福州市时代中学2013年秋九年级上期中考试数学试题及答案
【免费下载】第一学期九年级数学期中考试试卷含答案

18.在平面直角坐标系中,若点 A(x,-2)与点 B(1,y)关于原点对称, 则 x y ______________. 19.时钟的时针在不停地旋转,从上午 6 时到上午 9 时,时针旋转的旋转角
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根保通据护过生高管产中线工资敷艺料设高试技中卷术资配0料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高高与中中带资资负料料荷试试下卷卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷高4、调动设中电试作技资气高,术料课中并中试3、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2013年秋九年级上数学期中试卷及答案(1--5.4)

1 / 5第15题2013年秋学期九年级数学期中试卷(考试时间:120分钟 满分150分)第一部分 选择题(共18分)一.选择题(下列各题所给答案中,只有一个答案是正确的.每小题3分,共18分) 1.下列变形中,正确的是( ) A .(2)2=2×3=6 B .=C .=-D .=2.下列二次根式中,与是同类二次根式的是( )A 、B 、C 、D 、 3.下列命题是真命题的是( )A .90º的直角所对的弦是直径B .平分弦的直径垂直于这条弦C .等弧所对圆周角相等D .一条弦把圆分成的两段弧中,至少有一段是优弧 4.如图,在Rt △ABC 中∠ACB =90º,AC =6,AB =10, CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段 CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A . 点P 在⊙O 内 B .点P 在⊙O 上C . 点P 在⊙O 外D .无法确定点P 与⊙O 的位置关系 5.若是关于的一元二次方程的根,且≠0,则的值为A .B .C . 1D .6.给出以下四个论断:①对角线互相平分且相等的四边形是矩形;②数据1,3,4,5的标准差是数据2,6,8,10的标准差的一半③在直角三角形中,两边分别为5和12,则该三角形的外接圆半径为6.5; ④有一组对边和一组对角相等的四边形是平行四边形, 其中正确..的有( )个 A .1 B .2 C .3 D .4第二部分 非选择题(132分) 二.填空题(每题3分,共30分) 7.若式子有意义,则x 的取值范围为 . 8.已知m 是的整数部分,则m= . 9.使式子=成立的x 的取值范围是________.10.写出一根为-2、另一根为大于3而小于5的数的一元二次方程.11.如图,已知是⊙O 的圆周角,∠ACB=55°,则圆心角是_____12.已知平行四边形ABCD ,AP 平分∠BAD 交边CD 与P ,AB =10, CP =3,则 平行四边形ABCD 的周长为_______. 13.如图,已知⊙O 半径为5,弦长为8,点为弦上一动点,连结,则线段OP 长的范围是 .14.已知:如图所示的图形的面积为24,根据图中的条件,可列出方程 15.如图,在△ABC 中,BC=8cm ,AB 的垂直平分线交AB 于点M ,交边AC 于点D ,△BCD 的周长等于18cm ,则AC 的长等于 cm16.如果等腰三角形一腰上的高与另一边的夹角为34°,那么等腰三角形的顶角为 度O C B A 第11题第13题xx +1 1+x第14题三.解答下列各题17.(本题满分12分) 计算:(1)(2)18.(本题满分8分) 解下列方程:(1)9t2-(t-1)2=0(2) 2x2-5x+1=0(配方法)19.(本题满分8分)先化简,再求值:,其中20.(8分)关于x的方程x2-2(m-1)x+m2=0(1)当m为何值时,方程有两个实数根?(2)若m为最大的负整数,请求出方程的两个根.21.(10分)为了从甲、乙两名学生中选拔一人参加全国数学竞赛,•李老师每个月对他们的竞赛成绩进行一次测验,下图是两人赛前5次测验成绩的折线统计图.①将下列表格填写完整;②请你参谋一下,李老师应选派哪一名学生参加这次竞赛,结合所学习的统计知识说明理由.解:(1) 填表如下:(2) 李老师应选派参加这次竞赛.理由:22.(10分)如图,在等边△ABC中,D是BA延长线上的一点,点E是AC的中点。
2013年秋季九年级期考数学科参考答案

2013年秋季九年级期考数学科参考答案一、选择题(每小题3分,共21分)1.A ;2.A ;3. D ;4.A ;5.B ;6.C ;7.C. 二、填空题(每小题4分,共40分)8.6;9.1x =0,2x =1;10.6;11.25;12.略 ;13.92;14.9:16; 15. (-2,-1);16.322;17. (1)2012,2013 (2)2 . 三、解答题(89分)18.原式=3-4(8分)=-1 (9分)19.写出求根公式 (4分) 32±=x (9分) 20. ∵ DE ∥BC ,EF ∥AB ,∴ ∠ADE =∠B =∠EFC , 3分 ∴ ∠AED =∠C , 6分∴ △ADE ∽△EFC 9分21. 在Rt △AED 中,∵ AE =DE ×tan40°≈8.39 4分∴ AB=AE+EB (6分) ≈9.6(米) 8分 答:旗杆AB 的长度约为9.6米. 9分22.(1) 用列表或画树状图表示 6分 (2) P(能被2整除)= 1/3. 9分 23.(1)画出△ABC (画出A 、B 、C 各1分) 4分 (2)画出△A ′BC ′(画出A ′、C ′各1分 7分) A ′(-3,0) C ′(3,-3) 9分 24.(1)20-x ,100+10x ; 4分(2)根据题意,得 (20-x )(100+10x )=2160. 6分整理,得x 2-10x +16=0, 8分解这个方程得x 1=2 x 2=8, 9分 答:每件商品应降价2元或8元.25. (1)(6,2) 3分(2)由题意知: P (t ,t ) Q (2t ,0) ① S=t 24分 ∴t =±1∴当t =1时,△OPQ 的面积等于1 5分② PQ 2=2t 2BQ 2=(6-2t )2+4 PB 2=(2-t )2+(6-t )2△PQB 为直角三角形,只能∠PQB=90°或 ∠PBQ=90° 6分 当∠PQB=90°时 PB 2=PQ 2+BQ 24t 2-8t =0t =2 或 t =0(舍去) 7分当∠PBQ=90°时 PQ 2=BQ 2 +PB 2t 2-10t +20=0t =5±5 8分∴当t =2,t =5±5时 △PQB 为直角三角形 (3)过D 作DK ⊥OC ,垂足为K AD=DK=2 DC=DE=20又∠NDE=∠MDC ∴△NDE ≌△MDC 若△DNE 为等腰三角形, 则△DMC 为等腰三角形 9分 设M(a ,0)DM=MC (6-a )2=22+(a -2)2a =27 M(27,0) 10分 DM=MC M 与C 关于K 点对称 M(-2,0) 11分 DC=MC M(6-25,0) 或 M(6+25,0) 13分26.(1)=a 4 3分(2)连结OP ,B(0,4) 设P(x ,y )四边形BOAP 面积 =△BPO 的面积+△APO 的面积 4分 =21×2y +21×4x =422++-x x 5分 =5)1(2+--x 6分 -1<0 抛物线开口向下当x =1时,四边形BOAP 面积的最大值是5 7分 此时点P 的坐标P(1,3) 8分 (3)kx y = 42+-=x y 04=-+kx x2162+±-=k k x 9分过M 作MM ′⊥OQ ,垂足为M ′过N 作NN ′⊥OQ ,垂足为N ′ 当 ∠MQO=∠NQO 时tan ∠MQO=tan ∠NQO 10分 设M (1x ,1y ) N (2x ,2y )11y m x --=22y m x - 11分m x x =+-421 12分 21x x =-4 ∴m =8 13分N'M'Q NMBO xyA。
2013届九年级(上)期中检测数学试题

2012年秋中期检测九年级数 学 试 卷第一卷一、选择题 (每题3分,共36分)1.下列图案中,既是轴对称图形,又是中心对称图形的是……………( )2.点P (3,5)关于原点对称的点的坐标是………………………………( ). A . (-3,5) B . (3,-5) C . (5, 3) D . (-3,-5)3. 已知a <b ,化简二次根式b a 3-的正确结果是( )A .ab a --B .ab a -C .ab aD .ab a - 4..下列二次根式中,最简二次根式的是………………………………( ) A .12+a B .21C .12D .b a 2 5. .下列计算正确的是……………………………………………… ( ) A .532=+ B . 2333=-C . 23222=+D .224=-6.下列方程为一元二次方程的是 ………………………………… ( ) A .0233122=--x x B . 0522=+-y x C . 02=++c bx ax D .07142=+-xx 7.一个直角三角形的面积为24,两条直角边的和为14,则斜边长为……( ) A . 372 B . 10 C . 382 D . 148.一个小组有若干人,新年互送贺年卡,已知全组共送出72张,则这个小组有 ( )学校: 班级: 姓名: 座号:密封线内不要答题A B D CA 12人B 18人C 9人D 10人9 .同圆中,两条弦长分别为a 和b ,它们的弦心距分别为c 和d ,若c >d ,则有( )A .a >bB .a <bC .a =bD .不能确定10. 已知两圆的半径是方程018112=+-x x 两实数根,圆心距为11,那么这两个圆的位置关系是( )A .内切B .相交C .外离D .外切 11. 下列语句中不正确的有( )①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧 A .3个 B .2个C .1个D .以上都不对12. 在半径为R 的圆中,一条弧长为l 的弧所对的圆心角为( )A . lR180π度 B .R l π180度 C . 180Rl π度 D . Rlπ180度柏树中学2011年秋中期检测九年级数 学 试 卷第一卷答题卡第二卷:非选择题二、填空题(每小题3分,共24分) 13.8×2= .14.将方程1242-=x x 化成一般形式为 , 其二次项系数是 ,一次项是 . 15. P A 、PB 是的⊙O 切线,切点分别是A 、B 。
福建省福州市2013年中考数学试卷(解析版) (

福建省福州市2013年中考数学试卷(解析版)一.选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(2013福州)2的倒数是( ) A.B.﹣C.2 D.﹣2考点:倒数.分析:根据倒数的概念求解.解答:解:2的倒数是.故选A.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 2.(2013福州)如图,OA⊥OB,若∠1=40°,则∠2的度数是( ) A.20° B.40° C.50° D.60°考点:余角和补角.分析:根据互余两角之和为90°即可求解.解答:解:∵OA⊥OB,∠1=40°,∴∠2=90°﹣∠1=90°﹣40°=50°.故选C.点评:本题考查了余角的知识,属于基础题,掌握互余两角之和等于90°是解答本题的关键. 3.(2013福州)2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学记数法表示为( ) A.7×105 B.7×106 C.70×106 D.7×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7 000 000有7位,所以可以确定n=7﹣1=6.解答:解:7 000 000=7×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键. 4.(2013福州)下列立体图形中,俯视图是正方形的是( ) A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从上面看所得到的视图,结合选项进行判断即可.解答:解:A.俯视图是带圆心的圆,故本选项错误;B.俯视图是一个圆,故本选项错误;C.俯视图是一个圆,故本选项错误;D.俯视图是一个正方形,故本选项正确;故选D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义. 5.(2013福州)下列一元二次方程有两个相等实数根的是( ) A.x2+3=0 B.x2+2x=0 C.(x+1)2=0 D.(x+3)(x﹣1)=0考点:根的判别式.专题:计算题.分析:根据计算根的判别式,根据判别式的意义可对A、B、C进行判断;由于D的两根可直接得到,则可对D进行判断.解答:解:A.△=0﹣4×3=﹣12<0,则方程没有实数根,所以A选项错误;B.△=4﹣4×0=4>0,则方程有两个不相等的实数根,所以B选项错误;C.x2+2x+1=0,△=4﹣4×1=0,则方程有两个相等的实数根,所以C选项正确;D.x1=﹣3,x2=1,则方程有两个不相等的实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 6.(2013福州)不等式1+x<0的解集在数轴上表示正确的是( ) A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.专题:计算题.分析:求出不等式的解集,即可作出判断.解答:解:1+x<0,解得:x<﹣1,表示在数轴上,如图所示:故选A点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 7.(2013福州)下列运算正确的是( ) A.a•a2=a3 B.(a2)3=a5 C.D.a3÷a3=a考点:分式的乘除法;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.专题:计算题.分析:A.原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B.原式利用幂的乘方运算法则计算得到结果,即可作出判断;C.原式分子分母分别乘方得到结果,即可作出判断;D.原式利用同底数幂的除法法则计算得到结果,即可作出判断.解答:解:A.a•a2=a3,本选项正确;B.(a2)3=a6,本选项错误;C.()2=,本选项错误;D.a3÷a3=1,本选项错误,故选A点评:此题考查了分式的乘除法,同底数幂的乘除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. 8.(2013福州)如图,已知△ABC,以点B为圆心,AC长为半径画弧;以点C为圆心,AB长为半径画弧,两弧交于点D,且点A,点D在BC异侧,连结AD,量一量线段AD的长,约为( ) A.2.5cm B.3.0cm C.3.5cm D.4.0cm考点:平行四边形的判定与性质;作图—复杂作图.分析:首先根据题意画出图形,知四边形ABCD是平行四边形,则平行四边形ABCD的对角线相等,即AD=BC.再利用刻度尺进行测量即可.解答:解:如图所示,连接BD、BC、AD.∵AC=BD,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.测量可得BC=AD=3.0cm,故选:B.点评:此题主要考查了复杂作图,关键是正确理解题意,画出图形. 9.(2013福州)袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( ) A.3个 B.不足3个 C.4个 D.5个或5个以上考点:可能性的大小.分析:根据取到白球的可能性交大可以判断出白球的数量大于红球的数量,从而得解.解答:解:∵袋中有红球4个,取到白球的可能性较大,∴袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.点评:本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等. 10.(2013福州)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( ) A.a>0 B.a<0 C.b=0 D.ab<0考点:一次函数图象上点的坐标特征.分析:根据函数的图象可知:y随x的增大而增大,y+b<y,x+a<x得出b<0,a<0,即可推出答案.解答:解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选B.点评:本题考查了一次函数图象上点的坐标特征的应用,主要考查学生的理解能力和观察图象的能力. 二.填空题(共5小题,每小题4分.满分20分;请将正确答案填在答题卡相应位置)11.(2013福州)计算:= .考点:分式的加减法.专题:计算题.分析:因为分式的分母相同,所以分母不变,分子相减即可得出答案.解答:解:原式==.故答案为.点评:本题比较容易,考查分式的减法运算. 12.(2013福州)矩形的外角和等于度.考点:多边形内角与外角.分析:根据多边形的外角和定理解答即可.解答:解:矩形的外角和等于360度.故答案为:360.点评:本题考查了多边形的外角和,多边形的外角和与边数无关,任何多边形的外角和都是360°. 13.(2013福州)某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.考点:加权平均数.分析:根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.解答:解:根据题意得:(13×4+14×7+15×4)÷15=14(岁),故答案为:14.点评:此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题. 14.(2013福州)已知实数a,b满足a+b=2,a﹣b=5,则(a+b)3(a﹣b)3的值是.考点:幂的乘方与积的乘方.专题:计算题.分析:所求式子利用积的乘方逆运算法则变形,将已知等式代入计算即可求出值.解答:解:∵a+b=2,a﹣b=5,∴原式=[(a+b)(a﹣b)]3=103=1000.故答案为:1000点评:此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键. 15.(2013福州)如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点.已知每个正六边形的边长为1,△ABC 的顶点都在格点上,则△ABC的面积是.考点:正多边形和圆.分析:延长AB,然后作出C所在的直线,一定交于格点E,根据S△ABC=S△AEC﹣S△BEC即可求解.解答:解:延长AB,然后作出C所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,相邻的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC=×4×(﹣)=2.故答案是:2.点评:本题考查了正多边形的计算,正确理解S△ABC=S△AEC﹣S△BEC是关键. 三.解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再用黑色签字笔描黑)16.(2013福州)(1)计算:;(2)化简:(a+3)2+a(4﹣a)考点:整式的混合运算;实数的运算;零指数幂.分析:(1)原式第一项利用零指数幂法则计算,第二项利用负数的绝对值等于它的相反数计算,最后一项化为最简二次根式,计算即可得到结果;(2)原式第一项利用完全平方公式展开,第二项利用单项式乘多项式法则计算即可得到结果.解答:解:(1)原式=1+4﹣2=5﹣2;(2)原式=a2+6a+9+4a﹣a2=10a+9.点评:此题考查了整式的混合运算,以及实数的运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键. 17.(2013福州)(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?考点:全等三角形的判定与性质;一元一次方程的应用.分析:(1)求出∠CAB=∠DAB,根据SAS推出△ABC≌△ABD即可;(2)设这个班有x名学生,根据题意得出方程3x+20=4x﹣25,求出即可.解答:(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名小学生.点评:本题考查了全等三角形的性质和判定,一元一次方程的应用,主要考查学生的推理能力和列方程的能力. 18.(2013福州)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E组的人数有人;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图;中位数;众数.专题:图表型.分析:(1)根据众数的定义,以及中位数的定义解答即可;(2)先求出女生身高在E组所占的百分比,再求出总人数然后计算即可得解;(3)分别用男、女生的人数乘以C、D两组的频率的和,计算即可得解.解答:解:∵B组的人数为12,最多,∴众数在B组,男生总人数为4+12+10+8+6=40,按照从低到高的顺序,第20、21两人都在C组,∴中位数在C组;(2)女生身高在E组的频率为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,∵抽取的样本中,男生、女生的人数相同,∴样本中,女生身高在E组的人数有40×5%=2人;(3)400×+380×(25%+15%)=180+152=332(人).答:估计该校身高在160≤x<170之间的学生约有332人.故答案为(1)B,C;(2)2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 19.(2013福州)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O 顺时针旋转得到△DOB,则旋转角度可以是度;(2)连结AD,交OC于点E,求∠AEO的度数.考点:旋转的性质;等边三角形的性质;轴对称的性质;平移的性质.专题:计算题.分析:(1)由点A的坐标为(﹣2,0),根据平移的性质得到△AOC 沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.解答:解:(1)∵点A的坐标为(﹣2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°.故答案为2;y轴;120.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的性质、轴对称的性质以及平移的性质. 20.(2013福州)如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=1,AM=2,AE=(1)求证:BC是⊙O的切线;(2)求的长.考点:切线的判定;勾股定理的逆定理;弧长的计算;解直角三角形.分析:(1)欲证明BC是⊙O的切线,只需证明OB⊥BC即可;(2)首先,在Rt△AEM中,根据特殊角的三角函数值求得∠A=30°;其次,利用圆心角、弧、弦间的关系、圆周角定理求得∠BON=2∠A=60°,由三角形函数的定义求得ON==;最后,由弧长公式l=计算的长.解答:(1)证明:如图,∵ME=1,AM=2,AE=,∴ME2+AE2=AM2=4,∴△AME是直角三角形,且∠AEM=90°.又∵MN∥BC,∴∠ABC=∠AEM=90°,即OB⊥BC.又∵OB是⊙O的半径,∴BC是⊙O的切线;(2)解:如图,连接ON.在Rt△AEM中,sinA==,∴∠A=30°.∵AB⊥MN,∴=,EN=EM=1,∴∠BON=2∠A=60°.在Rt△OEN中,sin∠EON=,∴ON==,∴的长度是:•=.点评:本题综合考查了切线的判定与性质、勾股定理的逆定理,弧长的计算,解直角三角形等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可. 21.(2013福州)如图,等腰梯形ABCD中,AD∥BC,∠B=45°,P是BC边上一点,△PAD的面积为,设AB=x,AD=y(1)求y与x的函数关系式;(2)若∠APD=45°,当y=1时,求PB•PC的值;(3)若∠APD=90°,求y的最小值.考点:相似形综合题.专题:综合题.分析:(1)如图1,过A作AE垂直于BC,在直角三角形ABE中,由∠B=45°,AB=x,利用锐角三角函数定义表示出AE,三角形PAD的面积以AD为底,AE为高,利用三角形面积公式表示出,根据已知的面积即可列出y与x的函数关系式;(2)根据∠APC=∠APD+∠CPD,以及∠APC为三角形ABP的外角,利用外角性质得到关系式,等量代换得到∠BAP=∠CPD,再由四边形ABCD为等腰梯形,得到一对底角相等及AB=CD,可得出三角形ABP与三角形PDC相似,由相似得比例,将CD换为AB,由y的值求出x的值,即为AB的值,即可求出PB•PC的值;(3)取AD的中点F,过P作PH垂直于AD,由直角三角形PF大于等于PH,当PF=PH时,PF最小,此时F与H重合,由三角形APD为直角三角形,利用直角三角形斜边上的中线等于斜边的一半得到PF等于AD的一半,表示出PF即为PH,三角形APD面积以AD为底,PH为高,利用三角形面积公式表示出三角形APD面积,由已知的面积求出y的值,即为最小值.解答:解:(1)如图1,过A作AE⊥BC于点E,在Rt△ABE中,∠B=45°,AB=x,∴AE=AB•sinB=x,∵S△APD=AD•AE=,∴•y•x=,则y=;(2)∵∠APC=∠APD+∠CPD=∠B+∠BAP,∠APD=∠B=45°,∴∠BAP=∠CPD,∵四边形ABCD为等腰梯形,∴∠B=∠C,AB=CD,∴△ABP∽△PCD,∴=,∴PB•PC=AB•DC=AB2,当y=1时,x=,即AB=,则PB•PC=()2=2;(3)如图2,取AD的中点F,连接PF,过P作PH⊥AD,可得PF≥PH,当PF=PH时,PF有最小值,∵∠APD=90°,∴PF=AD=y,∴PH=y,∵S△APD=•AD•PH=,∴•y•y=,即y2=2,∵y>0,∴y=,则y的最小值为.点评:此题考查了相似形综合题,涉及的知识有:等腰梯形的性质,相似三角形的判定与性质,直角三角形斜边上的中线性质,以及三角形的面积求法,熟练掌握相似三角形的判定与性质是解本题的关键. 22.(2013福州)我们知道,经过原点的抛物线的解析式可以是y=ax2+bx(a≠0)(1)对于这样的抛物线:当顶点坐标为(1,1)时,a= ;当顶点坐标为(m,m),m≠0时,a与m之间的关系式是(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线y=kx(k≠0)上,请用含k的代数式表示b;(3)现有一组过原点的抛物线,顶点A1,A2,…,A n在直线y=x上,横坐标依次为1,2,…,n(为正整数,且n≤12),分别过每个顶点作x 轴的垂线,垂足记为B1,B2,…,B n,以线段A n B n为边向右作正方形A n B n C n D n,若这组抛物线中有一条经过D n,求所有满足条件的正方形边长.考点:二次函数综合题.分析:(1)利用顶点坐标公式(﹣,)填空;(2)首先,利用配方法得到抛物线的解析式y=a(x+)2﹣,则易求该抛物线的顶点坐标(﹣,﹣);然后,把该顶点坐标代入直线方程y=kx(k≠0),即可求得用含k的代数式表示b;(3)根据题意可设可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.所以由正方形的性质推知点D n的坐标是(2n,n),则把点D n 的坐标代入抛物线解析式即可求得4n=3t.然后由n、t的取值范围来求点A n的坐标,即该正方形的边长.解答:解:(1)∵顶点坐标为(1,1),∴,解得,,即当顶点坐标为(1,1)时,a=1;当顶点坐标为(m,m),m≠0时,,解得,则a与m之间的关系式是:a=﹣或am+1=0.故答案是:﹣1;a=﹣或am+1=0.(2)∵a≠0,∴y=ax2+bx=a(x+)2﹣,∴顶点坐标是(﹣,﹣).又∵该顶点在直线y=kx(k≠0)上,∴k(﹣)=﹣.∵b≠0,∴b=2k;(3)∵顶点A1,A2,…,A n在直线y=x上,∴可设A n(n,n),点D n所在的抛物线顶点坐标为(t,t).由(1)(2)可得,点D n所在的抛物线解析式为y=﹣x2+2x.∵四边形A n B n C n D n是正方形,∴点D n的坐标是(2n,n),∴﹣(2n)2+22n=n,∴4n=3t.∵t、n是正整数,且t≤12,n≤12,∴n=3,6或9.∴满足条件的正方形边长是3,6或9.点评:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,二次函数的顶点坐标公式以及正方形的性质.解答(3)题时,要注意n的取值范围. 。
福州省福州时代中学2013-2014学年第一学期九年级期中考试数学试卷

第 19 题
20.( 共 12 分 ) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当
三辆汽车经过这个十字路口时:
( 1) 求三辆车全部同向而行的概率;
(2) 求至少有两辆车向左转的概率;
(3) 由于十字路口右拐弯处是通往新建经济开发区的,
因此交管部门在汽车行驶高峰时段对车流量作了统计,
发
现汽 3 .目前在此路口,汽车左转、右转、
5
10
直行的绿灯亮的时间分别为 30 秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对
此路口三个方向的绿灯亮的时间做出合理的调整
.
21.( 共 12 分 ) 如图, AB 是半圆 O 的直径, 点 C 是⊙O 上一点 (不与 A,B 重合),连接 AC,BC,过点 O 作 OD∥AC
福州省福州时代中学 2013-2014 学年第一学期九年级期中考试
数学试卷
一、选择题 ( 每小题 4 分,共 40 分 )
( 时间 120 分钟,满分 150 分 )
1.抛物线 y x 2 4 的顶点坐标是
A . ( 0,4)
B. ( 0,- 4)
C. ( - 4, 0)
2.一个圆锥的母线长为 10,侧面展开图是半圆,则圆锥的侧面积是
交 BC 于点 D,在 OD 的延长线上取一点 E,连接 EB,使∠ OEB=∠ABC.
E
( 1) 求证: BE 是⊙O 的切线;
C
D
( 2) 若 OA=10 ,BC =16,求 BE 的长 .
A
O
B
第 21 题
22. ( 共 14 分 ) 如图 1,⊙O 的直径 CD= 4, AD⊥DC , BC⊥DC , AD= 2, BC= 6, P 是⊙O 上的一个动点.
福州九年级上册期中数学试卷及答案
福州九年级上册期中数学试卷(满分:150分;完成时间:120分钟;考试形式:闭卷)友情提示:亲爱的同学,现在是检验你半期来的学习情况的时候,相信你能沉着、冷静,发挥出平时的水平,相信你一定能考出好的成绩!一、选择题:(本题共10小题,每小题4分,共40分)1.平面直角坐标系内一点P (3,﹣1)关于原点对称的点的坐标是( ) A .(3,﹣1)B .(﹣3,1)C .(﹣3,﹣1)D .(3,1)2.下列App 图标中,既不是中心对称图形也不是轴对称图形的是( )A B C D 3.如果32a b =(0ab ≠),那么下列比例式中正确的是( ) A.32a b = B .23b a = C .23a b = D .32a b = 4.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是( )A B C D5.如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果∠AOB=140°,那么∠ACB 的度数为( ) A .70°B .110°C .140°D .70°或110°6.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点. 若大圆半径为2,小圆半径为1,则AB 的长为( ) A .3 B .23 C .5 D .2第5题图 第6题图 第10题图7.将抛物线2(1)2y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴有一个交点,则a 的值为( )A .1-B .1C .2-D .28.若x 支球队参加篮球比赛,共比赛了36场,每2队之间都比赛两场,则下列方程中符合题意的是( ) A .x (x ﹣1)=36B .x (x+1)=36B A POABCOA BC .x (x ﹣1)=36D .x (x+1)=369.已知一个二次函数图象经过11(3)P y -,,22(1)P y -,,33(1)P y ,,44(3)P y ,四点,若324y y y <<,则1234y y y y ,,,的最值情况是( )A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定10.如图,AB 是定长线段,圆心O 是AB 的中点,AE 、BF 为切线,E 、F 为切点,满足AE=BF 在上取动点G ,过点G 作切线交AE 、BF 的延长线于点D 、C ,当点G 运动时,设AD=y ,BC=x ,则y 与x 所满足的函数关系式为( )A. 正比例函数y=kx (k 为常数,k ≠0,x >0)B. 一次函数y=kx+b (k ,b 为常数,kb ≠0,x >0)C. 二次函数y=ax2+bx+c (a ,b ,c 为常数,a ≠0,x >0)D. 以上都不是 二、填空题:(本题共6小题,每小题4分,共24分)11.写出一个以0和2为根的一元二次方程:________.12.如图①,物理课上学习过利用小孔成像说明光的直线传播.现将图①抽象为图②,其中线段AB 为蜡烛的火焰,线段A 'B '为其倒立的像. 如果蜡烛火焰AB 的高度为2cm ,倒立的像A 'B '的高度为5cm ,点O 到AB 的距离为4cm ,那么点O 到A 'B '的距离为 cm .13.如图,四边形ABCD 内接于⊙O ,E 为直径CD 延长线上一点,且AB ∥CD ,若∠C=70°,则∠ADE 的大小为________.第12题 第13题 第14题 第15题14.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是 . 15.如图,在菱形ABCD 中,AB =1,∠BAD =60°,将菱形ABCD 绕点A 逆时针方向旋转,对应得到菱形AEFG ,点E 在AC 上,EF 与CD 交于点P ,则DP 的长是________.16.如图,抛物线y =x 2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A 1,A 2 ,A 3 ,…A n ,….将抛物线y =x 2沿直线L :y =x 向上平移,得一系列抛物线,且满足下列条件:①抛物线的顶点M 1 ,M 2 ,M 3 ,…M n ,…都在直线L :y =x 上; ②抛物线依次经过点A 1 ,A 2 ,A 3…A n …. A BE D O C三、解答题:(本题共9小题,共86分) 17.(8分)解方程:()236x x x +=+.18.(8分)如图,△ABC 中,DE ∥BC ,如果AD = 2,DB = 3,AE = 4,求AC 的长.19.(8分)已知1-是方程20x ax b +-=的一个根,求222a b b -+的值.20.(8分)在平面直角坐标系xOy 中,抛物线22(0)y ax x a =-≠与x 轴交于点A ,B(点A 在点B 的左侧). (1)当1a =-时,求A ,B 两点的坐标; (2)过点(30)P ,作垂直于x 轴的直线l ,交抛物线于点C .①当2a =时,求PB PC +的值;②若点B 在直线l 左侧,且14PB PC +≥,直接写出a 的取值范围.D CBA E21. (8分)如图,已知△ABC 中,∠C=90°,AC=BC= √2 ,将△ABC 绕点A 顺时 针方向旋转60°到△AB ′C ′的位置,连接C ′B .(1)请你在图中把图补画完整; (2)求C ′B 的长.22.(10分)如图,在△ABC 中,AB AC =,以AB 为直径作⊙O 交BC 于点D ,过点D 作AC 的垂线交AC于点E ,交AB 的延长线于点F . (1)求证:DE 与⊙O 相切;(2)若CD BF =,3AE =,求DF 的长.23.(10分)为满足市场需求,某超市在八月十五“中秋节”来临前夕,购进一种品牌的月饼,每盒进价40元,根据以往的销售经验发现:当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)写出每天的销售量y(盒)与每盒月饼上涨x(元)之间的函数关系式.(2)当每盒售价定为多少元时,当天的销售利润W(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定,这种月饼每盒的利润不得高于进价的30%,那么超市每天获得最大利润是多少?24.(12分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CA,BG,若∠FGB=12∠ACH,求证:CA//FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若35AHAC,AK=210,求CN的长.25. (14分)知抛物线y =ax 2+bx +c 开口向上,与x 轴交于点A(1,0)和点B ,与y 轴交于点 C (0,3),其对称轴为直线x =2 .(1)求抛物线的解析式 ;(2)如图2,作点C 关于抛物线对称轴的对称点D ,连接AD 、BD ,在抛物线上是否存在点P ,使∠PAD =∠ADB ,若存在,求出点P 的坐标,若不存在,请说明理由 ;(3)若直线l :y =m(m>3)与抛物线有两个交点M 、N (M 在N 的左边),Q 为抛物线上A. B 之间一点(不包括A. B),过点Q 作QH 平行于y 轴交直线l 于点H ,求 HM•HN HQ的值 .参考答案一、选择题1-5BBCAD 6-10BDAAD二、11、x(x-2)=0 12、10 13、110° 14、3-3215、1-3 16、(4037,4037) 三、18、19、20、21、22、23、24、210a=2 AC=10AC=10 13b=101310b 10134025、。
2013年秋九年级上数学期中试卷及答案(1--5.4)
第15题2013年秋学期九年级数学期中试卷(考试时间:120分钟满分150分)第一部分选择题(共18分)一.选择题(下列各题所给答案中,只有一个答案是正确的.每小题3分,共18分)1.下列变形中,正确的是()A.(23)2=2×3=6 B.)4()9(-⨯-=49⨯C.2)52(-=-52D.259+=259+2.下列二次根式中,与6是同类二次根式的是()A、54B、30C、48D、183.下列命题是真命题的是()A.90º的直角所对的弦是直径B.平分弦的直径垂直于这条弦C.等弧所对圆周角相等D.一条弦把圆分成的两段弧中,至少有一段是优弧4.如图,在Rt△ABC中∠ACB=90º,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是( )A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法确定点P与⊙O的位置关系5.若m是关于x的一元二次方程02=++mnxx的根,且m≠0,则nm+的值为A.21B.21-C.1 D.1-6.给出以下四个论断:①对角线互相平分且相等的四边形是矩形;②数据1,3,4,5的标准差是数据2,6,8,10的标准差的一半③在直角三角形中,两边分别为5和12,则该三角形的外接圆半径为6.5;④有一组对边和一组对角相等的四边形是平行四边形,其中正确..的有( )个A.1B.2C.3D.4第二部分非选择题(132分)二.填空题(每题3分,共30分)7.若式子32+x有意义,则x的取值范围为.8.已知m是5的整数部分,则m= .9.使式子12-x=11-⋅+xx成立的x的取值范围是________.10.写出一根为-2、另一根为大于3而小于5的数的一元二次方程.11.如图,已知ACB∠是⊙O的圆周角,∠ACB=55°,则圆心角AOB∠是_____12.已知平行四边形ABCD,AP平分∠BAD交边CD与P,AB=10,CP=3,则平行四边形ABCD的周长为_______.13.如图,已知⊙O半径为5,弦AB长为8,点P为弦AB上一动点,连结OP,则线段OP长的范围是.14.已知:如图所示的图形的面积为24,根据图中的条件,可列出方程15.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点M,交边AC于点D,△BCD的周长等于18cm,则AC的长等于cm16.如果等腰三角形一腰上的高与另一边的夹角为34°,那么等腰三角形的顶角为度O CBA第11题第13题xx+11+x第14题第 1 页共 5 页第 2 页 共 5 页三.解答下列各题17. (本题满分12分) 计算:(1)3222233--+ (2)321821324+⨯-÷18.(本题满分8分) 解下列方程:(1)9t 2-(t -1)2=0 (2) 2x 2-5x+1=0(配方法)19.(本题满分8分)先化简,再求值:2225241244a a a a a a ⎛⎫-+-+÷ ⎪+++⎝⎭,其中23a =+20.(8分)关于x 的方程x 2-2(m -1)x +m 2=0 (1)当m 为何值时,方程有两个实数根?(2)若m 为最大的负整数,请求出方程的两个根.21.(10分)为了从甲、乙两名学生中选拔一人参加全国数学竞赛,•李老师每个月对他们的竞赛成绩进行一次测验,下图是两人赛前5次测验成绩的折线统计图.①将下列表格填写完整;②请你参谋一下,李老师应选派哪一名学生参加这次竞赛,结合所学习的统计知识说明理由. 解:(1) 填表如下:(2) 李老师应选派 参加这次竞赛. 理由:22.(10分)如图,在等边△ABC 中,D 是BA 延长线上的一点,点E 是AC 的中点。
福建省九年级上学期期中数学试卷及答案
福建省九年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2 B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2 3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣124.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1C.m<1 D.m≤16.(4分)已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm27.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.108.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是.(写一个即可)12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是个.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤. 17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是时,有y1>y2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF 于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.24.(12分)如图,点A是反比例函数y1=(x>0)图象上的任意一点,过点A作AB∥x轴,交另一个比例函数y2=(k<0,x<0)的图象于点B.(1)若S△AOB的面积等于3,则k是=;(2)当k=﹣8时,若点A的横坐标是1,求∠AOB的度数;(3)若不论点A在何处,反比例函数y2=(k<0,x<0)图象上总存在一点D,使得四边形AOBD为平行四边形,求k的值.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.福建省九年级(上)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合要求的.1.(4分)下列事件是必然事件的是()A.三角形内角和等于180°B.乘公共汽时恰好有空座C.打开手机有未接电话D.任意画一个正五边形它是中心对称图形【解答】解:A、是必然事件,故A符合题意;B、是随机事件,故B不符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:A.2.(4分)下列抛物线中对称轴为直线x=1的是()A.y=x2B.y=x2+1 C.y=(x﹣1)2D.y=(x+1)2【解答】解:A、y=x2对称轴为x=0,此选项不符合题意;B、y=x2+1对称轴为x=0,此选项不符合题意;C、y=(x﹣1)2对称轴为x=1,此选项符合题意;D、y=(x+1)2对称轴为x=﹣1,此选项不符合题意;故选:C.3.(4分)若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6 B.﹣6 C.12 D.﹣12【解答】解:设反比例函数的解析式为y=,把A(3,﹣4)代入得:k=﹣12,即y=﹣,把B(﹣2,m)代入得:m=﹣=6,故选:A.4.(4分)如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°【解答】解:∵⊙O是△ABC的外接圆,∠ABC=40°,∴∠AOC=2∠ABC=80°.故选:D.5.(4分)若抛物线y=x2﹣2x+m与x轴有交点,则m的取值范围是()A.m>1 B.m≥1C.m<1 D.m≤1【解答】解:根据题意得△=(﹣2)2﹣4m≥0,解得m≤1.故选:D.6.(4分)已知圆锥的底面面积为9πcm2,母线长为6cm,则该圆锥的侧面积是()A.18cm2B.27cm2C.18πcm2D.27πcm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3cm,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:C.7.(4分)将抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为()A.4 B.6 C.8 D.10【解答】解:将抛物线y=x2﹣1向下平移8个单位长度,其解析式变换为:y=x2﹣9而抛物线y=x2﹣9与x轴的交点的纵坐标为0,所以有:x2﹣9=0解得:x1=﹣3,x2=3,则抛物线y=x2﹣9与x轴的交点为(﹣3,0)、(3,0),所以,抛物线y=x2﹣1向下平移8个单位长度后与x轴的两个交点之间的距离为6故选:B.8.(4分)如图,在菱形ABCD中,∠B=45°,以点A为圆心的扇形与BC,CD相切,向这样一个靶子上随意抛一枚飞镖,则飞镖插在阴影区域的概率为()A.1﹣B.C.1﹣D.【解答】解:如图,设切点为E,F,连接AE,∵以点A为圆心的扇形与BC,CD相切,∴AE⊥BC,∵∠B=45°,∴AE=BE=AB,∠BAC=135°,∴S=BC•AE=AB2,菱形ABCDS阴影=S菱形﹣S扇形=AB2﹣=πAB2,∴飞镖插在阴影区域的概率=1﹣,故选:A.9.(4分)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步【解答】解:如图,在Rt△ABC中,AC=8,BC=15,∠C=90°,∴AB==17,∴S△ABC=AC•BC=×8×15=60,设内切圆的圆心为O,分别连接圆心和三个切点,及OA、OB、OC,设内切圆的半径为r,∴S△ABC=S△AOB+S△BOC+S△AOC=×r(AB+BC+AC)=20r,∴20r=60,解得r=3,∴内切圆的直径为6步,故选:B.10.(4分)方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,那么用此方法可推断出方程x2+2x﹣1=0的实数根x0所在的范围是()A.﹣1<x0<0 B.0<x0<1 C.1<x0<2 D.2<x0<3【解答】解:方程x2+2x﹣1=0的实数根可以看作函数y=x+2和y=的交点.函数大体图象如图所示:A.由图可得,第三象限内图象交点的横坐标小于﹣2,故﹣1<x0<0错误;B.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故0<x0<1正确;C.当x=1时,y1=1+2=3,y2==1,而3>1,根据函数的增减性可知,第一象限内的交点的横坐标小于1,故1<x0<2错误;D.当x=2时,y1=2+2=4,y2=,而4>,根据函数的增减性可知,第一象限内的交点的横坐标小于2,故2<x0<3错误.故选:B.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)若抛物线y=ax2+bx+c的开口向下,则a的值可能是﹣1.(写一个即可)【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.12.(4分)从数﹣2,﹣1,2,5,8中任取一个数记作k,则反比例函数的图象在第二、四象限的概率是.【解答】解:∵从数﹣2,﹣1,2,5,8中任取一个数记作k,有5种情况,其中使反比例函数的图象经过第二、四象限的k值只有2种,即k=﹣1和k=﹣2,∴满足条件的概率为.故答案为:.13.(4分)一只不透明的袋子中装有红色、黑色、白色的球共有20个,这些球除颜色外,形状、大小、质地等完全相同.某校数学兴趣小组做试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,发现摸到红色、黑色球的频率分别稳定在0.1和0.3,则袋中白色球的个数很可能是12个.【解答】解:根据题意得:20×(1﹣0.1﹣0.3)=12(个),答:袋中白色球的个数很可能是12个;故答案为:12.14.(4分)如图,点A,B,C均在6×6的正方形网格格点上,过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为5.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.15.(4分)如图,P(m,m)是反比例函数在第一象限内的图象上一点,以P为顶点作等边△P AB,使AB落在x轴上,则△POB的面积为.【解答】解:作PD⊥OB,∵P(m,m)是反比例函数在第一象限内的图象上一点,∴m=,解得:m=3,∴PD=3,∵△ABP是等边三角形,∴BD=PD=,∴S△POB=OB•PD=(OD+BD)•PD=,故答案是:.16.(4分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为5,则GE+FH的最大值为7.5.【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为5,∴AB=OA=OB=5,∵点E,F分别是AC、BC的中点,∴EF=AB=,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:5×2=10,∴GE+FH的最大值为:10﹣=7.5.故答案为:7.5.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过称或演算步骤. 17.(8分)已知一个反比例函数图象经过点(4,﹣2),求这反比例函数的解析式.【解答】解:设这个反比例函数的解析式为y=(k≠0),依题意得:﹣2=,∴k=﹣8,这个反比例函数解析式为y=﹣.18.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=10,CD=8,求BE的长.【解答】解:连接OC,如图∵弦CD⊥AB,∴CE=DE=CD=4,在Rt△OCE中,∵OC=5,CE=4,∴OE==3,∴BE=OB﹣OE=5﹣3=2.19.(8分)在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.【解答】解:(1)如图1,连接OA、OB,在优弧AB上任意找一点C,连接AC、AB∠ACB为所求作(2)如图2,连接OA交圆O于点C,在优弧BC上任意找一点D,连接CD、BD,∠CDB为所求作20.(8分)如图,一次函数y1=kx+b的图象与反比例函数的图象交于M,N两点.(1)利用图中条件,求m,n的值;(2)观察图象,直接写出当x的取值范围是﹣1<x<0或x>2时,有y1>y2.【解答】解:(1)∵M、N在反比例函数的图象上,∴m==2,﹣4=,解得n=﹣1,∴m的值为2,n的值为﹣1;(2)当y1>y2时,即一次函数图象在反比例函数图象的上方,结合图象可知﹣1<x<0或x>2,故答案为:﹣1<x<0或x>2.21.(10分)已知:如图AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF 于点D.(1)求证:∠BAC=∠CAD;(2)若∠B=30°,AB=12,求AC的长.【解答】(1)证明:连接OC,如图,∵DE为切线,∴OC⊥DE,而AD⊥EF,∴OC∥AD,∴∠OCA=∠CAD,∵OA=OC,∴∠BAC=∠OCA,∴∠BAC=∠CAD;(2)解:∵AB为直径,∴∠ACB=90°,在Rt△ABC中,∵∠B=30°,∴AC=AB=×12=6.22.(10分)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.【解答】解:(1)所有可能出现的结果如图:从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为:;(2)不公平.从表格可以看出,两人抽取数字和为2的倍数有5种,两人抽取数字和为5的倍数有3种,所以甲获胜的概率为:,乙获胜的概率为:.∵>,∴甲获胜的概率大,游戏不公平.23.(10分)如图,已知△ABC是等边三角形,以AB为直径作圆O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是圆O的切线;(2)若△ABC的边长为6,求EF的长度.【解答】(1)证明:如图1,连接OD,∵△ABC是等边三角形,∴∠B=∠C=60°.∵OB=OD,∴∠ODB=∠B=60°.∵DE⊥AC,∴∠DEC=90°.∴∠EDC=30°.∴∠ODE=90°.∴DE⊥OD于点D.∵点D在⊙O上,∴DE是⊙O的切线;(2)解:如图2,连接AD,BF,∵AB为⊙O直径,∴∠AFB=∠ADB=90°.∴AF⊥BF,AD⊥B D.∵△ABC是等边三角形,∴DC =BC =×6=3,FC =AC =3.∵∠EDC =30°,∴EC =DC =.∴FE =FC ﹣EC =3﹣=1.5.24.(12分)如图,点A 是反比例函数y 1=(x >0)图象上的任意一点,过点A 作 AB ∥x轴,交另一个比例函数y 2=(k <0,x <0)的图象于点B . (1)若S △AOB 的面积等于3,则k 是= ﹣4 ;(2)当k =﹣8时,若点A 的横坐标是1,求∠AOB 的度数; (3)若不论点A 在何处,反比例函数y 2=(k <0,x <0)图象上总存在一点D ,使得四边形AOBD 为平行四边形,求k 的值.【解答】解:(1)如图1,设AB交y轴于点C,∵点A是反比例函数y1=(x>0)图象上的任意一点,且AB∥x轴,∴AB⊥y轴,∴S△AOC=×2=1,∵S△AOB=3,∴S△BOC=2,∴k=﹣4;故答案为:﹣4;(2)∵点A的横坐标是1,∴y==2,∴点A(1,2),∵AB∥x轴,∴点B的纵坐标为2,∴2=﹣,解得:x=﹣4,∴点B(﹣4,2),∴AB=AC+BC=1+4=5,OA==,OB==2,∴OA2+OB2=AB2,∴∠AOB=90°;(3)解:假设y2=上有一点D,使四边形AOBD为平行四边形,过D作DE⊥AB,过A作AC⊥x轴,∵四边形AOBD为平行四边形,∴BD=OA,BD∥OA,∴∠DBA=∠OAB=∠AOC,在△AOC和△DBE中,,∴△AOC≌△DBE(AAS),设A(a,)(a>0),即OC=a,AC=,∴BE=OC=a,DE=AC=,∴D纵坐标为,B纵坐标为,∴D横坐标为,B横坐标为,∴BE=|﹣|=a,即﹣=a,∴k=﹣4.25.(12分)已知y关于x的二次函数:y=(m﹣n)x2+nx+t﹣n.(1)当m=t=0时,判断该函数图象和x轴的交点个数;(2)若n=t=3m,当x为何值时,函数有最值;(3)是否存在实数m和t,使该函数图象和x轴有交点,且n的最大值和最小值分别为8和4?若存在,求m和t值;若不存在,请说明理由.【解答】解:(1)当m=t=0时,y=﹣nx2+nx﹣n,△=n2﹣4×n×(﹣n)=﹣n2,当n=0时,△=0,该函数图象与x轴有1个交点;当n≠0时,△<0,该函数图象与x轴没有交点;(2)若n=t=3m,抛物线的解析式为:y=(m﹣3m)x2+3mx=﹣mx2+3mx=﹣m(x﹣)2+,当﹣m>0,即m<0时,所以当x=时,函数有最小值为,当﹣m<0,即m>0时,所以当x=时,函数有最大值为;(3)y=(m﹣n)x2+nx+t﹣n,△=n2﹣4×(m﹣n)(t﹣n)=﹣n2+2(m+t)n﹣2mt,设w=﹣n2+2(m+t)n﹣2mt,∵该函数图象和x轴有交点,∴w≥0,∵n的最大值和最小值分别为8和4,∴新二次函数w与n轴有两个交点为(4,0)和(8,0),则w=﹣(n﹣4)(n﹣8)=﹣n2+12n﹣32,∴,,此方程组无实数解,∴不存在实数m和t,使该函数图象和x轴有交点.。
2013年九年级(上)数学期中测试试卷.doc
九年级(上)数学期中测试试卷(满分:120分 时量:120分钟)一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案1、下列方程是一元二次方程的是 ( )A 、-8x 2+3x=4x(3+2x)B 、3-x 2=x+x1C 、x 2-3xy -5=0D 、2x=1-4y2.关于x 的方程3x 2-2x+m=0的一个根是x=1,则m 的值为 ( )A 、-1B 、2C 、1D 、-23.某商品原价289元,经连续两次降价后,售价为256元,设平均每次降价的百分比为x ,下列方程正确的是 ( )A 、289(1-x)2=256B 、256(1-x)2=289C 、289(1-2x)=256D 、256(1-2x)=2894.下列命题中,真命题是 ( )A 、等角的补角相等B 、相等的角是对顶角C 、一个锐角与一个钝角的和一定是个平角D 、命题都是定理5.方程(x -2)2=9的解是 ( )A 、x 1=5 ,x 2=-1B 、x 1=-5, x 2=-1C 、x 1=11,x 2=-7D 、x 1=-11,x 2=7 6.把方程x 2-6x+8=0化成(x -a)2=b 的形式应为 ( )A 、(x -3)2=1B 、(x -6)2=8C 、(x -3)2=17D 、(x -3)2=87.已知△ABC ∽△DEF ,AB ∶DE=1∶2,则△ABC 与 △DEF 的面积之比等于 ( ) A 、1∶4 B 、1∶2 C 、.2∶1 D 、.4∶18.下列各组线段中,能成比例线段的是 ( ) A 、12cm 8cm 9cm 6cm B 、30cm 12cm 0.8cm 0.2cm C 、1cm 2cm 3cm 4cm D 、1cm 3cm 4cm 6cm二、填空题(每小题3分,共30分)9、一元二次方程2x 2+4x -1=0的二次项系数为 ,一次项系数为 ,常数项为10、把方程4x(x+2)-6x=6化为一元二次方程的一般形式为11、若方程2x 1-m -1=0是关于x 的一元二次方程,则m=12、已知a,b,c,d 为成比例线段,即b a =dc ,其中a=3cm,b=5cm,d=10cm,则线段c= cm 13、命题“如果梯形的上底长是3厘米,下底长是5厘米,那么它的中位线长是4厘米”是 命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福州时代中学2013-2014学年第一学期九年级期中考试
数 学 试 卷
(时间120分钟,满分150分)
一、选择题(每小题4分,共40分) 1.抛物线42
+=x y 的顶点坐标是
A .(0,4)
B .(0,-4)
C .(-4,0)
D .(4,0)
2.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是
A .10π
B .20π
C .50π
D .100π
3
.如果代数式
1
x -有意义,那么x 的取值范围是 A .x ≥0
B .1x ≠
C .0x >
D .x ≥0且1x ≠
4.下列图形中,既是轴对称图形又是中心对称图形的是
5.如图,点O 是△ABC 的内切圆的圆心,若∠BAC =80°,则∠BOC 的度数为
A .160°
B .130°
C .120°
D .100°
6.方程0122=+-x kx 有实根,则k 的取值范围是
A .k ≤1且0≠k
B .k ≥1且0≠k
C .k ≥1
D .k ≤1
7.事件A :打开电视,它正在播广告;事件B :抛掷一个均匀的骰子,朝上的点数小于7;事件C :在标准大气压下,温度低于0℃时冰融化. 3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是
A .P(C)<P(A) = P(B)
B .P(C)<P(A) < P(B)
C .P(C)<P(B) = P(A)
D .P(A)<P(B) = P(C)
8.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24
米,拱的半径为13米,则拱高为
A .5
B .7
C .8
D .
第5题
第8题
9.如图,圆O 1、圆O 2的圆心O 1、O 2在直线l 上,圆O 1的半径为2 cm ,圆O 2的半径为3 cm ,O 1O 2= 8 cm.圆O 1以1 cm/s 的速度沿直线l 向右运动,7 s 后停止 运动,在此过程中,圆O 1与圆O 2没有出现的位置关系是 A .外切
B .相交
C .内切
D .内含
10.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2 cm ,CD =4 cm .以BC 上一点O 为圆心的圆经过A 、D 两点,
且∠AOD =90°,则圆心O 到弦AD 的距离是 A
cm B
cm C
. cm
D
. cm
二、填空题(每小题4分,共24分) 11.方程12
=x 的解是 ▲ . 12.已知二次函数2
32
(1)m
m y m x -+=-的图象开口向上,则m = ▲ .
13.若圆内一条弦把圆分成1︰3两部分,那么这条弦所对的圆周角的度数是 ▲ . 14.已知二次函数22
12
+-
=x y ,若自变量x 的取值范围是-1≤x ≤2,则函数y 的最大值是 ▲ . 15.用半径为6 cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为 ▲ . 16.如图,已知ABC 为等边三角形,3=AB ,以C 为圆心, 1为半径 作圆,P 为⊙C 上一动点,连AP ,并绕点A 顺时针旋转60°到P ',连接
P C ',则P C '的取值范围是 ▲ .
三、解答题(共86分) 17.(每小题7分,共14分)
(1)
01)--;
(2)解方程:(13)452x x x +=+.
18.(共8分)如图的方格纸中,每个小方格都是边长为1
如图所示的阴影部分是由两个半径为1和一个半径为2的圆弧围成的 图形.
(1)阴影部分的面积等于 ▲ (结果保留π); (2)画出该图形绕点O 旋转180°后的图形.
第10题
A D
第16题
第18题
19.(共12分)列方程解应用题:如图,有一块矩形纸板,长为20 cm ,宽 为14 cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分沿 虚线折起,就能制作一个无盖方盒,如果要制作的无盖方盒的底面积为160
cm 2,那么纸板各角应切去边长为多大的正方形?
20.(共12分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当
三辆汽车经过这个十字路口时: (1
)求三辆车全部同向而行的概率; (2)求至少有两辆车向左转的概率;
(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为
25,向左转和直行的频率均为310
.目前在此路口,汽车左转、右转、
直行的绿灯亮的时间分别为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.
21.(
共12分)如图,AB 是半圆O 的直径,点C 是⊙O 上一点(不与A ,B 重合),连接AC
,BC ,过点O 作OD ∥AC
交BC 于点D ,在OD 的延长线上取一点E ,连接EB ,使∠OEB =
(1)求证:BE 是⊙O 的切线; (2)若OA =10,BC =16,求BE 的长.
22.(共14分)如图1,⊙O 的直径CD=4,AD ⊥DC ,BC ⊥DC ,AD=2,BC=6,P 是⊙O 上的一个动点.
(1)求证OA ⊥AB ;
(2)若△APB 的面积记为S ,求S 的最大值与最小值,并分别指出此时P 点所在的位置; (3)若以P 为圆心,BP 长为半径作圆,是否存在⊙P 与⊙O 相切?请说明理由.
23.(共14分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,
∠B =∠E =30°. (1)操作发现
第19题
B 第21题
A D
A
D
A D
图1
备用图
①线段DE 与AC 的位置关系是 ▲ ;
②设△BDC 的面积为S 1,△AEC 的面积为S 2,那么S 1,S 2之间的数量关系是 ▲ ; (2)猜想论证
当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想;
(3)拓展探究
已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).
若在射线BA 上存在点F ,使S △DCF =S △BDE ,请直接写出....
相应的BF 的长.
A (D )
B (E )
C
图
1
图
2
图3
图4
注 1. 答题前,考生务必用黑色字迹的钢笔将自己的班级、姓名及座号填写清楚。
意 2. 保持卷面清洁,不要折叠,不要弄破。
事 3. 请注意题号顺序,并把答案写在各题相应的答题区内,不要超出密封线,否则当无效处理。
项 4. 请静心、认真审题,规范答卷。
3
此时S△DC F=S△BD E,∴△DF F是等边三。