基于LabVIEW的多通道温度测量系统设计

合集下载

基于LabVIEW的温度测量系统设计

基于LabVIEW的温度测量系统设计

基于LabVIEW的温度测量系统设计李菲;江世明【期刊名称】《现代电子技术》【年(卷),期】2014(000)006【摘要】虚拟仪器将计算机技术与测量技术紧密融合,它在进行环境参数测量时无需使用大量的测量设备,最大限度地降低了开发成本。

鉴于此,设计了一个基于虚拟仪器技术的温度测量系统。

该系统主要由下位机和上位机两部分构成,下位机通过传感器采集温度信号,经单片机以串口通信的方式传送给上位机,上位机中由LabVIEW软件编写的温度测量系统可实时进行温度的显示与报警。

测试结果表明,该设计系统的测量精度较高,操作简单,而且可视性很好。

%Since virtual instrument fuses the computer technology and measurement technology closely,does not need more measuring equipments when environmental parameters are measured,and minimizes the cost of development,a temperature mea-surement system based on virtual instrument technology is designed in this paper. The system is composed of the lower computer and upper computer. The temperature signal is collected by the lower computer through sensor,and then transported to the up-per computer through MCU by serial communication mode. The temperature detecting system in the upper computer,written by LabVIEW software,can make real-time temperature display and alarm. The test results show this system has the characteristics of high accuracy,simple operation and good visibility.【总页数】4页(P114-116,121)【作者】李菲;江世明【作者单位】邵阳学院,湖南邵阳 422000;邵阳学院,湖南邵阳 422000【正文语种】中文【中图分类】TN964-34【相关文献】1.基于Labview与单片机的多点温度测量系统设计 [J], 姚明镜;唐璇2.基于LabVIEW的高精度多通道温度测量系统 [J], 孙毅刚;何进3.基于LABVIEW和Arduino的数控机床多点温度测量系统的研究 [J], 陈海东;杨思炫;党连春4.基于LabVIEW的多通道温度测量系统设计 [J], 彭登;罗贤虎;徐行5.基于LabVIEW的接触线温度测量系统 [J], 杨洋;吴积钦;徐剑峰;关金发因版权原因,仅展示原文概要,查看原文内容请购买。

传感器课程设计(基于labview的pt100温度测量系统)

传感器课程设计(基于labview的pt100温度测量系统)

目录第一章方案设计与论证 (2)第一节传感器的选择 (2)第二节方案论证 (3)第三节系统的工作原理 (3)第四节系统框图 (4)第二章硬件设计 (4)第一节PT100传感器特性和测温原理 (5)第二节信号调理电路 (6)第三节恒流源电路的设计 (6)第四节TL431简介 (8)第三章软件设计 (9)第一节软件的流程图 (9)第二节部分设计模块 (10)总结 (11)参考文献 (11)第一章方案设计与论证第一节传感器的选择温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。

在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。

热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。

常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。

近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。

基于LabVIEW的多点温度监测系统的设计

基于LabVIEW的多点温度监测系统的设计

广 傻 号 调 理 卜 _ — — — { 敷 卡 h 圆
L _ — —— —1 v× E 仪繁 x 【 馁嚣卜——一
个点 的温 度 。
图 1 虚 拟仪 器 系统 的 基 本 架 构
1 . 2 系统软硬件组成。虚拟仪器硬件 主要是 由传感器 、 信号调理 部件 、 计算机等组成。 其 中信 号 调 理 部 件 包括 V X I 仪器模块 、 G P I B 仪器模块 、 P X I 仪器模块 、 数据采集卡或 V X I 总线 系统等。 L A B V I E W 软件是 常用 的虚拟仪器系统编程软件 ,同传 统的 编程 语言相 比 , 其提供 了强大 的设 备驱动程序 , 可 以节省大 量的 程序开发时间。工程技术人员 可以方便 的利用 L A B V I E W 程序驱 动各种 I / O接 口, 将信号采集后供计算机处理。其能支持 G P I B总
图 4 大 型轧 机 主 传 动 结 构 图 1 一 轴 承座 ; 2 - 主 电机 ; 3 - 联轴器一 ; 4 一 减速机 ; 5 - 联 轴 器二 ;
6 一 齿轮箱座 ; 7 - 联 轴 器组 ; 8 - 轧机组 ; 9 一 集 中 润滑 液 压 站
度传 感器采集 的温度信号 ,进行调理后转换 成可 处理 的数 字信 4 结论 号, 通过测试 程序加 以显示并能进行报警 、 数据储存等处理。 多点温度监测 系统能够 实现 实时多点温度状态监测 、 数据处 硬件 系统的组成结构 如图 2所示。本系统采用接触法进行温 理 、 状态报警等 功能 , 为操作人员 与管理人员及 时提供运行信 息 度测量 , 采用电阻式温度传感器构建多点温度测试系统。 和预警信 息 , 为设备 的正 常运 行提供可靠 的监 测平 台 , 提 高设 备 运转的可靠度 和设备利用率 。

(最新整理)基于LabVIEW的温控系统设计

(最新整理)基于LabVIEW的温控系统设计

(完整)基于LabVIEW的温控系统设计编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)基于LabVIEW的温控系统设计)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)基于LabVIEW的温控系统设计的全部内容。

基于LabVIEW的温控系统设计杨希(武汉工程大学)摘要:给出了基于LabVIEW的室温测试方法以及直流电机PID控制系统的设计方法。

介绍了系统的组成,工作原理和程序设计方法。

关键词:LabVIEW;室温测试;直流电机;PID控制The design of thermal control system based on LabVIEWYang Xi(Wuhan Insitute of Technology)Abstract:This paper presents the method of PID control system based on LabVIEW for room temperature test and DC motor.The component of the system ,opetating principle and method of program design is described.Key words:LabVIEW;room temperature test;DC motor;PID control0 引言由于在最近实验室在进行对温室育苗的研究,需要实现对温度的采集以及控制,因此设计了温控系统。

此系统主要包括两个部分,一个部分是对温度的采集,另一部分是对电机的控制。

系统采用虚拟仪器图形化编程软件LabVIEW实现对室温的测试和电机转速的控制,为了得到较好的控制效果,采用PID控制算法。

基于LabVIEW 和单片机的报警温度监测系统的设计

基于LabVIEW 和单片机的报警温度监测系统的设计
超过上限值时,高温指示灯亮红色,当前温度测量值字体变为红色;当测量温度低于下限值 时,低温指示灯亮蓝色,当前温度测量值字体颜色为蓝色。
⑧上位机可将测试的数据(包含时间、当前温度测量值和上下限值)保存成.xls 表格。 命名为 History,保存位置为系统 C 盘。(即 c:\History.xls)
图 3.2.5 M 判断否,H 判断否,L 判断真,数据传给全局变量
5
3.3 串口数据写
图 3.3.1 OK Button 确认写操作
采用 Case 结构。输入温度上下限,确认是否按下设置按钮以进行相应的操作,若按下 按钮,则先对输入的值进行判断,若温度上限大于下限则输入有效,可传递给下位机(保留 小数点后一位)和全局变量(double 型)。若输入温度上限小于或等于下限,则提示“Input error!Please input again”输入操作无效,全局变量即温度上下限值不变。如下图所示。
1 系统功能
该系统由基于单片机的温度监测装置和基于 LabVIEW 的上位机程序两部分组成,它们 之间通过串口进行通信。基于单片机的下位机温度监测装置主要实现温度采集、温度显示、 温度报警、温度上下限值设置和串口通信等功能;基于 LabVIEW 的上位机程序主要实现串 口通信、温度显示、温度报警和温度上下限值设置等功能。基于单片机的温度监测装置的硬 件结构设计以 IAP15F2K61S2 单片机为核心,外围电路包括复位电路、温度采集电路、LED 管显示电路、蜂鸣器报警电路、矩阵键盘电路和串口通信电路等。
图 3.2.2 高温判断否,常温判断真,为常温及设置绿色字体
4
图 3.2.3 高温判断否,常温判断否,则为低温及设置蓝色字体
若 K!=M,则判断是否为 H。若 K=H,则表示报警上限。把报警上限值传递给全局变量。

基于LabVIEW和DS18B20的多点温度测量系统—下位机部分

基于LabVIEW和DS18B20的多点温度测量系统—下位机部分

基于LabVIEW和DS18B20地多点温度测量系统—下位机部分摘要温度检测在各种不同类型地环境中有着广泛地应用,但目前多数温度测量地管理水平仍停留在人工观测、记录数据、人工控制地较低水平,往往无法做到实时自动控制,离无人值守地自动化水平还有较大差距.而且在传统地模拟信号远距离温度测量系统中,需要很好地解决引线误差补偿问题、多点测量切换误差问题和放大电路零点漂移误差问题等技术问题,才能够达到较高地测量精度.为此,针对温度控制地发展现状和事实,设计一套基于LabVIEW和DS18B20地多点温度测量系统.LabVIEW和DS18B20作为虚拟仪器和数字式传感器地代表,它们自身所具有地优良性能很好地解决了传统测温存在地问题.在本设计中,设计内容为系统地下位机部分.下位机以A T89C52单片机为控制核心,实现地功能为控制DS18B20数字式传感器对温度进行多点测量,测量地结果通过LCD1602液晶显示器进行输出显示,对超出设置范围地温度测量结果通过蜂鸣器和发光二级管进行报警,并实现通过RS-232串口与上位机进行通信地功能,将采集地温度数据信息上传到上位机进行存档、分析.关键词:LabVIEW;DS18B20;多点温度测量;单片机控制The measurement system of multi-points temperature based on LabVIEW and DS18B20—the part of slave computerAbstractTemperature testing has widespread use in different environment. However, the current management level of temperature testing which still stop at the lower level of manual observation, data recording and manual control couldn’t control automatically, and it is still far from the unmanned automation standard. When conventional analog signals removing from temperature measurement system, it would achieve a higher precision of measurement if the technical problems about the errors of down-lead compensation, multi-points measurement to cut over and amplifying circuit zero drift can be solved very well.For these reasons, aiming at the current development situation, the multi-points temperature measurement system based on LabVIEW and DS18B20 will be designed and shown. LabVIEW and DS18B20, the representatives of virtual instrument and digital sensing device, have their own qualities to solve the problems of traditional temperature measurement.The part of slave computer is the main content of this design. In the slave computer, AT89C52singlechip is the controller’s core and its function is that the control DS18B20 digita l sensing device tests the temperature with multi-points way. The result of test will be displayed through LCD1602. If the temperature is out of the installed range, the buzzer and LED will gain the massage of alarm. At the same time, according to the function which can correspond through RS-232 serial port and the host computer, the data information of temperature will be uploaded to the host computer for keeping on file and analyzing.Keywords: LabVIEW。

基于labview的温度采集系统设计

基于labview的温度采集系统设计

基于LabVIEW的温度采集系统设计摘要:用ATmega16单片机对温度数据进行处理,然后通过串口和数据采集卡上传到上位机,再利用虚拟仪器软件LabVIEW作为温度采集监测系统的开发平台,实现对温度的采集、显示、监测、报警等功能。

利用图形化虚拟仪器技术不仅简化了系统硬件,软件实现也很方便,同时图形化的显示使结果更直观、准确,并给出了模拟的系统程序。

关键词:LabVIEW、虚拟仪器、温度、采集引言虚拟仪器是计算机技术和仪器测量技术相结合的产物,它充分利用计算机强大的运算处理功能,突破了传统仪器在数据处理、显示、传输、存储等方面的限制。

本文利用虚拟仪器平台,通过编写LabVIEW 软件对温度进行测量,可以减少硬件的重复开发,有利于系统的维护,也便于系统软件升级。

一、虚拟仪器1. 1虚拟仪器概述虚拟仪器是在以计算机为核心的硬件平台上,其功能由用户设计和定义,具有虚拟面板,其测试功能由测试软件实现的一种计算机仪器系统。

虚拟仪器的实质是利用计算机显示器的显示功能来模拟传统仪器的控制面板,以多种形式表达输出检测结果;利用计算机强大的软件功能实现信号数据的运算、分析和处理;利用I /O 接口设备完成信号的采集与调理,从而完成各种测试功能的一种计算机仪器系统。

使用者用鼠标或键盘操作虚拟面板,就如同使用一台专用测量仪器一样。

1. 2虚拟仪器的图形化开发平台LabVIEW是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。

LabVIEW集成了与满足GPIB、VXI、RS- 232和RS- 485协议的硬件及数据采集卡通讯的全部功能。

它还内置了便于应用TCP/ IP、A ct iveX 等软件标准的库函数。

LabVIEW 的编程环境包括两个面板:前面板和程序框图面板。

通过编制虚拟仪器的前面板来模拟真实仪表的面板,在程序前面板上,输入量被称为控制,输出量被称为显是控制和显示是以各种图标形式出现在前面板上。

基于LabVIEW的温湿度测控系统设计设计

基于LabVIEW的温湿度测控系统设计设计
作为现代仪器仪表发展的方向,虚拟仪器已迅速发展成为一种新的产业。美国是虚拟仪器的诞生地,也是全球最大的虚拟仪器制造国。到1994年底,虚拟仪器制造厂已达95家,共生产1000多种虚拟仪器产品,销售额达2.93亿美元,占整个仪器销售额73亿美元的4%[4]。到1996年,虚拟仪器已在仪器仪表市场中占有10%的份额[5]。生产虚拟仪器的主要厂家NI、HP等公司,目前都生产数百个型号的虚拟仪器产品。这些产品在国际市场上有较强的竞争力,已进入中国市场。
1.4.2
首章主要介绍了论文的背景以及论文中所涉及到的相关技术的发展现状,梳理论文脉络。尾章则为论文的总结和展望,总结涵盖了对整个研究工作进行的归纳和综合,以及论文尚存在的问题和进一步开展研究的见解与建议。
全文主要章节的主要内容如下:
第二章从总体上介绍温湿度测控系统的结构组成,以及整个系统的工作原理,使读者对本设计先有一个宏观上的认识。
国内虚拟仪器研究的起步较晚,最早的研究也是从引进消化NI的产品开始。但经过多年研究,我国已经在虚拟仪器开发方面形成了自己的特色[6]。我国国民经济的持续快速发展,加快了企业的技术升级步伐,先进仪器设备的需求更加强劲;
虚拟仪器赖以生存的个人计算机最近几年以极高的速度在中国发展,这些都为虚拟仪器在我国的普及奠定了良好的基础。因此,我国的虚拟仪器存在巨大的发展潜力。
虚拟仪器实际上是一个按照仪器需求组织的数据采集系统。虚拟仪器的研究中涉及的基础理论主要有计算机数据采集和数字信号处
LabVIEW[8](Laboratory Virtual Instrument Engineer Workbench,实验室虚拟仪器工作平台)是美国NI公司推出的一种基于G语言(Graphics Language,图形化编程语言)的、具有革命性的、图形化虚拟仪器开发环境,是业界领先的测试、测量和控制系统的开发工具。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于LabVIEW的多通道温度测量系统设计彭登;罗贤虎;徐行【摘要】为了多种应用环境下的多点温度测量,设计一种基于LabVIEW的多通道温度测量系统.系统是基于LabVIEW图形化开发环境,利用RTD作为温度传感器,连续采集传感器信号,经过NI9219四通道RTD输入模块进行信号调理,通过USB接入计算机,进行信号的连续采集测量,实时显示各通道信号并进行温度数据的分析处理.系统测试结果表明,测量系统的精度为0.01℃,有效测量范围为0~+300℃,验证其有效可行.【期刊名称】《电子设计工程》【年(卷),期】2014(022)007【总页数】4页(P47-49,53)【关键词】LabVIEW;多通道;RTD;温度测量;采集【作者】彭登;罗贤虎;徐行【作者单位】广州海洋地质调查局广东广州510760;广州海洋地质调查局广东广州510760;广州海洋地质调查局广东广州510760【正文语种】中文【中图分类】TN06温度是工业生产和科学实验中常见的工艺参数之一,而且在许多工程项目中温度指标也是不可或缺的重要参数.例如碳化铁反应速率随操作时的变化而升降,反应过程中操作温度的高低不但影响反应完成所需的时间,还影响到转化率的大小.因此,准确、方便地获取温度数据就显得尤为重要.而在水文气象、机房动力环境监测、粮仓、土壤、农场、矿业、智能家居配套等领域,需要在多个监测点进行温度监测和测量,因此,多点温度监测和测量系统的设计具有十分重要的意义[1-2].针对多点温度测量的特点,设计基于虚拟仪器平台LabVIEW的多通道温度测量系统[3-4],选择贴片式Pt1000铂电阻作为温度传感器,通过NI9219数据采集卡进行采集,运用硬件滤波和软件滤波技术提高多通道温度测量系统的抗干扰性,并在上位机软件界面用波形图表的方式实时显示整个测量过程中每个通道的温度变化情况,测量结束,对整个测量过程的原始数据结果进行记录和保存.多通道温度测量系统由4个Pt1000铂电阻、NI9219数据采集卡、NI USB-9162模块外盒连接器、计算机组成.Pt1000是铂热电阻,它的阻值会随着温度的变化而改变. Pt后数字1 000表示它在0℃时阻值为1 000Ω,在300 ℃时它的阻值约为2 120.515Ω,并且Pt1000的阻值随着温度上升成线性增涨[5].Pt1000铂电阻引出导线采用三线制,减小了导线电阻带来的附加误差;NI9219数据采集卡是24位的通用模拟输入数据采集模块,可以对RTD信号进行采集和调理,经过NI USB-9162模块外盒连接器接入计算机进行数据采集.整个测量系统可以同时采集4路温度信号,在上位机软件界面上可以设置采样模式、采样率和采样数,采样的起始时间和结束时间,在整个测量过程中界面可以利用波形图表实时显示各通道的温度测量变化值以及整个测量过程中温度最大值、最小值和平均值,测量过程结束,可以对测量的原始数据进行记录保存,以便进行后续的数据处理[6-7].多通道温度测量系统结构框图如图1所示.2.1 硬件电路设计NI 9219各通道间相互隔离,4个24位模数转换器(ADC)可同时对4个模拟输入通道进行采样.由于铂热电阻Pt1000输出的是低压信号,且其信号容易被噪声干扰,因此, NI9219数据采集卡须对Pt1000输出的是低压信号进行调理和滤波,NI9219某一路通道的输入电路如图2所示.NI9219可以同时采集4路温度信号,每路由EX+和EX-端口分别对应Pt1000的引脚,LO端口为各通道共地端,与系统中的其他模块相隔离.通道经滤波后,由一个24位的模数转换器对其采样.3线RTD模式下,NI 9219提供激励电流,电流值随EX+和EX-端子间负载值变化.此模式下,如所有导线具有相同的阻值,可对线性阻抗误差进行补偿.NI 9219为负接线端提供2x 电压增益,ADC使用此电压值作为负端参考电压,用于消除正负接线端间线性误差.NI 9219的激励电路具有过压保护和过流保护功能,发生过压及过流情况时,模块自动禁用电路.故障排除后,通道可自动恢复.模块支持低功耗休眠模式,处于休眠模式时无法与其它模块通信,休眠模式下系统功耗较低,散热量也低于正常工作模式[8].2.2 软件流程设计基于LabVIEW的多通道温度测量系统软件流程图如图3所示[9-10].上位机软件界面可以对多通道温度测量系统各项参数进行设定,包括采集物理通道及电阻类型配置、电流激励源及电流激励值的设置,采样模式、采样率及每通道采样数设定、被测目标温度范围、测量起始时间及结束时间等参数设定.在进行测量的过程中,上位机波形图表可以实时监测4个通道的温度变化,并且每个通道的温度数据用不同的颜色进行标记,实时显示每个通道采集数据的最大值、最小值及平均值,以便于测量现场快速得出初步的测量结论,测量结束将保存当次测量的所有原始数据,以便进行后期的分析处理.软件界面如图4所示.多通道温度测量系统设计可以分为系统配置、数据采集、数据处理和数据保存4个阶段[11-12].其中系统配置环节主要是对NI9219数据采集卡物理通道及电阻类型的配置、电流激励源及电流激励值的设置,被测目标温度范围、测量起始时间及结束时间等参数设定.数据采集环节是系统按照测量者对采样模式、采样率及每通道采样数进行设定,NI9219数据采集卡读取模拟输入通道任务中的4个波形数据.数据处理环节,上位机波形图表实时读取数据缓冲区里的温度数据,每个通道的温度数据用不同的颜色进行标记,并且实时显示每个通道采集数据的最大值、最小值及平均值,便于测量者直观地查看和初步分析.虽然整个系统是利用NI9219的DAQmx驱动程序对数据采集模块进行配置,避免了电压数据换算到温度数据的数学计算过程,在一定程度上能够降低信号干扰,但是,在进行电阻-温度数据采集的过程中,由于电磁干扰或零点漂移会引起电压的上下浮动,从而使测量的温度值会出现小范围的波动,导致测量的结果精度降低.本系统在上位机软件部分,在LabVIEW的程序框图中利用公式节点编程,在1s时间内连续采集1 000个温度值,计算其算术平均值,将平均值作为采样结果.这样可以有效的抑制温度值的跳动,通过提升数据采集卡的采样率和每通道采样数,达到提高测量结果的精度的目的[13].数据存储环节实现原始数据存储功能,将其写入TDMS文件中,方便后续的数据查看、提取、处理.将基于LabVIEW的多通道温度测量系统放在高精度的恒温槽内进行稳定性实验,高精度的恒温槽是广州海洋地质调查局方法所在2009年根据课题组工作需要建立的,设备由高精度恒温槽、一等铂金热电偶、高精度温度测量电桥和交流稳压设备等组成,精确度为0.01 ℃,如图5所示.调节设定恒温槽参数,将4个RTD的探头放置于恒温槽内进行测试,设置采样点数为500,采样频率为1 Hz,进行多次反复测试,得到的实验数据如表1所示.从多次多通道温度测量系统在恒温槽内测量结果中可以看出,4个通道被测点温度差值最大的为0.02 ℃,整个恒温槽内最大差值为0.028 ℃,达到预设的目的,通过多次实验数据表明,测量系统的稳定性很好.文中介绍的基于LabVIEW的多通道温度测量系统测量精度为0.01 ℃,有实验数据支持的有效测量范围为0~+300 ℃.系统采用可实时监测被测对象温度的功能,实现了PC机自动测量和数据采集的功能,还实现了数据的实时显示和存储功能,测量过程易于操作且无需人为干预,可靠性高,能够很好的实时多任务同步运行,更好的保证多点温度测量数据的处理与显示系统的实时性、可靠性和扩展性.并且利用标准的数据采集模块和LabVIEW图形化开发环境,可以在其基础上快速的进行二次开发,提高了开发效率,体现了虚拟仪器在多点温度测量监测领域的广阔前景.【相关文献】[1] 卢佳,徐熙平. LabVIEW环境下自动温度检测系统的研究[J].电子测量技术, 2011,34(9):80-83. LU Jia,XU Xiping.Automatic temperature detection system based on LabVIEW[J].Electronic Measurement Technology,2011, 34(9):80-83.[2] 阳江源, 王福吉, 王威,等. 基于LabVIEW的数控机床多通道温度测量系统[J]. 组合机床与自动化加工技术,2010(12): 58-60. YANG Jiang-yuan,WANG Fu-ji,WANG Wei,et al.A multichannel temperature measuring system for CNC machine tool based on LabVIEW[J].Modular Machine Tool & Automatic Manufacturing Technique,2010(12):58-60.[3] 陈敏, 汤晓安. 虚拟仪器软件LabVIEW与数据采集[J].小型微型计算机系统,2001(4):501-503. CHEN Min, TANG Xiao-an.Virtual instrument software-Labview and dataacqusition[J].Mini-micro Systems,2001(4):501-503.[4] 蒋芳芳, 郑颖. 基于模糊PID算法的电阻炉温度控制系统设计[J].电子设计工程,2009,17(6):123-125. JIANG Fang-fang, ZHENG Ying. Design of resistance furnace temperature control system based on fuzzy-PID[J].ElectronicDesign Engineering, 2009, 17(6):123-125.[5] 方益喜, 雷开卓, 屈健康,等. 基于PT1000的高精度温度测量系统[J].电子设计工程,2010,18(10):79-81. FANG Yi-xi,LEI Kai-zhuo,QU Jian-kang,et al.High-precision temperature measurement system based on PT1000[J].Electronic Design Engineering,2010,18(10):79-81.[6] 刘伟, 申焱华, 黄夏旭. 基于虚拟仪器的热电偶温度测试与分析系统[J].自动化仪表,2007,28(3):65-69. LIU wei,SHEN Yan-hua,HUANG Xia-xu.thermocouple temperature testing and analyzing system based on virtual Instrument[J.Process Automation Instrumentation,2007,28(3): 65-69.[7] Kraub A,WeimarU,bVIEW for sensor data acquisition[J]. Trends in analytical chemistry.1999,18(15):312-318.[8] NI9219 4-Channel 24 Universal Analog Input Module Operating Instructions AndSpecifications[M].USA:National Instruments Corporation,2005.[9] 颜园园, 张宏群. 基于LabVIEW的温湿度测量系统[J]. 现代电子技术,2012(1):120-121. YAN Yuan-yuan,ZHANG Hong-qun.System of temperature and humidity measurement based on LabVIEW[J].Modern Electronics Technique,2012(1):120-121.[10] Johnson G W,Jennings bVIEW graphical programming[J]. 1st ed.New York: McGraw-Hill,2005:35-57.[11] 张伟. 基于LabVIEW的智能温度测控仪表的设计[D].武汉:武汉理工大学,2009.[12] 郑雁阶, 黄惟公, 张丹. 基于LabVIEW与USB接口的实时]数据采集系统[J].电子技术,2009,12(1):77-79. ZHENG Yan-jie,HUANG Wei-gong,ZHANG Dan.A realtime data acquisition system based on LabVIEW and USB Interface[J].ElectronicTechnology,2009,12(1):77-79.[13] 华容. 信号分析与处理[M].北京: 高等教育出版社,2004.。

相关文档
最新文档