汽车构造悬架概述
汽车底盘悬架类型与设计的要点

汽车底盘悬架类型与设计的要点摘要:近年来,我国汽车的普及率逐步提高,而且汽车的销量节节攀升,带动我国汽车相关行业发展,同时也促进我国汽车设计显著提升。
汽车作为日常生活中使用的最频繁的代步工具,现在人民们对汽车的舒适性与稳定性提出更高的要求。
通过优化汽车底盘悬架结构设计,能对汽车行驶的舒适性与安全性有很大提高,能让汽车行业发展更好的满足人民对汽车使用的需求。
基于此,本文主要对汽车底盘悬架结构设计要点进行简要介绍,希望对汽车从业人员或者对此方面感兴趣的人员有参考价值。
关键词:汽车底盘;悬架结构;麦弗逊汽车底盘悬架的工作就是让车辆的轮胎与路面的摩擦力最大限度的增加,这样能够提供良好的车辆操纵性与稳定性。
我们平常开车行驶与路面时,路面不是百分百平整的,经常会是去凹凸不平,这种路面作用在车轮上,从而发生车轮的颠簸。
如果此时车轮直接与车身连接一起,车轮的颠簸直接就会传递到车身,造成很糟糕的驾乘体验。
那么我们可以设计一个车轮与车架的中间结构,就是悬架结构,能够起到了吸收竖直方向的车轮加速动能作用。
车轮的垂直加速力先通过悬架结构一部分的吸收与释放,最后一小部分才传到在传到车架上,这样避免车轮在颠簸的路面上出现车轮离开地面的状态。
通常我们常见的悬架系统主要包含减振器、稳定杆、弹簧、导向连接件等零件组成。
一个良好的悬架设计能够很好匹配路面的隔离性能、轮胎的抓地性能、转弯的性能。
一、汽车底盘悬架结构类型我们按照悬架的刚度与阻尼会随着不同的路面情况而改变,悬架系统可以分为被动悬架、半主动悬架和主动悬架三大类。
主动悬架涉及众多的电子感应装置,能够主动地根据路面信息情况自发地调节悬架的刚度与阻尼。
如果悬架系统按照导向机构来分类,可以分成独立悬架系统和非独立悬架系统两大类。
本文主要介绍的是传统车大多数车型采用的被动悬架中的独立悬架和非独立悬架设计。
(一)非独立悬架系统如图1所示,非独立悬架系统简单的理解就是前轮或者后轮的左右两个轮子会相互作用,左边的轮子会受到右边的轮子的影响。
汽车悬挂系统结构原图解汇总

Part Five
悬挂系统的发展趋 势
空气悬挂系统
空气悬挂系统是一种利用空气弹簧 和减震器组成的悬挂系统,能够根 据车辆载重和行驶状态自动调整高 度和阻尼,提高行驶舒适性和稳定 性。
空气悬挂系统的优点包括提高乘坐 舒适性、提高行驶稳定性、降低油 耗等,因此受到广泛欢迎。
添加标题
添加标题
添加标题
添加标题
Part Three
悬挂系统的类型
独立悬挂
定义:独立悬挂是指每一侧的车轮通过 弹性悬挂系统单独连接在车架或车身下 方,使两侧车轮可以独立地运动而不互 相干扰。
类型:常见的独立悬挂系统包括麦弗逊悬 挂、双叉臂悬挂、多连杆悬挂等。
优点:提高汽车的操控性和舒适性,减少 车身的振动和噪音,增加轮胎的抓地力, 提高行驶安全性。
麦弗逊悬挂结构原理解析
组成:由下控制臂、弹簧、减震器和转向节等部件组成
作用:提供车辆横向和纵向支撑,吸收来自路面的震动,提高行驶稳定性 工作原理:通过下控制臂和减震器的组合作用,实现车轮的上下运动和转 向功能 特点:结构简单,占用空间较小,适合用于前驱车和横置发动机车型
多连杆悬挂结构原理解析
组成:由连杆、减震器和弹簧等部件组成 作用:通过连杆的连接,使车轮与车身保持恒定的接触状态,减少车身的 振动和侧倾 优点:能够更好地控制车轮的运动轨迹,提高车辆的操控性和舒适性
弹性元件:缓冲和减震作用
导向机构:传递车轮与车身之间的 力和扭矩
添加标题
添加标题
添加标题
添加标题
减震器:吸收震动能量,减少车身 震动
悬挂系统还包括横向稳定杆、纵向 稳定杆等辅助部件
悬挂系统的作用
连接车轮与车身,传递力矩和载荷 缓冲减震,提高乘坐舒适性 维持车身姿态稳定,保证车辆操控性能 吸收和衰减振动和冲击,提高行驶平顺性
独立悬架的分类

独立悬架的分类独立悬架是一种常见的车辆悬挂系统,它可以使车辆在行驶过程中保持稳定性和平稳性。
根据不同的结构和工作原理,独立悬架可以分为多种类型。
本文将介绍几种常见的独立悬架分类。
一、麦弗逊式独立悬架麦弗逊式独立悬架是最常见的一种独立悬架,它由一个下摆臂、一个上摆臂、一个减震器和一个螺旋弹簧组成。
该结构简单、可靠,且制造成本低廉,因此被广泛应用于汽车行业。
麦弗逊式独立悬架的工作原理是:当车轮碰到路面上的不平度时,下摆臂会向上移动,同时压缩螺旋弹簧和减震器;当车轮再次接触平坦路面时,下摆臂会向下移动,同时释放螺旋弹簧和减震器的压缩力。
这样就能够保持车身平稳,并且使得驾驶体验更加舒适。
二、复合悬架复合悬架是一种结合了多种悬挂系统的独立悬架,它可以根据不同的需求来选择不同的悬挂方式。
例如,前轮采用麦弗逊式独立悬架,后轮采用多连杆式独立悬架,这样可以保证车辆在高速行驶时具有更好的稳定性和平稳性。
复合悬架的优点是:能够充分发挥各种悬挂系统的优点,提高车辆的行驶性能。
但是,由于结构比较复杂,制造成本相对较高。
三、多连杆式独立悬架多连杆式独立悬架是一种采用多个连接杆组成的独立悬架系统。
它可以根据不同的需求来设计不同数量和长度的连接杆。
多连杆式独立悬架的工作原理是:当车轮碰到路面上的不平度时,连接杆会向上或向下移动,同时压缩减震器和弹簧;当车轮再次接触平坦路面时,连接杆会向下或向上移动,并释放减震器和弹簧的压缩力。
这样就能够保持车身平稳,并且使得驾驶体验更加舒适。
多连杆式独立悬架的优点是:能够提供更好的悬挂性能,使得车辆在行驶过程中更加稳定和平稳。
但是,由于连接杆较多,制造成本相对较高。
四、扭力梁式独立悬架扭力梁式独立悬架是一种采用扭转杆或者扭转轴来连接左右车轮的独立悬架系统。
它可以根据不同的需求来设计不同数量和长度的扭转杆或者扭转轴。
扭力梁式独立悬架的工作原理是:当车轮碰到路面上的不平度时,扭转杆或者扭转轴会发生弯曲变形,并且压缩减震器和弹簧;当车轮再次接触平坦路面时,扭转杆或者扭转轴会恢复原来的形态,并释放减震器和弹簧的压缩力。
悬架知识要点归纳

第十八讲悬架一、悬架的作用是把车桥和车架弹性地连接起来,并用它来吸收和缓和行驶中因路面不平引起的车轮跳动而传给车架的冲击和振动;传递路面作用于车轮的支持力、驱动力、制动力和侧向力及其产生的力矩。
二、悬架的组成一般都是由弹性元件、减振器和导向机构三部分,它们分别起着缓冲、减振、导向和传递力及力矩的作用。
三、根据汽车悬架结构的不同,通常将悬架分为独立悬架和非独立悬架两大类。
四、独立悬架结构特点是车架与每一侧车轮之间的悬架连接是独立的,它的车桥为断开式,当一侧车轮上下跳动时,不会影响到另一侧车轮位置的变化。
五、双叉式独立悬架:它一般是上、下两个控制臂支承装有车轴的转向节,在上、下控制臂之间安装减振器。
这种悬架可通过自由设定控制臂长度来使汽车具有良好的转弯性能、直线行驶性能及乘坐舒适性能。
六、撑杆式独立悬架,因为减振器兼作悬架支柱,故将这种方式称为撑杆式悬架。
用于前轮时称为麦弗逊式撑杆式悬架;而用于后轮时被称为查普曼式撑杆式悬架。
其结构是将装有减振器撑杆的上端安装在车身上,下端借助于控制臂与车轴连接。
这种悬架构件数量少,质量轻,节省空间。
七、非独立悬架结构特点是两侧的车轮安装在一根整体式车桥上,若一侧车轮因路面不平跳动时,会影响另一侧车轮位置的变化。
缺点:车身的平稳和高速行驶的稳定性差,优点:结构简单,制造方便,应用范围:载重汽车八、非独立悬架分为钢板弹簧非独立悬架和螺旋弹簧非独立悬架两种。
十、汽车悬架的弹性元件包括钢板弹簧、螺旋弹簧、扭杆弹簧、气体弹簧、横向稳定杆等。
十一、钢板弹簧结构:由若干片等宽不等长、弧度不等、厚度相等或不等的钢板弹簧片组合而成的一根近似等强度的弹性梁。
十二、钢板弹簧组成:卷耳、中心螺栓、钢板夹、钢板弹簧、螺母、螺栓、套管。
十三、卷耳位置结构:钢板弹簧的第一片最长,称为主片,其两端弯成卷耳,内装衬套,用钢板销与车架连接。
十四、中心螺栓作用:中心螺栓用以连接各弹簧片,并保证装配时各片的相对位置,且作为钢板弹簧安装到前轴或后桥壳上的定位销。
汽车悬架结构简介

汽车悬架结构设计:A系列大众新Golf新GOLF后悬架采用新式多连杆独立悬架,(取代低成本的半独立扭力梁后悬架),前悬架采用原麦弗逊独立悬架,对于全驱动车型:采用一个较复杂和昂贵的铝质副车架,它同时也承载后轮的驱动装置,通过四个橡胶件与车身连接起来,可避免车身受到驱动装置震动的影响对于前驱动车型:副车架是一套比较简单的钢结构,新的后桥会使车身后部的重量增加,但这样可令前后配重更加理想优点:新的四连杆悬架结构分别适应纵向力和横向力,使车轮更自由,导向更精确,舒适性更操控性更好悬架结构形式:新的四连杆后悬架取代了扭力梁,纵向连杆2直接挂在车身上,横向连杆3与钢制副车架4想连,副车架与车身固定在一起;全轮驱动车型采用较复杂的铝质副车架5,它承载后轮的驱动装置,并通过四个橡胶件6与车身相连汽车悬架结构设计:B系列、T系列保时捷Cayenne保时捷Cayenne融会跑车技术和强大的越野本领于一身,公路上,Cayenne是同类汽车中速度最快的,在野外同样是最出色的越野车之一Cayenne具有很长的横向双叉臂悬挂系统,基本型弹簧系统采用钢质弹簧,空气弹簧做为选装,而在涡轮增压型上为标准配置;Cayenne前悬架结构:双叉臂式Cayenne后悬架结构:多连杆式1、铝质横叉臂2、副车架上的液压支撑3、齿轮齿条转向装置4、刚弹簧5、副车架6、前差速器连同驱动轴7、副车架上的车身稳定杆8、由灰口铸铁制成的横拉杆9、6活塞整体刹车卡钳1、4活塞整体刹车卡钳2、铝质横拉杆3、钢弹簧4、后差速器连同驱动轴5、副车架6、副车架上的橡胶支承7、用型钢制成的横拉杆Cayenne还配有一个多级车身水平高度调节器,在时速达到120公里时车身下降1.2cm;时速达到210公里时车身再下降1.1cm,进而保证高速行使时的稳定性和安全性。
在野外,汽车启动越野减速装置后,车身会自动提高2.6cm,离地间隙由原来的21.7cm 增至24.3cm,遇到大的障碍时,汽车离地间隙还可增加3cm达到27.3cm,通过性可见一斑。
汽车整车装配-前悬架总成的结构

பைடு நூலகம்
前悬架总成的结构
Lorem ipsum dolor sit amet, consecte
目录
前悬架总成的结构 前悬架总成的装配
汽车前悬架总成的结构
前悬架大多为独立悬架,常见的类型包括麦弗逊式、多连杆式、双横 臂式或双叉臂式。麦弗逊式悬架是现代轿车应用最广的悬架系统,以长安逸动 PLUS为例,其前悬架为麦弗逊独立悬架类型,前悬架由两支前支柱总成(含减 振装置与弹簧)、前副车架总成(即 发动机托架总成)、前摆臂总成、前稳 定杆总成以及连接杆总成等附件组成。如图所示。
1、4-前支柱总成;2-前稳定杆连接杆总成;3-前稳定杆;5、6-前摆臂总成;7-前副车架总成 麦弗逊前悬架总成示意图
课程思政
汽车前悬架系统是一组较为庞大的件,需要整体 上线并且准确安装,在这个过程中,需要客服的 困难较多。但是只要我们勤加练习,掌握技巧, 就能克服困难。因此,当我们面对难题时,不能 产生畏难情绪,甚至退缩,而是要开动脑筋,克 服困难,才能获得进步。
HOWO NS-07 悬架系统《构造》
后悬架
� 后悬架的结构因汽车所承受的载重量不同而有 较大的变化。驱动型式为6×4的汽车后悬架多 采用传统的平衡悬架,如图2所示。
后悬架
� 中桥与后桥装在平衡钢板弹簧的两端,而板簧 的中心由中心螺栓和“U”型螺栓固定在平衡轴 的轴承座上。中桥与后桥的相对位置由上、下 六根推力杆来确定。这样使中桥与后桥车轮随 时都与地面接触,而且保证中、后桥车轮的载 荷平均分配。ຫໍສະໝຸດ 后悬架三维模型后悬架
� 为了避免在较大幅度的凹凸不平的路面行驶 时,车桥的上、下移动幅度过大从而造成车轮 与车厢发生干涉的现象,在板簧滑板座与车架 间装有限位装置。
后悬架
� 对于6×4驱动型式的汽车,由于在中、后桥完 全形成一个底盘,它是用平衡轴、钢板及推力 杆与车架固定的,因此推力杆橡胶磨损松旷、 平衡轴衬套磨损松旷等都将造成驱动桥的错位。 这点可以通过汽车在左转弯与右转弯,测量平 衡钢板两端至车架的距离来判断。如果这个距 离的差别太大则应进行检查和修理,否则将产 生磨损轮胎的故障,严重时造成传动机件的磨 损甚至损坏。
后悬架
� 为了使平衡轴不致与中、后桥传动轴发生运动 干涉,平衡轴制成“U”型结构,安装时平衡轴 “U”型弯轴应向前向下倾斜,传动轴由“U”形弯 轴上方通过,平衡轴两端安装有平衡轴承座, 内装衬套,平时应注意向平衡轴承座内加注齿 轮油,以减少轴与衬套的磨损。
后悬架
� 为了保证中、后桥的确切位置和几何尺寸,中、 后桥用六根推力杆将桥与车架定位,这不仅起 到车桥与车架之间的动力的传递,而且保证车 桥与车架之间的平面运动,使车桥具有正确的 移动轨迹。
悬架组成
HOWO系列汽车悬架的类型较多 它由前悬架、后悬架两部分组成
前悬架
� HOWO系列汽车前悬架基本型式为:纵置钢板弹 簧、带筒式减振器和横向稳定器。如图1所示。 � 纵向布置的前钢板弹簧由九片长度不等的弹簧 片组成钢板弹簧总成由中心螺栓紧固在一起, 并用“U”型螺栓固定于前轴上。前卷耳通过支 架销及前支架与车架连接,形成固定的铰接支 点,而后卷耳通过吊耳销、吊耳及吊耳支架与 车架连接,可以自由摆动,这样就保证了两卷 耳中心线的距离能随弹簧的变形而有所改变。
汽车底盘构造与修理PPT(共 46张)
1-卷耳 2-弹簧夹 3-钢板弹簧 4-中心螺栓
新技术:采用少片变截面钢板弹簧
根据汽车导向装置的不同,悬架又可分为 独立悬架和非独立悬架。如下图所示。
非 独 立 悬 架
独 立 悬 架
两种悬架的特点及区别
非独立悬架如上图(a)所示。 特点:两侧车轮安装于一整体式车桥上,当一侧车轮受冲击力时会直接
影响到另一侧车轮上,当车轮上下跳动时定位参数变化小。若采用钢板 弹簧作弹性元件,它可兼起导向作用,使结构大为简化,降低成本。目 前广泛应用于货车和大客车上,有些轿车后悬架也有采用的。非独立悬 架由于非簧载质量比较大,高速行驶时悬架受到冲击载荷比较大,平顺 性较差。
二、减振器
作用:悬架系统中的弹性元件受冲击会相应产生 振动,因此需要在悬架中与弹性元件并联安装减振 器,以衰振动,提高汽车行驶的平顺性
基本结构及工作原理:采用液力减振器 在汽车悬架系统中广泛采用的液力减振器是筒式
减振器,由于其在压缩和伸张行程中的能起减振 作用,因此又称为双向作用式减振器。 双向作用式减振器的结构及工作过程分析:
组合成一根近似等强度的梁。 如图下右侧所示。钢板弹簧3的第一片(最长的一片)称为主片,其
两端弯成卷耳1,内装青铜或塑料或橡胶。粉沫冶金、制成的衬套, 用弹簧销与固定在车架上的支架、或吊耳作铰链连接。钢板弹簧的中 间用U形螺栓与车桥固定。
中心螺栓4用来连接各弹簧片,并保证各片的装配时的相对位置。 中心螺栓到两端卷耳中心的距离可以相等,也可以不相等如下图所示。 为了增加主片卷耳的强度,将第二片末端也弯成半卷耳,包在主片卷 耳和外面,且留有较大的间隙,使得弹簧在变形时,各片间有相对滑 动的可能。
汽车设计讲稿-第六章悬架设计
汽车设计讲稿-第六章悬架设计第六章悬架设计§6-1 概述:一、功用:传力、缓冲、减振:保证平顺性、操纵稳定性二、组成:弹性元件:传递垂直力,评价指标为单位质量储能等导向装置:车轮运动导向,并传递垂直力以外的力和力矩减振器:减振缓冲块:减轻车轴对车架的撞击,防止弹性元件变形过大横向稳定器:减少转弯时车身侧倾太大和横向角振动三、设计要求:1)良好的行驶平顺性:簧上质量 + 弹性元件的固有频率低;前、后悬架固有频率匹配:乘:前悬架固有频率要低于后悬架尽量避免悬架撞击车架;簧上质量变化时,车身高度变化小。
2)减振性好:衰减振动、抑制共振、减小振幅。
3)操纵稳定性好:车轮跳动时,主销定位参数变化不大;前轮不摆振;稍有不足转向(δ1>δ2)4)制动不点头,加速不后仰,转弯时侧倾角合适5)隔声好6)空间尺寸小。
7)传力可靠、质量小、强度和寿命足够。
§6-2 悬架结构形式分析:一、非独立悬架和独立悬架:二、独立悬架结构形式分析:1、评价指标:1)侧倾中心高度:A、侧倾中心:车身在通过左、右车轮中心的横向垂直平面内发生侧倾时,相对于地面的瞬时转动中心,叫侧倾中心。
B、侧倾中心高度:侧倾中心到地面的距离。
C、侧倾中心位置影响:位置高:侧倾中心到质心的距离缩短,侧向力臂和侧倾力矩↓,车身侧倾角↓;过高:车身倾斜时轮距变化大,加速轮胎车轮外倾角α磨损。
2)车轮定位参数:车轮外倾角α,主销内倾角β,主销后倾角γ,车轮前束等会发生变化。
主销后倾角γ变化大→转向轮摆振车轮外倾角α化大→直线行驶稳定性;轮距变化,轮胎磨损3)悬架侧倾角刚度A、车厢侧倾角:车厢绕侧倾轴线转动的角度B、影响:车厢侧倾角与侧倾力矩和悬架总的侧倾角刚度有关,影响操纵稳定性和平顺性4)横向刚度:影响操纵稳定性转向轴上悬架横向刚度小,转向轮易摆振,5)空间尺寸:占用横向尺寸→影响发动机布置和拆装;占用高度尺寸→影响行李箱大小和油箱布置。
汽车底盘-悬架与转向
独立悬架Independent Suspension
⑤完全自动的空气悬架系统
自动空气悬架系统综合了空气弹簧悬架和程序控制行 驶系统的特点。自动空气悬架可使汽车在不同承载情 况下,保持正确的高度。程序控制系统可根据路面状 况对减振器的柔软行驶状态和稳固行驶状态进行适当 的转换。
J64前悬架结构
减振器
实例:福克斯
减振器可兼做转向 主销,转向节可以 绕着它转动。主销 位置和前轮定位角 随车轮的上下跳动 而变化。
优点: 构造简单,布置紧凑,前轮定位变 化小,具有良好的行驶稳定性。
缺点: 行驶在不平路面时,车轮容易自动 转向;当受到剧烈冲击时,滑柱易 造成弯曲,影响转向性能。
独立悬架Independent Suspension
1. 压气机;2.7. 空气滤清器;3. 车身高度控制 独立悬架可以满足要求。
阀;4. 控制杆; 5. 空气弹簧;6. 储气罐;8. 贮气筒;9. 压力调节器;10. 油水分离器
J64的底盘
J64的底盘
J64的底盘
J64E的底盘
J64E的底盘
J64E的底盘
二、弹性元件
悬架采用的弹性元件有钢板弹簧、螺旋弹簧、扭杆弹 簧、空气弹簧、油气弹簧、橡胶弹簧等。
油气弹簧以气体(氮-惰性气体) 作为弹性介质,用油液作为传力介 质。油气弹簧类型有简单式油气弹 簧,不带隔膜式的油气弹簧。带隔 膜式油气弹簧,它将气体和液体分 开,便于充气并防油液乳化。如图 (c)所示是带反压气室式油气弹簧, 它有一个反压气室,相当于在简单 油气弹簧上加上一个方向相反的小 筒单油气弹簧,用以提高空载时弹 簧刚度,使空载满载自然振动频率 变化不大。目前此种弹簧多用于重 型车和部分小客车上。
独立悬架Independent Suspension