利用微积分证明不等式

合集下载

「用微积分理论证明不等式的方法02762」

「用微积分理论证明不等式的方法02762」

「用微积分理论证明不等式的方法02762」微积分作为数学的一个重要分支,广泛应用于各个领域。

在证明不等式时,微积分理论可以提供很多有用的方法和手段。

下面,将介绍一些常用的用微积分理论证明不等式的方法。

一、用函数的单调性函数的单调性是研究不等式的一个重要工具。

对于单调递增的函数,可以利用其性质来证明不等式。

设函数f(x)在区间(a,b)上单调递增,若有a≤x<y<b,则有f(a)≤f(x)<f(y)≤f(b)。

同时,根据单调递增函数的性质,对于任意的a<b,有f(x)<f(y),那么对应的不等式也成立。

例如,要证明在区间[0,1]上,f(x)=x(1-x)<1/4,可以利用函数f(x)在该区间上的单调递增性。

当x<1/2时,有f(x)<f(1/2)=1/4;当x>1/2时,有f(x)<f(1/2)=1/4,因此不等式f(x)<1/4在区间[0,1]上成立。

二、用导数或微分的性质导数和微分是微积分的基本概念,它们对研究不等式也起到很大的作用。

通过研究函数的导数或微分的性质,可以得到不等式的证明。

例如,要证明在区间(a,b)上f(x)≤g(x),可以研究函数h(x)=f(x)-g(x),若能证明h(x)≤0,则不等式成立。

对h(x)求导,然后研究导数的正负性即可。

又如,要证明不等式f(x)≥g(x),可以考虑函数h(x)=f(x)-g(x),若能证明h'(x)≥0,则不等式成立。

通过导数或微分的性质,可以简化不等式的证明过程。

三、用积分的性质积分是微积分的重要工具之一,它在证明不等式中也有广泛的应用。

常用的方法有利用积分的性质来证明不等式的区间逐点性、平均值和中值定理等。

例如,若要证明在区间[a,b]上的函数f(x)满足不等式f(x)≥0,可以考虑利用积分的区间逐点性。

即对于任意一个x∈[a,b],都有f(x)≥0成立。

又如,若要证明函数f(x)在[a,b]上的平均值大于等于左端点和右端点的函数值之间的平均值,即(∫[a,b]f(x)dx)/(b-a)≥(f(a)+f(b))/2,可以利用积分的性质,将该不等式转化为函数f(x)-(f(a)+f(b))/2的积分大于等于0,然后再进行证明。

积分不等式证明

积分不等式证明

积分不等式证明
摘要:
1.积分不等式的基本概念
2.积分不等式的证明方法
3.积分不等式的应用案例
正文:
一、积分不等式的基本概念
积分不等式是微积分学中的一个重要分支,主要研究函数在一定区间上的积分值与其在某些子区间上的积分值之间的关系。

积分不等式在数学分析、物理学、经济学等领域中有着广泛的应用。

二、积分不等式的证明方法
积分不等式的证明方法有多种,主要包括以下几种:
1.直接证明法:通过直接计算和化简,得到积分不等式的证明。

2.间接证明法:通过构造辅助函数或引入参数,将积分不等式转化为简单的不等式或恒等式,从而证明原积分不等式。

3.反证法:假设积分不等式不成立,通过推导出矛盾的结论,从而证明原积分不等式成立。

三、积分不等式的应用案例
积分不等式在实际应用中有很多案例,以下举一个简单的例子:
设函数f(x) = x^2 - x + 1,求解以下积分不等式:
∫(x^2 - x + 1) dx >= 2
解:首先对函数f(x) 求积分,得到F(x) = 1/3 * x^3 - 1/2 * x^2 + x +
C。

将上界和下界代入F(x),得到F(2) = 7/3,F(0) = 1。

因此,∫(x^2 - x + 1) dx >= 2 等价于∫(x^2 - x + 1) dx - 2 >= 0。

将F(x) 代入得到:(1/3 * x^3 - 1/2 * x^2 + x) | - 2 >= 0,化简得到x^2 - x + 1 >= 0。

由于该不等式恒成立,所以原积分不等式也成立。

微积分法证明不等式

微积分法证明不等式

微积分法证明不等式
微积分法是一种强大的工具,可以用来证明各种不等式,包括在数学中最常见的不等式。

下面我们将着重介绍微积分法证明不等式的步骤和方法。

首先,给出待证明的不等式,并按照其数学符号和形式写出来,例如:f(x)≥g(x)。

其次,使用微积分法证明不等式,可以使用下面这几种方法:
(1)定积分法:
定积分法是指定义一个函数的积分,根据不等式的给定条件来确定积分的范围,然后用定积分公式,即积分的上下限,把函数的积分计算出来,从而证明不等式。

例如,当下限是a,上限是b时,可以用定积分法证明不等式:f(x)≥g(x),可以把它写成∫a b f(x)dx
≥∫a b g(x)dx。

(2)不定积分法:
不定积分法是指不确定积分的范围,而是采用一些技巧来求解一个未给定的积分。

通常是不定积分,但也有一些情况可以使用定积分,从而证明不等式。

例如,当未给定积分的范围时,可以用不定积分法证明不等式:f(x)≥g(x),可以把它写成∫f(x)dx≥∫g(x)dx。

(3)柯西不等式:
柯西不等式是一种常用的证明不等式的方法,例如,可以使用柯西不等式来证明不等式:f(x)≥g(x),可以把它写成f(x)-g(x)≥0。

该不等式只要满足柯西不等式的条件,就可以证明f(x)≥g(x)。

最后,以上是微积分法证明不等式的步骤和方法。

只要使用此方法,就可以更准确地证明不等式,从而解决一些严苛的数学问题。

用拉格朗日中值定理证明不等式

用拉格朗日中值定理证明不等式

用拉格朗日中值定理证明不等式拉格朗日中值定理是微积分中一个非常重要的定理,它通常用于证明不等式。

下面我们将介绍如何用拉格朗日中值定理证明不等式。

首先,让我们回顾一下拉格朗日中值定理的表述:设函数$f(x)$在区间$[a,b]$上具有一阶和二阶导数,则存在一个$xiin(a,b)$,使得$f(b)-f(a)=f'(xi)(b-a)$,或者写成$f'(c)=frac{f(b)-f(a)}{b-a}$,其中$c$介于$a$和$b$之间。

现在,我们来考虑如何用拉格朗日中值定理证明不等式。

假设我们要证明一个形如$a<b$的不等式,我们可以先将不等式化简为$f(b)-f(a)>0$的形式,其中$f(x)$是某个函数。

然后,我们可以找到一阶导数$f'(x)$和二阶导数$f''(x)$,并使用拉格朗日中值定理来得到:$f(b)-f(a)=f'(xi)(b-a)$由于$a<b$,所以$b-a>0$,因此我们可以将式子改写为:$frac{f(b)-f(a)}{b-a}=f'(xi)>0$由此可见,不等式成立当且仅当$f'(xi)>0$,即函数$f(x)$在$(a,b)$上单调递增。

因此,我们可以通过证明函数$f(x)$在$(a,b)$上单调递增来证明不等式。

例如,考虑证明$x^2+1>2x$。

我们可以定义$f(x)=x^2-2x+1$,则不等式可以写成$f(x)>0$的形式。

我们发现$f'(x)=2x-2$和$f''(x)=2$都存在,因此我们可以使用拉格朗日中值定理得到:$f(x)-f(0)=f'(xi)x$当$x>0$时,由于$f'(x)=2x-2>0$,因此$f(x)>f(0)$,即$f(x)-f(0)>0$。

当$x<0$时,由于$f'(x)=2x-2<0$,因此$f(x)<f(0)$,即$f(x)-f(0)<0$。

终稿 微积分在证明不等式中的应用

终稿 微积分在证明不等式中的应用

Key words: Calculus; proof ;Inequality; Application
引言 不等式是数学中的重要内容之一,它反映了各个变量之间很重要的一种关
第 1 页 共 21 页
系。它的证明在数学中起着重要作用,既能丰富数学知识,又能发展数学逻辑思 维能力。证明不等式没有固定的模式,方法因题而异,灵活多变,技巧性强。 运用初等数学知识能证明一些不等式,但对于另一些不等式的证明,比如 积分不等式,以及简化一些不等式证明,则需要借助高等数学知识。作为高等数 学的核心 ———微积分就是一种实用的证明不等式的方法。 1. 证明不等式的常用方法 证明不等式的主要方法是根据不等式的性质和已有的恒等不等式进行合乎逻辑 的等价变换。具体的方法很多,下面着重介绍最基本两种———比较法、公式法.。 1.1 比较法 欲证 A ≥ B , (ⅰ)只要证明 A − B ≥ 0 ; (ⅱ)如果 A > 0, B > 0 ,只要证明
目 录
摘要 ............................................................................................ 1 引言 ............................................................................................ 1 1. 证明不等式的常用方法 ....................................................... 2 1.1 比较法 ........................................................................... 2 1.2 公式法 ........................................................................... 3 2. 微分在证明不等式中的应用 ............................................... 5 2.1 利用函数的单调性 ....................................................... 5 2.2 利用函数的极值与最值 ............................................... 7 2.3 利用微分中值定理 ....................................................... 8 2.4 利用函数的凹凸性 ..................................................... 11 2.5 利用泰勒公式 ............................................................. 13 3. 积分在证明不等式中的应用 ............................................. 16 3.1 利用积分性质 .............................................................. 16 3.2 利用积分中值定理 ..................................................... 17 3.3 利用变限积分函数 ..................................................... 18 3.4 利用柯西—施瓦兹不等式 ......................................... 19 参考文献 .................................................................................. 21 致谢 .......................................................................................... 21

拉格朗日中值定理证明不等式例题

拉格朗日中值定理证明不等式例题

拉格朗日中值定理是微积分中的一个重要定理,它的证明以及在不等式证明中的应用在数学学科中具有重要意义。

在本文中,将以拉格朗日中值定理为基础,给出一个例题的证明过程。

1. 拉格朗日中值定理在介绍例题之前,首先给出拉格朗日中值定理的表述:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,则在开区间(a, b)内存在一点ξ,使得f(b) - f(a) = f'(ξ)(b - a)其中,ξ属于(a, b)。

2. 例题描述现有函数f(x) = x^2在闭区间[0, 1]上连续,在开区间(0, 1)内可导。

需要证明不等式f(1) - f(0) ≤ 2(1 - 0)3. 证明过程根据拉格朗日中值定理,不等式左边可以表示为f(1) - f(0) = f'(ξ)(1 - 0)其中ξ属于(0, 1)。

又因为f(x) = x^2,在区间(0, 1)内可导,所以可以求出导数f'(x) = 2x。

将导数代入上式,得到f(1) - f(0) = 2ξ(1 - 0)又因为ξ属于(0, 1),所以2ξ ≤ 2。

得出不等式f(1) - f(0) ≤ 2(1 - 0) 成立。

4. 结论通过拉格朗日中值定理,成功证明了不等式f(1) - f(0) ≤ 2(1 - 0)成立。

拉格朗日中值定理作为微积分中的重要定理,不仅在不等式证明中有着重要的应用,同时也为函数的性质研究提供了重要的工具。

在数学研究中,我们可以通过拉格朗日中值定理,将函数的平均变化率与导数通联起来,从而得出许多重要的结论。

拉格朗日中值定理在数学研究中有着不可或缺的地位。

拉格朗日中值定理作为微积分中的一个核心定理,具有极其重要的意义。

它的应用范围不仅局限于不等式证明,而且在函数的性质研究、最值问题、曲线的切线斜率等方面都能够发挥重要作用。

在接下来的内容中,我们将继续讨论拉格朗日中值定理在函数性质研究中的应用,着重探讨其在最值问题以及曲线的切线斜率方面的应用。

最新利用微积分证明不等式

最新利用微积分证明不等式

利用微积分证明不等式摘要对于不等式证明的方法有很多,利用微积分的知识来证明不失为一个简单易掌握的方法,本文应用微积分的有关概念、定理、典型实例,对不等式证明的微积分方法进行了探究与归纳。

关键词不等式;导数;定积分引言不等式中蕴藏着丰富的数学思想和方法.例如,数形结合的思想,转化的思想,类比的思想,分类讨论思想,建模的思想.不等式同时也是高中知识的一个重要的章节,高中时就学习了很多基本的不等式证明方法.例如,求导证明,利用简单的微积分证明.不等式的证明在高等数学中占有很重要的地位,是教学的一个重点,也是学习的一个难点,本文应用微积分的有关概念,定理,结合典型实例,对不等式证明的微积分方法进行了探究与归纳.1.利用微分中值定理(拉格朗日中值定理)证明不等式定理1[1]若函数f满足如下条件:(ⅰ)f在闭区间[,]a b上连续,a b内可导,(ⅱ)f在开区间(,)则在(,)a b内至少存在一点 ,使得'()()()f b f a f b aξ-=- 这里没有给出ξ的确切位置,而对于不等式而言,也不必精确.因此可用中值定理证,这时的关键是选择()f x 及区间[,]a b .例1.1 若0b a <≤,试证ln a b a a b a b b--≤≤. 证 设()ln f x x =.当0b a <≤时,()f x 在[,]b a 上满足拉格朗日中值定理, 所以1ln ln ()a b f a b ξξ-'==- ()b a ξ<≤, 而111a bξ≤≤ (0)b a <≤, 1ln ln 1a b a a b b-≤≤-. ln ln a b a b a b a b--≤-≤, 于是ln a b a a b a b b--≤≤. 例1.2 若x>0,试证:ln(1)1x x x x<+<+. 证 设()ln(1)f x x =+ (0)x >,因()f x 在[0,]x 上满足拉格朗日中值定理,1ln(1)ln(10)ln(1)()10x x f x xξξ+-++'===+-所以. 又111x ξ<+<+,11111x ξ<<++于是1ln(1)11x x x +⇔<<+. 即ln(1)1x x x x<+<+. 利用微分中值定理证明不等式时,要抓住定理的核心,在满足定理的两个条件下,主要是利用“存在一点(,)a b ξ∈”,即a b ξ<<来确定不等式关系,关键是根据'()()()f b f a f b aξ-=-对照要证的不等式来确定函数()f x 和区间[,]a b . 2.利用函数的单调性证明不等式函数的单调性,在微积分中用导数来判定.定理2[2] 设函数在区间[,]a b 上可导,如果对任意的(,)x a b ∈,恒有()0f x '>(或()0f x '<)则f(x)在(,)a b 内单调增加(或单调减少).例2.1[3] 证明不等式2ln(1)2x x x x -<+<,其中0()ln(1)x g x x x >=+-设. 证 (i)设2()ln(1)2x f x x x =--+. 当x>0时,21()1011x f x x x x'=--=-<++. ()f x ∴∞在(0,+)单调减少. (0)0f =又 2()(0),ln(1)2x f x f x x ∴<-<+即. (ii)()ln(1)g x x x =+-设 当101x x'-=-<+1x>0时,g (x)=1+x , ()(0,)g x ∴+∞在单调递减.()(0),()(0,)g x g g x ∴<+∞即在上单调减少.ln (1)0x x x +-<即,20,ln(1)2x x x x x >-<+<因此时. 例2.2[4] 证明:30,sin 3!x x x x ≥≥-当时有. 证 设3()sin 3!x f x x x -+=.2()cos 12x f x x '∴-+=. (无法判断()f x '的符号) ()sin f x x x ''=+又 0sin x x x ≥≤而时()0f x ''≥0x =(只当时等号成立).()(0,)f x '+∞所以在单调增加,()(0)0f x f '>=有,()(0,)f x +∞在单调增加,0,()(0)0x f x f >>=, 即3sin 3!x x x ≥-. 利用函数的单调性证明不等式时,首先要根据不等式构造函数()y f x =,这是解题的关键.此时,只须证明()0f x >或()0f x <,而要证明()0f x >或()0f x <,首先求()f x ',判断()0f x '>还是()0f x '<再使用定理.3.利用泰勒公式证明不等式一般涉及到高阶导数时可用泰勒公式(或麦克劳林公式).定理3[1](泰勒定理) 若函数f 满足如下条件:(i)在开区间(,)a b 上函数f 存在直到n 阶导数,(ii) 在闭区间[,]a b 上存在 f 的n+1阶导数,则对任何(,)x a b ∈,至少存在一点(,)a b ξ∈,使得2()()()()()()...2!f a f x f a f a x a x a '''=+-+-+ (1)1()()()().!(1)!n n n n f a f x a x a n n ξ+++-+-+ 例 3.1 若在(,)a b 内()0f x ''≥,则对(,)a b 任意几个点12,,...n x x x ,试证有不等式1212...1()(()()...())n n x x x f f x f x f x n n+++≤+++. 证 将()f x 介在120...n x x x x n+++=展开,0x x ξ介于与之间, 有200001()()()()()()2f x f x f x x x f x x ξ'''=+-+-. ()0f x ''≥因,000()()()()f x f x f x x x '∴≥+- (1)对(1)式中分别取12,,...n x x x ,得到000()()()()i i f x f x f x x x '≥+- i =1,2,…n. 将上面的n 个不等式两边分别相加得00011()()()()n n i i i i f x nf x f x x x =='≥+-∑∑001200()()(...)()n nf x f x x x x nx nf x '=++++-=011()()ni i f x f x n =∴≤∑, 即1212...1()(()()...())n n x x x f f x f x f x n n+++≤+++. 例3.2 设x >-1,证明(i )在01α<<,(1)1x x αα+≤+;(ii)在a<0或a>1时,(1)1x x αα+≥+.证 设()(1)f x x α=+, 1()(1)f x x αα-'=+则.2()(1)(1)f x a x αα-''=-+,则()f x 的麦克劳林展式为21()(0)(0)()2f x f f x f x ξ'''=++ ξ介于0与x 之间. 即221(1)1(1)(1)2x x x αααααξ-+=++-+ . (2) (i )01α<<时,(2)式第三项非正.∴(1)1x x αα+≤+.(ii) 在a<0或a>1时, (2)式第三项非负.泰勒定理的适用范围是不等式中含有的函数易求出它的泰勒展开式,从而利用它的局部展开式证明不等式.4.利用函数的凹凸性证明不等式由定义及判别法有:()f x 在某区间上凹(或下凹)⇔ ()0(()0)f x f x ''''><或,也即122...()[()()...()]n n x x x f f x f x f x n+++<+++ (或122...()[()()...()]n n x x x f f x f x f x n +++>+++), 由此可证明一些不等式,特别是含两个或两个以上变元的.例4.1[3] 已知0,1,2....i x i n >=,且123...1n x x x x =.试证:123...n x x x x n ++++≥.证 令()ln (0)f x x x =>, 1()f x x '=则,21()0f x x''=-<. ()(0,)f x ∴+∞在下凹.1212...()[()()...()n n x x x f f x f x f x n+++≥+++即, 1212...11ln()(ln ln ...ln )ln10n n x x x x x x n n n+++≥+++==, 12...1n x x x n+++∴≥. 123...n x x x x n ++++≥.例4.2 证明:1()(),0,0,,122n n n x y x y x y x y n +<+>>≠>证 设()n f u u = , 2()(1)0n f u n n u -''=->()(0,),f x x y x y ∴+∞≠在上凹的对,两点有,1()(()())22x y f f x f y +<+,即1()()22n n n x y x y +<+. 5.利用积分知识证明不等式性质1[3] 设(),()f x g x 在区间[,]a b 上都是可积函数,如果在区间[,]a b 上满足()()f x g x ≤,则有()()b ba a f x dx g x dx ≤⎰⎰.例5.1 ln(ln(1x -≥-+(1)x ≥.证 11|1x x t ==+⎰11ln(|ln(ln(1xx t x =+=+-+⎰.1t ≥≥又, 根据性质1,1x⎰≥1x ⎰.ln(ln(1x ≥-+(1)x ≥.使用性质1证明不等式时,要将不等式两端的式子表示成同一区间上两个函数的定积分,这时,只须比较这两个函数在区间上的大小,在利用定积分的性质.性质2 如果()f x 在[,]a b 上的最大值和最小值分别为M 和m ,则()()()ba mb a f x dx M b a -≤≤-⎰. 例 5.2[2] 已知()f x 在x -∞≤≤+∞内连续,1()()(0)2x a x a F x f t dt a a+-=>⎰,设()f x 在区间[,]x a x a -+内的最大值和最小值分别为M ,m .试证:|()()|F x f x M m -≤-.证 当1x a x a -<<+时,由性质2得2()2x ax a m a f t dt M a +-⋅≤≤⋅⎰.()m F x M ∴≤≤.又()m f x M ≤≤()M f x m ∴-≤-≤-.()()()M m F x f x M m ∴--≤-≤-.即|()()|F x f x M m -≤-.结语:高等数学中证明不等式的方法很多,利用微积分证明有时候可以将复杂繁冗的问题变的简单明了.本文针对微积分学中证明不等式的5种方法,进行了初步的思考与探究,并对运用某种方法给出了一定的结论.其实,对于一个不等式来说,可以用多种方法予以证明,对于一个学习数学的人来说,能够找到解决问题的最简单的方法就是好方法,而利用微积分往往能让问题变的简单起来.参考文献[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社,1991.10.[2]尹建华.利用微积分证明不等式[J]. 承德民办师专学报.2001,5.第21卷2期:8-9.[3]吴江.微积分在不等式证明中的应用[J].北京市计划劳动管理干部学院学报.2001.第9卷(3期):44-46.[4]刘玉琏,傅沛仁.数学分析讲义[M].北京:高等教育出版社,1992,7.TheProveOfInequationByMeamsOfCalculous AndDifferentialYu Jian Sheng Tutor, Wu XiaoAbstract: There are many ways to prove inequation. It is a simply way to use the knowledgeof calculous and differential to prove inequation.This paper is adopted some concepts, theorems of calculous and differential, and typical examples, and the conclusion to explore and summarize the prove of inequation by means of using calculous is obtained.Keywords: inequation; derivative; calculous;differential论文题目利用微积分证明不等式院别数学与信息科学学院专业数学与应用数学年级 2004级学号 200424011138学生姓名余建生指导教师吴晓完成时间2008 年 4月。

微积分中不等式的证明方法

微积分中不等式的证明方法

微积分中不等式的证明方法微积分中的不等式证明方法有很多种,下面将介绍其中一些常见的方法。

1.代数证明法代数证明法是一种以代数运算为主要手段来证明不等式的方法。

在证明中,可以使用代数运算的性质,如加减乘除、平方、开方等。

例如,要证明一些不等式:a + b ≥ 2√(ab),可以通过代数推导来证明。

首先,将不等式两边平方,得到(a + b)² ≥ 4ab。

展开并化简之后,得到a² + 2ab + b² ≥ 4ab,再将其中的2ab移到左边,得到a² -2ab + b² ≥ 0,即(a - b)² ≥ 0。

由于平方的结果非负,所以不等式成立。

2.数列证明法数列证明法是一种通过构造适当的数列来证明不等式的方法。

在证明中,可以通过构造递推式或者利用数列的性质来得到结论。

例如,要证明一些不等式:n² ≥ n,可以通过构造递推数列来证明。

考虑数列an = n,其中n为正整数。

可以发现,数列an是单调递增的。

当n = 1时,显然有1² ≥ 1成立。

假设当n = k时,不等式成立,即k² ≥ k。

则当n = k + 1时,由于an是单调递增的,显然有(k + 1)²≥ k + 1、因此,根据数列证明法,不等式n² ≥ n成立。

3.函数证明法函数证明法是一种通过构造适当的函数来证明不等式的方法。

在证明中,可以通过研究函数的性质,如函数的单调性、极值等来得到结论。

例如,要证明一些不等式:(1+x)²≥1+2x,可以通过构造适当的函数来证明。

考虑函数f(x)=(1+x)²-1-2x,可以研究函数f(x)的性质。

首先计算函数f(x)的导数,得到f'(x)=2(1+x)-2=2x。

由于导数为正,说明函数f(x)单调递增。

此外,由于f(0)=0,所以函数f(x)在x=0处取得最小值。

因此,对于所有x≥0,有f(x)≥0,即(1+x)²≥1+2x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用微积分证明不等式余建生 指导教师:吴晓摘要 对于不等式证明的方法有很多,利用微积分的知识来证明不失为一个简单易 掌握的方法,本文应用微积分的有关概念、定理、典型实例,对不等式证明的微积 分方法进行了探究与归纳。

关键词 不等式;导数;定积分引言不等式中蕴藏着丰富的数学思想和方法.例如,数形结合的思想,转化的思想,类比的思想,分类讨论思想,建模的思想.不等式同时也是高中知识的一个重要的章节,高中时就学习了很多基本的不等式证明方法.例如,求导证明,利用简单的微积分证明.不等式的证明在高等数学中占有很重要的地位,是教学的一个重点,也是学习的一个难点,本文应用微积分的有关概念,定理,结合典型实例,对不等式证明的微积分方法进行了探究与归纳.1.利用微分中值定理(拉格朗日中值定理)证明不等式 定理1[1] 若函数f 满足如下条件:(ⅰ)f 在闭区间[,]a b 上连续,(ⅱ)f 在开区间(,)a b 内可导,则在(,)a b 内至少存在一点ξ,使得'()()()f b f a f b aξ-=- 这里没有给出ξ的确切位置,而对于不等式而言,也不必精确.因此可用中值定理证,这时的关键是选择()f x 及区间[,]a b .例1.1 若0b a <≤,试证ln a b a a b a b b--≤≤. 证 设()ln f x x =.当0b a <≤时,()f x 在[,]b a 上满足拉格朗日中值定理, 所以1ln ln ()a b f a b ξξ-'==- ()b a ξ<≤,而111a bξ≤≤ (0)b a <≤, 1ln ln 1a b a a b b-≤≤-. ln ln a b a b a b a b--≤-≤, 于是ln a b a a b a b b--≤≤. 例1.2 若x>0,试证:ln(1)1x x x x<+<+. 证 设()ln(1)f x x =+ (0)x >,因()f x 在[0,]x 上满足拉格朗日中值定理,1ln(1)ln(10)ln(1)()10x x f x xξξ+-++'===+-所以. 又111x ξ<+<+,11111x ξ<<++于是1ln(1)11x x x +⇔<<+. 即ln(1)1x x x x<+<+. 利用微分中值定理证明不等式时,要抓住定理的核心,在满足定理的两个条件下,主要是利用“存在一点(,)a b ξ∈”,即a b ξ<<来确定不等式关系,关键是根据'()()()f b f a f b aξ-=-对照要证的不等式来确定函数()f x 和区间[,]a b . 2.利用函数的单调性证明不等式函数的单调性,在微积分中用导数来判定.定理2[2] 设函数在区间[,]a b 上可导,如果对任意的(,)x a b ∈,恒有()0f x '>(或()0f x '<)则f(x)在(,)a b 内单调增加(或单调减少).例2.1[3] 证明不等式2ln(1)2x x x x -<+<,其中0()ln(1)x g x x x >=+-设. 证 (i)设2()ln(1)2x f x x x =--+.当x>0时,21()1011x f x x x x'=--=-<++. ()f x ∴∞在(0,+)单调减少. (0)0f =又 2()(0),ln(1)2x f x f x x ∴<-<+即. (ii)()ln(1)g x x x =+-设 当101x x'-=-<+1x>0时,g (x)=1+x , ()(0,)g x ∴+∞在单调递减.()(0),()(0,)g x g g x ∴<+∞即在上单调减少.ln (1)0x x x +-<即,20,ln(1)2x x x x x >-<+<因此时. 例2.2[4] 证明:30,sin 3!x x x x ≥≥-当时有. 证 设3()sin 3!x f x x x -+=. 2()cos 12x f x x '∴-+=. (无法判断()f x '的符号) ()sin f x x x ''=+又 0s i nx x x ≥≤而时 ()0f x ''≥0x =(只当时等号成立).()(0,)f x '+∞所以在单调增加,()(0)0f x f '>=有,()(0,)f x +∞在单调增加,0,()(0)0x f x f >>=, 即3sin 3!x x x ≥-. 利用函数的单调性证明不等式时,首先要根据不等式构造函数()y f x =,这是解题的关键.此时,只须证明()0f x >或()0f x <,而要证明()0f x >或()0f x <,首先求()f x ',判断()0f x '>还是()0f x '<再使用定理.3.利用泰勒公式证明不等式一般涉及到高阶导数时可用泰勒公式(或麦克劳林公式).定理3[1](泰勒定理) 若函数f 满足如下条件:(i)在开区间(,)a b 上函数f 存在直到n 阶导数,(ii) 在闭区间[,]a b 上存在 f 的n+1阶导数,则对任何(,)x a b ∈,至少存在一点(,)a b ξ∈,使得2()()()()()()...2!f a f x f a f a x a x a '''=+-+-+ (1)1()()()().!(1)!n n n n f a f x a x a n n ξ+++-+-+ 例3.1 若在(,)a b 内()0f x ''≥,则对(,)a b 任意几个点12,,...n x x x ,试证有不等式1212...1()(()()...())n n x x x f f x f x f x n n+++≤+++. 证 将()f x 介在120...n x x x x n+++=展开,0x x ξ介于与之间, 有200001()()()()()()2f x f x f x x x f x x ξ'''=+-+-. ()0f x ''≥因,000()()()()f x f x f x x x '∴≥+- (1)对(1)式中分别取12,,...n x x x ,得到000()()()()i i f x f x f x x x '≥+- i =1,2,…n. 将上面的n 个不等式两边分别相加得00011()()()()n n i i i i f x nf x f x x x =='≥+-∑∑001200()()(...)()n nf x f x x x x nx nf x '=++++-=011()()ni i f x f x n =∴≤∑,即1212...1()(()()...())n n x x x f f x f x f x n n+++≤+++. 例3.2 设x >-1,证明(i )在01α<<,(1)1x x αα+≤+;(ii)在a<0或a>1时,(1)1x x αα+≥+.证 设()(1)f x x α=+, 1()(1)f x x αα-'=+则.2()(1)(1)f x a x αα-''=-+,则()f x 的麦克劳林展式为21()(0)(0)()2f x f f x f x ξ'''=++ ξ介于0与x 之间. 即221(1)1(1)(1)2x x x αααααξ-+=++-+ . (2) (i )01α<<时,(2)式第三项非正.∴(1)1x x αα+≤+.(ii) 在a<0或a>1时, (2)式第三项非负.泰勒定理的适用范围是不等式中含有的函数易求出它的泰勒展开式,从而利用它的局部展开式证明不等式.4.利用函数的凹凸性证明不等式由定义及判别法有:()f x 在某区间上凹(或下凹)⇔ ()0(()0)f x f x ''''><或,也即122...()[()()...()]n n x x x f f x f x f x n+++<+++ (或122...()[()()...()]n n x x x f f x f x f x n +++>+++), 由此可证明一些不等式,特别是含两个或两个以上变元的.例4.1[3] 已知0,1,2....i x i n >=,且123...1n x x x x =.试证:123...n x x x x n ++++≥.证 令()ln (0)f x x x =>, 1()f x x '=则,21()0f x x''=-<. ()(0,)f x ∴+∞在下凹.1212...()[()()...()n n x x x f f x f x f x n+++≥+++即, 1212...11ln()(ln ln ...ln )ln10n n x x x x x x n n n+++≥+++==, 12...1n x x x n+++∴≥. 123...n x x x x n ++++≥.例4.2 证明:1()(),0,0,,122n n n x y x y x y x y n +<+>>≠> 证 设()n f u u = , 2()(1)0n f u n n u -''=->()(0,),f x x y x y ∴+∞≠在上凹的对,两点有,1()(()())22x y f f x f y +<+,即1()()22n n n x y x y +<+. 5.利用积分知识证明不等式性质1[3] 设(),()f x g x 在区间[,]a b 上都是可积函数,如果在区间[,]a b 上满足()()f x g x ≤,则有()()b ba a f x dx g x dx ≤⎰⎰.例5.1 ln(ln(1x ≥+-+(1)x ≥.证11x x ==-⎰11ln(|ln(ln(1x x t x =+=+-+⎰.1t ≥≥又, 根据性质1,1x⎰≥1x ⎰.ln(ln(1x ≥+-+(1)x ≥.使用性质1证明不等式时,要将不等式两端的式子表示成同一区间上两个函数的定积分,这时,只须比较这两个函数在区间上的大小,在利用定积分的性质.性质2 如果()f x 在[,]a b 上的最大值和最小值分别为M 和m ,则()()()ba mb a f x dx M b a -≤≤-⎰. 例5.2[2] 已知()f x 在x -∞≤≤+∞内连续,1()()(0)2x a x a F x f t dt a a+-=>⎰,设()f x 在区间[,]x a x a -+内的最大值和最小值分别为M ,m .试证:|()()|F x f x M m-≤-. 证 当1x a x a -<<+时,由性质2得 2()2x ax a m a f t dt M a +-⋅≤≤⋅⎰.()m F x M ∴≤≤.又()m f x M ≤≤()M f x m ∴-≤-≤-.()()()M m F x f x M m ∴--≤-≤-.即|()()|F x f x M m -≤-.结语:高等数学中证明不等式的方法很多,利用微积分证明有时候可以将复杂繁冗的问题变的简单明了.本文针对微积分学中证明不等式的5种方法,进行了初步的思考与探究,并对运用某种方法给出了一定的结论.其实,对于一个不等式来说,可以用多种方法予以证明,对于一个学习数学的人来说,能够找到解决问题的最简单的方法就是好方法,而利用微积分往往能让问题变的简单起来.参考文献[1]华东师范大学数学系.数学分析[M].北京:高等教育出版社,1991.10.[2]尹建华.利用微积分证明不等式[J]. 承德民办师专学报.2001,5.第21卷2期:8-9.[3]吴江.微积分在不等式证明中的应用[J].北京市计划劳动管理干部学院学报.2001.第9卷(3期):44-46.[4]刘玉琏,傅沛仁.数学分析讲义[M].北京:高等教育出版社,1992,7.TheProveOfInequationByMeamsOfCalculous AndDifferentialYu Jian Sheng Tutor, Wu XiaoAbstract : There are many ways to prove inequation. It is a simply way to use the knowledge of calculous and differential to prove inequation.This paper is adopted some concepts, theorems of calculous and differential, and typical examples, and the conclusion to explore and summarize the prove of inequation by means of using calculous is obtained.Keywords : inequation; derivative; calculous;differential论文题目利用微积分证明不等式院别数学与信息科学学院专业数学与应用数学年级 2004级学号 200424011138 学生姓名余建生指导教师吴晓完成时间2008 年 4月。

相关文档
最新文档