函数的单调性与最大(小)值PPT课件

合集下载

函数的单调性与最值-PPT

函数的单调性与最值-PPT

30
∴当 x= 时,函数3
2
g(取x)=得- x32最 小2x =值1 ,
5 3
,m12即-4m(32m2+53 1)·(4m2-3)≥0,
解得m≤
或m≥ .3
2
3 2
31
27
正解:
由不等式x2-4x+3>0,得函数的定义域为
(-∞,1)∪(3,+∞).
设u=x2-4x+3,则 y log1 u 又u=x2-4x+3=(x-2)2-1,2
故由二次函数的性质知:
当x≥2时,u=x2-4x+3为增函数; 当x<2时,u=x2-4x+3为减函数.
因为函数定义域为(-∞,1)∪(3,+∞) 且 y log1 u 为减函数,
减函数 增函数
增函数 增函数 减函数 减函数
4
基础达标
• (教材改编题)下列函数中,在区间(0,2)上为 增函数的是( B )
A. y=-x+1 C. y=x2-4x+5
B. y= x D. y= 2
x
解析: 结合函数的图象可知只有选项B对应的函数满足题意.
5
2. (教材改编题)f(x)=4x2-mx+5在[-2,+∞)
22
由②得0<x2+5x+4≤
1 4

5 10 2
≤x<-4或-1<x≤
5 1,0 ④
2
由③、④得原不等式的解集为
{x x 5或 5 10 x 4或 1 x 5 10 或x 0}
2
2
.
23
题型四 函数的最值 【例4】 已2 知函数f(x)对于任意x,y∈R,总有 f(x)+f(y)=3f(x+y),且当x>0时,f(x)<0, (1)求证:f(x)在R上是减函数; (2)求f(x)在[-3,3]上的最大值和最小值.

1 第1课时 函数的单调性(共44张PPT)

1 第1课时 函数的单调性(共44张PPT)
提示:不一定,可能是定义域的一个子区间,单调性是局部概念,不是整体 概念.
1.判断正误(正确的打“√”,错误的打“×”)
(1)所有的函数在其定义域上都具有单调性.
(×)
(2)若函数 y=f(x)在区间[1,3]上是减函数,则函数 y=f(x)的单调递减区间是
[1,3].
(×)
(3)若函数 f(x)为 R 上的减函数,则 f(-3)>f(3).
解:由题意,确定函数 y=f(x)和 y=g(x)的单调递增区间,即寻找图象呈上 升趋势的一段图象. 由题图(1)可知,在[1,4)和[4,6)内,y=f(x)是单调递增的. 由题图(2)可知,在(-4.5,0)和(4.5,7.5)内,y=g(x)是单调递增的.
()
3.设(a,b),(c,d)都是 f(x)的单调递增区间,且 x1∈(a,b),x2∈(c,d),x1<x2,
则 f(x1)与 f(x2)的大小关系为
()
A.f(x1)<f(x2)
B.f(x1)>f(x2) C.f(x1)=f(x2)
D.不能确定
解析:选 D.根据函数单调性的定义知,所取两个自变量必须是同一单调区 间内的值时,才能由该区间上函数的单调性来比较函数值的大小,而本题中 的 x1,x2 不在同一单调区间内,故 f(x1)与 f(x2)的大小不能确定.
4.若函数 f(x)在 R 上是单调递减的,且 f(x-2)<f(3),则 x 的取值范围是 ______________. 解析:函数的定义域为 R.由条件可知,x-2>3,解得 x>5. 答案:(5,+∞)
5.如图分别为函数 y=f(x)和 y=g(x)的图象,试写出函数 y=f(x)和 y=g(x)的 单调递增区间.

函数的单调性与最大(小)值课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册

函数的单调性与最大(小)值课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
量值x1,x2,设x1<x2,
f(x1)-f(x2)=(2x1+1)-(2x2+1)=2x1-2x2
=2(x1-x2)
∵x1<x2 ∴x1 -x2<0 ∴2(x1-x2)<0
∴f(x1)-f(x2)<0
即f(x1) < f(x2)
∴函数f(x)=2x+1在其定义域上是增函数.
取值
作差变形
定号
下结论
探究三
那么,我们称M为函数y = f ( x)的最大值
图1
1
2
3
x
f ( x) = x 2
y
通过观察图2,可以发现二次函数 f ( x) =
的图像上有一个最低点(0,0)即
x2
x R, 都有f ( x) f (0)
5
当一个函数f(x)的图像有最低点时,我们就
说函数f(x)有最小值。
4
3
2
1
-3
A.f(x)=x
2
C.f(x)=|x|
答案:B
(
1
B.f(x)=
x
D.f(x)=2x+1
)
2
5.函数 f(x)= ,x∈[2,4],则 f(x)的最大值为______;最小值为
x
________.
答案:1
1
2
题型一 利用图象确定函数的单调区间
例1 求下列函数的单调区间,并指出其在单调区间上是
增函数还是减函数:
∴x1x2>0,x1x2-1<0,x1-x2<0,
∴f(x1)-f(x2)>0,即f(x1)>f(x2).
1
故函数f(x)=x+ 在区间(0,1)内为减函数.

函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT

函数的单调性-(新教材)人教A版高中数学必修第一册上课用PPT
探索点三 函数单调性的应用 【例 3】 【例 3】 (1)已知函数 f(x)=x2+2(a-1)x+2 在区间(-∞,4]
上是减函数,则实数 a 的取值范围为 (-∞,-3] .
解析:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a -1)2+2, 所以此二次函数的对称轴为直线x=1-a . 所以f(x)的单调递减区间为(-∞,1-a]. 因为f(x)在(-∞,4]上是减函数, 所以直线x=1-a必须在直线x=4的右侧 或与其 重合, 所以1-a≥4,解得a≤-3,即实数a的取值范 围为(- ∞,-3].
(2) 已 知 y=f(x) 在 定 义 域 (-1,1) 上 是 减 函 数 , 且
f(1-a)<f(2a-1),则 a 的取值范围是
.
3函.2数.1的第单1课调时性-【函新数教的材单】调人性教-A【版新高教中材数】学人必教修A第版 一(册20优19 秀)课高件中 数学必 修第一 册课件( 共28张 PPT)
函数的单调性-【新教材】人教A版高 中数学 必修第 一册优 秀课件
[基础测试] 1.判断.(正确的画“√”,错误的画“×”) (1)已知 f(x)= ,因为 f(-1)<f(2),所以函数 f(x)是增函数.
() 解析:由函数单调性的定义可知,要证明一个函数是 增函数,需对定义域内的任意的自变量都满足自变量越大, 函数值也越大,而不是个别的自变量. 答案:×
解析:观察图象可知,y=f(x)的单调区间有[-5,-2], [2,1],[1,3],[3,5]. 其 中 y=f(x) 在 区 间 [-5,-2],[1,3] 上 是 增 函 数,在区间[-2,1],[3,5]上是减函数.

单调性与最大(小)值(第2课时)课件-高一上学期数学人教A版(2019)必修第一册

单调性与最大(小)值(第2课时)课件-高一上学期数学人教A版(2019)必修第一册
(2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最小值
思考2:若函数f(x)≤M,则M一定是函数的最大值吗?
提示:不一定,只有定义域内存在一点x0,使f(x0)=M时,M才
是函数的最大值,否则不是.
函数的最值与值域有怎样的关系?
(1)函数的值域一定存在,函数的最值不一定存在.
x1 x2 x1 x2
由2 x1 x2 6,得x2 x1 0,x1 x2 0,于是
f ( x1 ) f ( x2 ) 0,即f ( x1 ) f ( x2 )
∴ 函数f(x) =

是区间[2,6]上的单调递减.
x
求函数的最大(小)值的方法总结:
1.利用二次函数的性质(配方法)求函数的最大(小)值;
1.求函数
f(x)=x+ x在[
1
2
1)
1
2
1
2
x 1x 2
1x 2 1,4] 上的最值.
x
x
x
1x 2
1
2
.
x
4x 2-x 1
x 1x 2-4
x
x
4
4
4x
-x

x
x
1
2
2
1
1 2-4
=(x

1-x 2)
4
4
-f(x
)=x

-x

=x
-x

=+
12-4
1
2x 1-x 2=(x
2)
2x 1x
x
-4
∵1≤x
1 1-x
2 2)1 2
1<x 2<2,∴x 1-x 2<0,

高一数学复习知识讲解课件25 单调性与最大(小)值(第1课时) 函数单调性

高一数学复习知识讲解课件25 单调性与最大(小)值(第1课时)  函数单调性

3.2函数的基高一数学复习知3.2.1单调性与最大函数单调数的基本性质复习知识讲解课件最大(小)值(第1课时)数单调性在区间D上单调递增在区间D上单调递减要点2 函数的单调区间如果函数y =f (x )在区间D 上__________这一区间具有_________________,区间注意:(1)函数单调性关注的是整个区间单调递增或(严格的)单调性问题,所以单调区间的端点若属于定义域点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大_______________,那么就说函数y =f (x )在区间D 叫做y =f (x )的单调区间.个区间上的性质,单独一点不存在单调性递增或单调递减义域,则该点处区间可开可闭,若区间端可能大.3.通过上面两道题,你对函数的单调 答:函数单调性定义中的,必须是x 1x 2时,要注意保持其任意性.的单调性定义有什么新的理解? 必须是任意的,应用单调性定义解决问题课时学案探究1 (1)证明函数的单调性的常用方是:①取值,在给定区间上任取两个自变量进行代数恒等变形,一般要出现乘积形式根据条件判断f (x 1)-f (x 2)变形后的正负;(2)讨论函数的单调性常见有两种:一种数在定义域的子区间上具有不同的单调性常用方法是利用函数单调性的定义,其步骤自变量x 1,x 2;②作差变形,将f (x 1)-f (x 2)形式,且含有x 1-x 2的因式;③判断符号,;④得出结论.一种是参数对单调性的影响,一种是函调性.思考题2 (1)如图所示为函数f (x )的图________________________,单调递减区间[-1,0],[1,2],[3,4] 的图象,其单调递增区间是_________减区间是________________________.[0,1],[2,3](2)【多选题】设f (x ),g (x )都是单调函数A .若f (x )单调递增,g (x )单调递增,B .若f (x )单调递增,g (x )单调递减,C .若f (x )单调递减,g (x )单调递增,D .若f (x )单调递减,g (x )单调递减,调函数,则下列命题中正确的是(),则f (x )-g (x )单调递增,则f (x )-g (x )单调递增BC ,则f (x )-g (x )单调递减,则f (x )-g (x )单调递减探究3求函数的单调区间常用方法方法:①图象法;②利用已知函数的单调性;③定义法.课 后 巩 固1.函数y=x2-6x+10在区间(2,A.减函数C.先减后增函数4)上是()B.增函数CD.先增后减函数2.设(a ,b ),(c ,d )都是函数f (x )的单调d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是(A .f (x 1)=f (x 2) C .f (x 1)>f (x 2) 的单调递增区间,且x 1∈(a ,b ),x 2∈(c ,)D B .f (x 1)<f (x 2) D .不能确定3.函数y =|x |-1的单调递减区间为A .(0,+∞) C .(-∞,-1)解析解析 y =|x |-1=x -1,x ≥0,-x -1,x <0,易知( )B .(-∞,0)B D .(-1,+∞)易知其单调递减区间为(-∞,0).故选B.4.【多选题】已知四个函数的图象如的函数是()BC图象如图所示,其中在定义域内具有单调性自助 餐一、证明单调性的探究1 单调性的证明证明某个函数在给定区间上的单调性明.它的步骤如下:第一步:取值.设x 1,x 2是给定区间上第二步:作差变形.写出差式f (x 1)方等手段,向有利于判断差的符号的方向变形式.第三步:判断符号.根据已知条件,第四步:下结论.根据定义,作出结论调性的方法与技巧调性,最常用的方法就是用定义去证区间上的任意两个自变量的值,且x 1<x 2. -f (x 2),并且通过提取公因式、通分、配方向变形,一般写成几个最简因式相乘的,确定f (x 1)-f (x 2)的符号. 出结论.(5)图象变换对单调性的影响.①上下平移不影响单调区间,即y ②左右平移影响单调区间.如=2的减y x 间为(-∞,-1].③y =kf (x ),当k >0时单调区间与f (x=f (x )和y =f (x )+b 的单调区间相同. 的减区间为-∞,,=+2的减区(0]y (x 1))相同,当k <0时与f (x )相反.例2 已知f (x )>0在R 上恒成立,并且满f (x )>1,求证:f (x )在R 上是增函数.【证明证明】】 设x 1,x 2∈R 且x 1<x 2,则∵x >0时,f (x )>1,∴f (x 2-x 1)>1,又f (x )>0在R 上恒成立∴f (x 2)=f ((x 2-x 1)+x 1)=f (x 2-x 1)·f (∴f (x )在R 上是增函数. 并且满足f (x +y )=f (x )·f (y ),当x >0时,则x 2-x 1>0,成立,x 1)>f (x 1).。

第02课函数的单调性与最大(小)值(课件)

第02课函数的单调性与最大(小)值(课件)

【典例】(多选)下列函数在(0,+∞)上单调递增的是( )
A.y=ex-e-x
B.y=|x2-2x|
C.y=x+cos x
D.y= x2+x-2
【解析】∵y=ex 与 y=-e-x 为 R 上的增函数,∴y=ex-e-x 为 R 上的增函数,故 A 正确; 由 y=|x2-2x|的图象知,故 B 不正确;对于选项 C,y′=1-sin x≥0,∴y=x+cos x 在 R 上为增函数,故 C 正确; y= x2+x-2的定义域为(-∞,-2]∪[1,+∞),故 D 不正确.
【典例】已知二次函数 f(x)=x2-2x+3, 当 x∈[t,t+1]时,求 f(x)的最小值 g(t).
【解析】①当 t>1 时,f(x)在[t,t+1]上是增函数, 所以当 x=t 时,f(x)取得最小值,此时 g(t)=f(t)=t2-2t+3. ②当 t≤1≤t+1,即 0≤t≤1 时,f(x)在[t,t+1]上先递减后递增, 故当 x=1 时,f(x)取得最小值,此时 g(t)=f(1)=2. ③当 t+1<1,即 t<0 时,f(x)在[t,t+1]上是减函数,所以当 x=t+1 时,f(x)取得最小值,
函数 f(x)= x-1在其定义域内是增函数.
【解析】函数 f(x)= x-1的定义域是[1,+∞),
设∀x1,x2∈[1,+∞),且 x1<x2,则 f(x2)-f(x1)= x2-1- x1-1

x2-1- x1-1 x2-1+ x2-1+ x1-1
x1-1=
x2-x12-+x1x1-1.
因为 x1,x2∈[1,+∞),且 x1<x2,所以 x2-1+ x1-1>0,x2-x1>0.

新人教版高中数学必修第一册3.2.1单调性与最大(小)值(课件)

新人教版高中数学必修第一册3.2.1单调性与最大(小)值(课件)

一般地,设函数

时,都有
递增.特别地,若函数
增函数.
的定义域为S,区间
,如果

,那么就称函数 在区间A上单调
在它的定义域上单调递增时,我们就称它为
如果
,当
时,都有
,那么就称函数
在区间A上单调递减.特别地,若函数
在它的定义域上单调递减时,
我们就称它为减函数. 函数具有单调性的的区间叫做单调区间.
单调性的定义
反之,函数在区间端点处无定义时,书写单调区间 时就不能包括端点.
单调性的应用 【例题1】根据定义,研究函数
的单调性.
【解】函数 ,
的定义域是R,对于任意的



,所以:
①当
时,
,即

这时,函数
是增函数;
①当
时,
,即

这时,函数
是减函数;
单调性的应用
【例题2】物理学中的玻意耳定律
( 为正常数)告诉我们,对于一定量的
单调性定义的应用 【1】判断(证明)单调性: 【2】比较函数值大小:
【3】已知函数值大小比较自变量:
并非所有函数都有单调性或者单调区间.如函数 虽然它的定义域为R,但是它不具有单调性.
单调性定义的应用 【问题】书写函数的单调区间端点有何要求?
函数在区间端点处有定义时,由于它的函数值是唯 一确定的常数,没有增减的变化,所以不存在单调性问 题,因此在书写单调区间时,可以包括,也可以不包括. 如函数y=t的单调增区间可以写(0,+∞),也可以写成 [0,+无穷大)
【探究】在函数单调性的定义中,对区间A有什么要求?
(1)区间A可以是整个定义域S.如函数y=x,他在定义域上单调,A=S.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴f(x)在[-1,0]上是增函数,在(-∞,-1]上是减函数. 又x∈[0,1],u∈[-1,0]时,恒有f(x)≥f(u),等号只在x=u=0时取到,故
f(x)在[-1,1]上是增函数. (3)由(2)知函数f(x)在(0,1)上递增,在[1,+∞)上递减,则f(x)在x=1处
可取得最大值. ∴f(1)=, ∴函数的最大值为 ,无最小值.
x≤1,
.是
,
上的减函数, 那么a的取值范围是(
)
A.(0,1)
C.
1 7
,
1 3
B.
0,
1 3
D.
1 7
,1
[错解]依题意应有
3a 1 0, 0 a 1,
解得0
a
1 3
,
选B.
[剖析] 本题的错误在于没有注意分段函数的特点,只保证了函数
在每一段上是单调递减的,没有使函数f(x)在(-∞,1]上的最小值
【典例2】利用定义判断函数f x x x2 1在区间
R上的单调性.
[错解]设x1, x2 R,且x1 x2 ,则f x2 f x1
(x2 x22 1) (x1 x12 1)
x2 x1 ( x22 1 x12 1),
因为x1 x2 ,则x2 x1 0,且 x22 1 x12 1 0,
(2)在解答过程中易出现不能正确构造f(x2-x1)的形式或不能将不 等式右边3转化为f(2)从而不能应用函数的单调性求解,导致此 种错误的原因是没有熟练掌握单调性的含义及没弄清如何利 用题目中的已知条件或者不能正确地将抽象不等式进行转化.
错源一不注意分段函数的特点
【典例1】已知f
x
(3a 1)x 4a, logax, x 1
[解] (1)设x1,x2∈R,且x1<x2. ∴x2-x1>0,则f(x2-x1)>1. ∵f(a+b)=f(a)+f(b)-1,
∴f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1 又f(x2-x1)-1>0, 因此f(x2)>f(x1), 故f(x)在R上是增函数.
(2)令a=b=2,则f(4)=2f(2)-1.
B. 1
4
2
C. 2 2
D. 3 2
答案:C
x 3的最大值
5.设x1,x2为y=f(x)的定义域内的任意两个变量,有以下几个命题: ①(x1-x2)[f(x1)-f(x2)]>0; ②(x1-x2)[f(x1)-f(x2)]<0; ③ f (x1) f (x2 ) 0;
x1 x2 ④ f (x1) f (x2 ) 0.
[解]1当a 4时, f x x 4 2,易知, f x 在1, 2
x
上是减函数,在2, 上是增函数.f x f 2 6. min
2当a 1 时, f x x 1 2,易知, f x 在1,
2
2x
上为增函数.f x f 1 7 .
min
2
3函数f x x a 2在(0, a ]上是减函数, 在[ a, )
(2)作差变形:作差Δy=f(x2)-f(x1),并通过因式分解、配方、有ห้องสมุดไป่ตู้化 等方法,向有利于判断差值符号的方向变形;
(3)定号:确定差值Δy的符号,当符号不确定时,可考虑分类讨论; (4)判断:根据定义作出结论.
2.直接法:运用已知的结论,直接得到函数的单调性.如一次函数、 二次函数、反比例函数的单调性均可直接说出.
(x2 x22 1) (x1 x12 1)
x2 x1 ( x22 1 x12 1)
x2
x1
(x22 1) x22 1
(x12 1) x12 1
x2
x1
(x2 x1)(x2 x22 1 x12
x1 ) 1
(x2 x1)( x22 1 x12 1 x2 x1) x22 1 x12 1
了解以下结论,对直接判断函数的单调性有好处:
(1)函数y=-f(x)与函数y=f(x)的单调性相反;
(2)当f(x)恒为正或恒为负时,函数 调性相反;
y
1 f (x)
与y=f(x)的单
(3)在公共区间内,增函数+增函数=增函数,增函数-减函数=增函 数等;
(4)复合函数单调性判断,要注意掌握“同增、异减”的原则.
x
上是增函数.若 a 1,即a 1时, f x 在区间[1, )
上先减后增, f x f ( a ) 2 a 2; min
若 a≤1,即0 a 1时, f x 在区间1, 上是增函数.
f x f 1 a 3. min
类型四抽象函数的单调性与最值 解题准备:抽象函数是近几年高考的热点,研究这类函数性质的根
3.图象法:是根据函数的图象直观判断函数在某个区间上的单调 性的方法.
【典例1】判断函数f
x
ax x2
1
a
0 在区间 1,1 上的单调性.
[解]解法一 : 设 1 x1 x2 1,则f x1 f x2
a(x1x2 1)(x2 x1) (x12 1)(x22 1)
.
Q
( x1 x2 ( x12
本方法是“赋值”,解题中要灵活应用题目条件赋值转化或配 凑. 【典例4】 函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1, 并且当x>0时,f(x)>1. (1)求证:f(x)是R上的增函数; (2)若f(4)=5,解不等式f(3m2-m-2)<3.
[分析] (1)是抽象函数单调性的证明,所以要用单调性的定义.(2) 将函数不等式中抽象的函数符号“f”运用单调性“去掉”,为 此需将右边常数3看成某个变量的函数值.
考点陪练
1.(2010·福建)下列函数f(x)中,满足“对任意x1,x2∈(0,+∞),当 x1<x2时,都有f(x1)>f(x2)”的是( )
A.f (x) 1 x
B.f(x)=(x-1)2
C.f(x)=ex 答案:A
D.f(x)=ln(x+1)
2.函数f x x 的最大值为(
)
x 1
A. 2
是增函数
说函数f(x)在区间
D上是减函数
自左向右看图象是上升的 自左向右看图象 是下降的
(2)单调性与单调区间 如果函数y=f(x)在区间D上是增函数或减函数,那么就说y=f(x)在
这一区间上具有单调性,区间D叫做y=f(x)的单调区间. (3)若函数y=f(x)在某个区间内可导,当f′(x)>0时,f(x)为增函数;当
f′(x)<0时,f(x)为减函数.
2.函数的最值
前提 条件
一般地,设函数y=f(x)的定义域为I,如果存 在实数M满足
①对于任意x∈I,都有 f(x)≤M;
①对于任意x∈I, 都有f(x)≥M;
结论
②存在x0∈I,使得f(x0)=M. ②存在x0∈I,使 得f(x0)=M.
M为最大值
M为最小值
结论 M为最大值 M为最小值 定义在闭区间上的单调函数必有最大(小)值.设f(x)是定义在 [m,n]上的单调增函数,则它的最大值是f(n),最小值是f(m).
大于(1,+∞)上的最大值,从而得出错误结果.
[正解]据题意要使原函数在定义域R上为减函数, 要满足
3a 1 0,且0 a 1, 及x 1时3a 1g1 4a loga1,
解得a的取值范围为
1 7
,
1 3
,
故选C.
[答案] C
错源二 判断复合函数的单调性时,未弄清内、外函数的单调性而 致错
又f(4)=5,∴f(2)=3.
原不等式即为f(3m2-m-2)<f(2).
由(1)知f(x)在R上是增函数,
∴3m2-m-2<2.
解之得 1 m 4 . 3
原不等式解集为
1,
4 3
.
[反思感悟] (1)若函数f(x)是增函数,则f(x1)<f(x2)⇔x1<x2,函数不 等式(或方程)的求解,总是想方设法去掉抽象函数的符号,化为 一般不等式(或方程)求解,但无论如何都必须在定义域内或给 定的范围内进行.
类型三求函数的最值
解题准备:(1)若函数是二次函数或可化为二次函数型的函数,常 用配方法.
(2)利用函数的单调性求最值:先判断函数在给定区间上的单调性, 然后利用单调性求最值.
(3)基本不等式法:当函数是分式形式且分子分母不同次时常用此 法.
(4)导数法:当函数较复杂(如指、对数函数与多项式结合)时,一般 采用此法.
当a 0时, f x 0, f x 为增函数.
当a 0时, f x 0, f x为减函数.
[反思感悟] 利用函数单调性的定义证明f(x)的单调性时,比较 f(x1)与f(x2)的大小常用作差法,有时可运用作商法、放缩法等; 讨论函数的单调性值域问题不可忽视函数的定义域.
类型二函数的奇偶性与单调性
任取x1, x2 0, ,且x1 x2 ,则f x1 f x2
x1 x2 (x2 x1)(x1x2 1) . x12 1 x22 1 (x12 1)(x22 1)
∵x21+1>0,x22+1>0,x2-x1>0, 而x1,x2∈[0,1]时,x1x2-1<0, ∴当x1,x2∈[0,1]时,f(x1)-f(x2)<0, 函数y=f(x)是增函数; 当x1,x2∈[1,+∞)时,f(x1)-f(x2)>0, 函数y=f(x)是减函数. 又f(x)是奇函数,
解题准备:因为奇函数的图象关于原点对称,所以结合图象可得奇 函数在(a,b)与(-b,-a)上的单调性相同.因为偶函数的图象关于 y轴对称,所以偶函数在(a,b)与(-b,-a)上的单调性相反.
相关文档
最新文档