti∈v(i=1,2,3,···,n),且记t(n+1)=t1,则旅行商问题的数学模型为:min =σd(t(i),t(i+1))(i=0,···,9)。
2.2贪心算法的特性2.2.1贪心算法的特性:(1)有一个以最优方式来解决的问题。
为了构造问题的解决方案,有一个候选的对象的集合:比如不同面值的硬币。
(2)随着算法的进行,将积累起其它两个集合:一个包含已经被考虑过并被选出的候选对象,另一个包含已经被考虑过但被丢弃的候选对象。
(3)有一个函数来检查一个候选对象的集合是否提供了问题的解答。
该函数不考虑此时的解决方法是否最优。
(4)还有一个函数检查是否一个候选对象的集合是可行的,也即是否可能往该集合上添加更多的候选对象以获得一个解。
和上一个函数一样,此时不考虑解决方法的最优性。
(5)选择函数可以指出哪一个剩余的候选对象最有希望构成问题的解。
(6)最后,目标函数给出解的值。
2.2.2贪心算法的缺陷贪心算法(又称贪心算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,它所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。
2.3关于贪心算法贪心算法当然也有正确的时候。
求最小生成树的Prim算法和Kruskal算法都是漂亮的贪心算法。
贪心法的应用算法有Dijkstra的单源最短路径和Chvatal的贪心集合覆盖启发式所以需要说明的是,贪心算法可以与随机化算法一起使用,具体的例子就不再多举了。
(因为这一类算法普及性不高,而且技术含量是非常高的,需要通过一些反例确定随机的对象是什么,随机程度如何,但也是不能保证完全正确,只能是极大的几率正确)。
3.课程实习报告内容3.1了解并掌握贪心算法贪心算法(Greedy algorithm)是一种对某些求最优解问题的更简单、更迅速的设计技术。
用贪心法设计算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,它省去了为找最优解要穷尽所有可能而必须耗费的大量时间,它采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪心法不要回溯。
贪心算法是一种改进了的分级处理方法。
其核心是根据题意选取一种量度标准。
然后将这多个输入排成这种量度标准所要求的顺序,按这种顺序一次输入一个量。
如果这个输入和当前已构成在这种量度意义下的部分最佳解加在一起不能产生一个可行解,则不把此输入加到这部分解中。
这种能够得到某种量度意义下最优解的分级处理方法称为贪心算法。
对于一个给定的问题,往往可能有好几种量度标准。
初看起来,这些量度标准似乎都是可取的,但实际上,用其中的大多数量度标准作贪心处理所得到该量度意义下的最优解并不是问题的最优解,而是次优解。
因此,选择能产生问题最优解的最优量度标准是使用贪心算法的核心。
一般情况下,要选出最优量度标准并不是一件容易的事,但对某问题能选择出最优量度标准后,用贪心算法求解则特别有效。
最优解可以通过一系列局部最优的选择即贪心选择来达到,根据当前状态做出在当前看来是最好的选择,即局部最优解选择,然后再去解做出这个选择后产生的相应的子问题。
每做一次贪心选择就将所求问题简化为一个规模更小的子问题,最终可得到问题的一个整体最优解。
3.2设计内容3.2.1问题描述所谓TSP问题是指旅行家要旅行n个城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。
该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。
3.2.2设计思想对于TSP问题,一种最容易想到的也肯定能得到最佳解的算法是穷举法,即考虑所有可能的旅行路线,从中选择最佳的一条。
但是用穷举法求解TSP问题的时间复杂度为Ο(n!),当n大到一定程度后是不可解的。
所以我们选取贪心算法,但我们必须清楚地认识到贪心算法依旧有着其缺陷(即在对问题求解时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,它所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解)。
3.3需求分析3.3.1程序的功能:求一个旅行家要穿过多个城市,已知城市个数,以及城市间距,求出最短路径解和最短路径长度。
3.3.2输入输出的要求输入城市数目N为正整数,城市间距离最小值为0,输入起始城市的数字,输入共有N+2个数值;输出最优解和最优值。
3.4贪心算法解决TSP问题的流程图3.5贪心算法解决TSP问题的步骤第一步:了解并掌握问题的关键。
第二步:建立数学模型来描述问题。
第三步:把求解的问题分成若干个子问题。
第四步:对每一子问题求解,得到子问题的局部最优解。
第五步:把子问题的解局部最优解合成原来解问题的一个解。
第六步:得出结论。
4.总结数据结构实习能够锻炼学生综合运用所学知识并利用课外知识,发现、提出、分析并解决实际问题的能力,是对学生实际工作能力的具体训练和考察过程。
它不但考察我们运用数据结构知识解决问题的能力,还考察了我们了解问题,查找资料的能力。
在这几天里我不仅巩固了之前所学,还学到了许多书本上没有的知识。
在确立问题之后,我通过图书馆查找、上网搜索等多种途径收集课题相关资料并认真整理掌握算法。
并用一段时间的编写代码,虽然第一次运行出现了问题,但我并没有放弃,仔细地检查,发现并解决了问题。
在一番调试后,代码最终能稳定快速地运行。
这次实习让我懂得了理论与实践结合的重要性,让我了解了如何快速正确的解决问题。
虽然编写代码的过程中出现了一些小插曲,但是这些都将成为我的经验,防止我以后再次出现这种情况。
总之,这次实习让我收获颇丰。
5.任务分配参考文献:[1]百度百科,贪心算法,/view/298415.htm?fr=aladdin课程实习评分表本人在中,独立完成内容。
本人自评等级为。
签名:日期:课程实习小组长评分表同学在本些课程实习中表现。
等级拟定为____。
签名:日期:课程实习教师评分表同学在本些课程实习中表现。
等级定为____。
签名:日期:。