利用导数证明不等式的两种通法

利用导数证明不等式的两种通法
利用导数证明不等式的两种通法

利用导数证明不等式的两种通法

吉林省长春市东北师范大学附属实验学校

金钟植 岳海学

利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。

一、函数类不等式证明

函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问

题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数

()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最

大值)大于或等于零(小于或等于零)。 例1 已知(0,

)2

x π

∈,求证:sin tan x x x <<

分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2

π

单调递减即可。

证明:

令()sin f x x x =- ,其中(0,)2

x π

则/

()cos 1f x x =-,而(0,)cos 1cos 102

x x x π

∈?

所以()sin f x x x =-在(0,)2

π

上单调递减,即()sin (0)0f x x x f =-<=

所以sin x x <;

令()tan g x x x =- ,其中(0,)2

x π

则/

2

21()1tan 0cos g x x x =-

=-<,所以()tan g x x x =-在

(0,)2

π上单调递减, 即()tan (0)0g x x x g =-<=

所以tan x x <。

综上所述,sin tan x x x <<

评注:证明函数类不等式时,构造辅助函数比较容易,只需将不等式的其中一边变为0,然后另一边的函数作为辅助函数,并利用导数证明其单调性或其最值,进而构造我们所需的不等式的结构即可。根据不等式的对称性,本例也可以构造辅助函数为在(0,)2

π

上是单

调递增的函数(如:利用()sin h x x x =-在(0,

)2

π

上是单调递增来证明不等式

sin x x <),另外不等式证明时,区间端点值也可以不是我们所需要的最恰当的值(比如

此例中的(0)f 也可以不是0,而是便于放大的正数也可以)。因此例可变式为证明如下不等式问题: 已知(0,

)2

x π

∈,求证:sin 1tan 1x x x -<<+

证明这个变式题可采用两种方法:

第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式 sin x x <以后,根据sin 1sin x x x -<<来证明不等式sin 1x x -<;

第二种证法:直接构造辅助函数()s i n 1f x x x =--和()tan 1g x x x =--,其中(0,)2

x π

然后证明各自的单调性后再放缩或放大(如:()sin 1(0)10f x x x f =--<=-<) 例2 求证:ln(1)x x +<

分析:令()ln(1)f x x x =+-,经过求导易知,()f x 在其定义域(1,)-+∞上不单调,但可以利用最值证明不等式。 证明:令()ln(1)f x x x =+- 函数f(x)的定义域是(1,)-+∞,

'f (x)=

111

-+x

.令'f (x)=0,解得x=0, 当-10,当x>0时,'f (x)<0,又f(0)=0,

故当且仅当x=0时,f(x)取得最大值,最大值是0 所以()ln(1)(0)0f x x x f =+-<= 即ln(1)x x +<

二、常数类不等式证明

常数类不等式证明的通法可概括为:证明常数类不等式的问题等价转化为证明不等式

()()f a f b <的问题,在根据,a b 的不等式关系和函数()f x 的单调性证明不等式。

例3已知0,,(1)(1)0m n a b R a b +

>>∈--≠且 求证:()()n

n m

m

m n a b a b +>+ 分析:

()()ln()ln()ln()ln()

n n m m m n

n n m m m n n n m m a b a b a b a b m a b n a b +>+?+>+?+>+

ln()ln()()()

n n m m a b a b n m

f n f m ++?>

?> ln()

()0x x a b f x x

?+=

+∞?????

在(,)上是减函数m>n>0 证明:

令ln()

()(0)x x a b f x x x

+=

>

则/22ln ln ln()(ln ln )()ln()()()x x x x x x x x x x x x x x

a a

b b x a b x a a b b a b a b a b f x x x a b +-++-+++==+ 22ln ln ln ln 0()()

x x x x x x x

x x x

x x x x x x

x

x x x x x a b a b a b a b a b a b a b a b a b x a b x a b ++++++++=

<=++ 所以,ln()

()0x x a b f x x

+=

+∞在(,)上是减函数 又因为0m n >>,所以()()f n f m >

即ln()ln()

n n m m a b a b n m

++>

ln()ln()ln()ln()

n n m m n n m m m n

m a b n a b a b a b +>+?+>+

即()()n

n m

m

m n

a b a b +>+

评注:利用导数证明常数类不等式的关键是经过适当的变形,将不等式证明的问题转化为

函数单调性证明问题,其中关键是构造辅助函数,如何构造辅助函数也是这种通法运用的难点和关键所在。通过本例,不难发现,构造辅助函数关键在于不等式转化为左右两边是

相同结构的式子(本例经过转化后的不等式ln()ln()

n n m m a b a b n m

++>的两边都是相同式

子ln()x x a b x

+的结构,所以可以构造辅助函数ln()

()x x a b f x x +=),这样根据“相同结

构”可以构造辅助函数。

例4 已知02

π

αβ<<<

,求证:

tan tan 11tan tan ααβ

ββα

-<<+ 分析:欲证

tan tan 11tan tan ααβββα-<<+,只需证tan tan tan tan ααβ

ββα

<<

(不然没法构造辅助函数),即

tan tan ,tan tan α

β

ααββαβ

<<,则需证函数tan (),()tan x

f x

g x x x x

=

=都在函数区间(0,

)2

π

上单调递增即可。

证明:设tan ()x f x x =

,(0,)2

x π

∈ 则2/

222sec tan sin cos ()cos x x x x x x

f x x x x

--==

由例1知,(0,

)sin sin cos sin cos 02

x x x x x x x x π

∈?>>?->

即/

()0f x >,所以tan ()x f x x =

在(0,)2

π上单调递增,而02π

αβ<<< 所以

tan tan α

β

α

β

<

,即

tan tan ααββ<,进而得到tan 1tan αα

ββ

-< 设()tan g x x x =,(0,

)2

x π

则/

2

()tan sec g x x x x =+,又因为(0,)2

x π

∈,所以/()0g x >,

进而()tan g x x x =在(0,

)2

π

上单调递增,而02

π

αβ<<<

所以tan tan ααββ<,即

tan tan αββα<,进而得到tan 1tan αβ

βα

<+ 综上所述

tan tan 11tan tan ααβ

ββα

-<<+ 三、同步练习题

1.当1>x 时,求证:x

x 1

32-

> 2.已知a,b 为实数,并且e

a

a b > 3.已知函数()()ln(1)10x

f x e x x =-+-≥

(1)求函数()f x 的最小值;

(2)若0y x ≤<,求证:1ln(1)ln(1)x y e x y -->+-+ 4.求证:()()e e e e e πππππ+>+ 参考答案: 1.证明: 要证x

x 1

32-

>,只要证)1()13(423>->x x x , 即证=--23)13(4x x ,0)(169423>=-+-x f x x x 则当1>x 时,0)1)(12(6)132(6)('3>--=+-=x x x x x f ,

),1()(+∞∴在x f 上递增,0)1()(=>∴f x f 即0)(>x f 成立,原不等式得证

2.证明:

当e

a

a b >, 只要证ln ln b a a b >,

即只要证

b b

a a ln ln > 考虑函数)0(ln +∞<<=x x

x

y 。因为当e x >时, ,0ln 12

<-='x

x y 所以函数),(ln +∞=e x x y 在内是减函数 因为e

b a a ln ln >,即得b a

a b > 3.(1)最小值为0

(2)因为00y x x y ≤

而由(1)知,对0x >,恒有()0f x >,所以不等式()0f x y ->恒成立 即ln(1)10x y

e

x y ---+-> 所以1ln(1)x y

e

x y -->-+

又因为

ln(1)ln[(1)(1)]ln(1)

ln[(1)()]ln(1)ln(1)ln(1)(()0)

x y y x y y x y x y y x y y x y -+=+-+-+=++--+>+-+->

所以1ln(1)ln(1)x y

e

x y -->+-+

证明:设ln()

()(0)x x e f x x x

π+=

>,

则'2

ln ln()()x x x x x x

e x e e

f x x

ππππ+-++= 2(ln )()ln()

()

x x x x x x x x

x e e e x e πππππ+-++=+ 22ln ln ln ln 0()()

x

x x x x x x

x

x x

x x x x x x x x

x x x x

e e e e e e e e e x e x e πππππππππππ++++++++=<=++ 所以函数ln()

()x x e f x x

π+=在其定义域(0,)+∞单调递减

所以()()f f e π<,即

ln()

ln()e e e e e

πππππ

++<

根据对数的运算性质得,()()e e e e e πππππ+>+

利用导数证明不等式的两种通法

利用导数证明不等式的两种通法 吉林省长春市东北师范大学附属实验学校 金钟植 岳海学 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问 题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最 大值)大于或等于零(小于或等于零)。 例1 已知(0, )2 x π ∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2 π 上 单调递减即可。 证明: 令()sin f x x x =- ,其中(0,)2 x π ∈ 则/ ()cos 1f x x =-,而(0,)cos 1cos 102 x x x π ∈?

导数证明不等式

利用导数证明不等式的两种通法 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最大值)大于或等于零(小于或等于零)。 例1 已知(0,)2x π ∈,求证:sin tan x x x << 证明这个变式题可采用两种方法: 第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式 sin x x <以后,根据sin 1sin x x x -<<来证明不等式sin 1x x -<; 第二种证法:直接构造辅助函数()sin 1f x x x =--和()tan 1g x x x =--,其中(0, )2x π∈ 然后证明各自的单调性后再放缩或放大(如:()sin 1(0)10f x x x f =--<=-<) 例2 求证:ln(1)x x +< 技巧 一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点。 二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、利用题目所给函数证明 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时, 恒有x x x ≤+≤+- )1ln(1 11

利用导数证明数列不等式(含解析)

利用导数证明数列不等式 利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型: (1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源: (1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式. (2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式: (1) 对数→多项式 (2) 指数→多项式 4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种: (1)倒序相加:通项公式具备第项与第项的和为常数的特点. (2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减). (3)等比数列求和公式 (4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑. 5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式. 6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向. 7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等). ln 1x x <-1x e x >+n n k 1n k -+?2n n a n =?n a

导数不等式证明

1.函数2ln 2)(x x x f -=,求函数)(x f y =在]2,2 [上的最大值 2.. 已知f(x)=e x -ax- (1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由. 3. 已知函数f(x)=x 2e -ax (a >0),求函数在[1,2]上的最大值. 4.已知x =3是函数f(x)=aln(1+x)+x2-10x 的一个极值点. (1)求a 的值; (2)求函数f(x)的单调区间; (3)若直线y =b 与函数y =f(x)的图象有3个交点,求b 的取值范围. 5. (2010年全国)已知函数 f(x)=x3-3ax2+3x +1. (1)设a =2,求 f(x)的单调区间; (2)设 f(x)在区间(2,3)中至少有一个极值点,求a 的取值范围. 不等式的证明: 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式 ()()f x g x >(()()f x g x <) 的问题转化为证明 ()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小 值(最大值)大于或等于零(小于或等于零)。 一、利用题目所给函数证明 【例1】 已知函数 x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+- )1ln(1 1 1 【绿色通道】1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(m a x ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左令11 1 )1ln()(-+++=x x x g , 2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、直接作差构造函数证明 【例2】已知函数 .ln 2 1)(2 x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数3 3 2)(x x g = 的图象的下方; 【绿色通道】设)()() (x f x g x F -=,即x x x x F ln 2 132)(2 3--= ,

利用导数证明不等式的常见题型

利用导数证明不等式的常见题型 山西大学附属中学 韩永权 邮箱:hyq616@https://www.360docs.net/doc/0c19234818.html, 不等式的证明是近几年高考的一个热点题型,它一般出现的压轴题的位置,解决起来比较困难。本文给出这一类问题常见的证明方法,给将要参加高考的学子一些启示和帮助。只要大家认真领会和掌握本文的内容,定会增强解决对这一类问题的办法。下面听我慢慢道来。 题型一 构造函数法,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证明不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 例1(人教版选修2-2第32页B 组1题)利用函数的单调性,证明不列不等式 (1)),0(,sinx π∈-x x x (3)0,1≠+>x x e x (4)0,ln ><x 时,求证:x x x ≤+≤+- )1ln(1 1 1 证明:令x x x f -+=)1ln()(,则1 111)(+- =-+='x x x x f ∴当01<<-x 时,0)(>'x f ,当0>x 时,0)(<'x f ,()f x 在),1(+∞-上的最大值为 0)0()(max ==f x f ,因此,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln((右面得证), 再证左面,令11 1 )1ln()(-+++=x x x g ,2 2)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时,函数)(x g 在),1(+∞-上的最小值为 0)0()(m i n ==g x g ,∴0)0()(=≥g x g ,即011 1 )1ln(≥-+++x x ∴111)1ln(+-≥+x x (左面得证),综上,当x x x x ≤+≤-+->)1ln(11 1 ,1有时 启示:证明分三个步骤,一是构造函数,二是对函数求导,判断函数的单调性,三是求此函数的最值,得 出结论。 题型二 通过对函数的变形,利用分析法,证明不等式 例.bx x x h +=ln )(有两个不同的零点21,x x ①求b 的取值范围;②求证:1221x x e >. 解析:①()ln h x x bx =+,其定义域为(0,+∞).由()0h x =得ln -x b x =,记ln ()x x x ?=-,则2 l n 1 ()x x x ?-'=, 所以ln ()x x x ?=-在(0,)e 单调减,在(,)e +∞单调增,所以当x e =时ln ()x x x ?=-取得最小值1e -. 又(1)0?=,所以(0,1)x ∈时()0x ?>,而(1,)x ∈+∞时()0x ?<,所以b 的取值范围是(1 e -,0). ②由题意得1122ln 0,ln 0x bx x bx +=+=, 所以12122121ln ()0,ln ln ()0x x b x x x x b x x ++=-+-=,所以 12122121 ln ln ln x x x x x x x x +=--,不妨设21x x <, 要证212x x e >,需证12122121 ln (ln ln )2x x x x x x x x +=->-.即证2121212()ln ln x x x x x x -->+, 设21(1)x t t x =>,则2(1)4()ln ln 211 t F t t t t t -=-=+-++, 所以2 22 14(1)()0(1)(1) t F t t t t t -'=-=>++,所以函数()F t 在(1,+∞)上单调增, 而(1)0F =,所以()0F t >即2(1) ln 1 t t t ->+,所以212x x e >.

利用导数构造函数解不等式

构造函数解不等式 1.(2015全国2理科).设函数f’(x)是奇函数()()f x x R ∈的导函数,f (-1)=0,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是 (A ) (B )(C ) (D ) 2若定义在R 上的函数()f x 是奇函数, ()02=f ,当x >0时,()()2x x f x f x -'<0,恒成立,则不等式()x f x 2>0的解集 A ()2,-∞-?()+∞,2 B ()0,2- ? ()+∞,2 C ()2,-∞-?()2,0 D .()0,2-?()2,0 3定义在R 上的函数()f x 满足:()()1(0)4f x f x f '+>=,, 则不等式()3x x e f x e >+(其中e 为自然对数的底数)的解集为( ) A .()0,+∞ B . ()(),03,-∞+∞U C .()(),00,-∞+∞U D .()3,+∞ 4. 定义在R 上的函数()f x 满足:()1()f x f x '>-,(0)6f =,()f x '是()f x 的导函数, 则不等式()5x x e f x e >+(其中e 为自然对数的底数)的解集为 A .()0,+∞ B .()(),03,-∞+∞U C .()(),01,-∞+∞U D .()3,+∞ 5.定义在R 上的函数()f x 满足 则不等式(其中e 为自然对数的底数)的解集为

6.定义域为R 的可导函数()x f y =的导函数为'()f x ,满足()()x f x f '>,且(),10=f 则不等式()1

导数之数列型不等式证明

函数与导数解答题之数列型不等式证明 例1.已知函数()()ln 3f x a x ax a R =--∈ (1)讨论函数)(x f 的单调性; (2)证明:*1111ln(1)()23n n N n + +++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

例3.已知函数()x f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥; (2)求证:对任意正整数n ,都有2111111222n e ??????+ +???+< ??? ???????. 例4.设函数()ln 1f x x px (1)求函数()f x 的极值点; (2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n 例5.已知函数()ln 1f x x x =-+? (1)求()f x 的最大值; (2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-???? ??

2021届高考数学(理)一轮复习学案:第3章导数及其应用第4节利用导数证明不等式

第四节 利用导数证明不等式 课堂考点探究 考点1 单变量不等式的证明 单变量不等式的证明方法 (1)移项法:证明不等式f (x )>g (x )(f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x ); (2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数; (3)最值法:欲证f (x )<g (x ),有时可以证明f (x )max <g (x )min . 直接将不等式转化为函数的最值问题 已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-3 4a -2. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1= x +1 2ax +1 x . 当a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. 当a <0,则当x ∈? ????0,-12a 时,f ′(x )>0;当x ∈? ????-12a ,+∞时,f ′(x )<0. 故f (x )在? ????0,-12a 上单调递增,在? ?? ??-12a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-12a 取得最大值,最大值为f ? ????-12a =ln ? ??? ?-12a -1-1 4a . 所以f (x )≤-34a -2等价于ln ? ????-12a -1-14a ≤-34a -2,即ln ? ????-12a +1 2a +1≤0.设g (x ) =ln x -x +1,则g ′(x )=1 x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x ) <0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大 值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ? ????-12a +1 2a +1≤0, 即f (x )≤-3 4a -2. 将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间

2018届高三构造函数利用导数解不等式(原卷版)

专题一构造函数利用导数解不等式 对于已知不等式中既有()f x 又有'()f x ,一般不能直接确定'()f x 的正负,即不能确定()f x 的单调性,这时要求我们构造一个新函数,以便利用已知不等式判断其导数的的正负,常见的构造新函数有 1.对于()()x g x f ''>,构造()()() x g x f x h -=更一般地,遇到()()0'≠>a a x f ,即导函数大于某种非零常数(若a =0,则无需构造),则可构()()ax x f x h -=2.对于()()0''>+x g x f ,构造()()() x g x f x h +=3.对于()()0'>+x f x f ,构造()()x f e x h x =4.对于()()x f x f >'[或()()0'>-x f x f ],构造()()x e x f x h = 5.对于()()0'>+x f x xf ,构造()() x xf x h =6.对于()()0'>-x f x xf ,构造()()x x f x h = 7.对于()() 0'>x f x f ,分类讨论:(1)若()0>x f ,则构造()()x f x h ln =;(2)若()0C.(1)4(2)f f

利用导数解不等式考点与题型归纳

利用导数解不等式考点与题型归纳 考点一 f (x )与f ′(x )共存的不等式问题 [典例] (1)定义在R 上的函数f (x ),满足f (1)=1,且对任意x ∈R 都有f ′(x )<1 2,则不 等式f (lg x )>lg x +1 2 的解集为__________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为__________________. [解析] (1)由题意构造函数g (x )=f (x )-1 2x , 则g ′(x )=f ′(x )-1 2<0, 所以g (x )在定义域内是减函数. 因为f (1)=1,所以g (1)=f (1)-12=1 2, 由f (lg x )>lg x +12,得f (lg x )-12lg x >1 2. 即g (lg x )=f (lg x )-12lg x >1 2=g (1), 所以lg x <1,解得0<x <10. 所以原不等式的解集为(0,10). (2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0?[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3). [答案] (1)(0,10) (2)(-∞,-3)∪(0,3) [解题技法] (1)对于不等式f ′(x )+g ′(x )>0(或<0) ,构造函数F (x )=f (x )+g (x ). (2)对于不等式f ′(x )-g ′(x )>0(或<0) ,构造函数F (x )=f (x )-g (x ). 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ).

导数大题中不等式的证明题

导数大题中不等式的证明 1.使用前面结论求证(主要) 2.使用常用的不等关系证明,有三种:()ln 1x x +<,sin ,x x 时,比较()f x 与()n g x 的大小,并说明理由; (3)证明:()123222211e 2341n n g n ????????+++++< ? ? ? ? +???????? ≤L (* n ∈N ). 2、已知函数2 901x f x a ax = >+()() . (1)求f x ()在1 2 2[,]上的最大值; (2)若直线2y x a =-+为曲线y f x =()的切线,求实数a 的值; (3)当2a =时,设1214122x x x ,?? ∈???? …,,, ,且121414x x x =…+++ , 若不等式1214f x f x +f x λ≤…()+()+()

恒成立,求实数λ的最小值. 3、已知,ln 2)(),0()(bx x x g a x a x x f +=>- =且直线22-=x y 与曲线)(x g y =相切. (1)若对),1[+∞内的一切实数x ,不等式)()(x g x f ≥恒成立,求实数a 的取值范围; (2)当a=1时,求最大的正整数 k ,使得对Λ71828.2](3,[=e e 是自然对数的底数)内的任意 k 个实数k x x x x ,,,,321Λ都有)(16)()()(121k k x g x f x f x f ≤++-Λ成立; (3)求证:)12ln(1 4412 +>-∑ =n i i n i )(* ∈N n

【高中数学】利用导数证明不等式

第四节利用导数证明不等式 考点1作差法构造函数证明不等式 (1)欲证函数不等式f(x)>g(x)(x>a),只需证明f(x)-g(x)>0(x>a),设h(x)=f(x)-g(x),即证h(x)>0(x>a).若h(a)=0,h(x)>h(a)(x>a).接下来往往用导数证得函数h(x)是增函数即可. (2)欲证函数不等式f(x)>g(x)(x∈I,I是区间),只需证明f(x)-g(x)>0(x∈I). 设h(x)=f(x)-g(x)(x∈I),即证h(x)>0(x∈I),也即证h(x)min>0(x∈I)(若h(x)min不存在,则须求函数h(x)的下确界),而这用导数往往容易解决. 已知函数f(x)=ax+x ln x在x=e-2(e为自然对数的底数)处取得极小值. (1)求实数a的值; (2)当x>1时,求证:f(x)>3(x-1). [解](1)因为f(x)定义域为(0,+∞),f(x)=ax+x ln x, 所以f′(x)=a+ln x+1, 因为函数f(x)在x=e-2处取得极小值, 所以f′(e-2)=0,即a+ln e-2+1=0, 所以a=1,所以f′(x)=ln x+2. 当f′(x)>0时,x>e-2;当f′(x)<0时,0<x<e-2, 所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增, 所以f(x)在x=e-2处取得极小值,符合题意,所以a=1. (2)证明:由(1)知a=1,所以f(x)=x+x ln x. 令g(x)=f(x)-3(x-1), 即g(x)=x ln x-2x+3(x>0). g′(x)=ln x-1,由g′(x)=0,得x=e. 由g′(x)>0,得x>e;由g′(x)<0,得0<x<e. 所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

利用导数解决不等式恒成立中的参数问题学案

利用导数解决不等式恒成立中的参数问题 一、单参数放在不等式上型: 【例题1】(07全国Ⅰ理)设函数()x x f x e e -=-.若对所有0x ≥都有()f x ax ≥,求a 的取值范围. 解:令()()g x f x ax =-,则()()x x g x f x a e e a -''=-=+-, (1)若2a ≤,当0x >时,()20x x g x e e a a -'=+->-≥,故()g x 在(0,)+∞上为增函数, ∴0x ≥时,()(0)g x g ≥,即()f x ax ≥. (2)若2a >,方程()0g x '=的正根为1x = 此时,若1(0,)x x ∈,则()0g x '<,故()g x 在该区间为减函数. ∴1(0,)x x ∈时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(,2]-∞. 说明:上述方法是不等式放缩法. 【针对练习1】(10课标理)设函数2 ()1x f x e x ax =---,当0x ≥时,()0f x ≥,求a 的取值范围. 解: 【例题2】(07全国Ⅰ文)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (1)求a 、b 的值;(2)若对于任意的[0,3]x ∈,都有2()f x c <成立,求c 的取值范围. 解:(1)2()663f x x ax b '=++, ∵函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=. 即6630241230a b a b ++=?? ++=? ,解得3a =-,4b =. (2)由(1)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--. 当(0,1)x ∈时,()0f x '>;当(1,2)x ∈时,()0f x '<;当(2,3)x ∈时,()0f x '>. ∴当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[0,3]x ∈时,()f x 的最大值为(3)98f c =+. ∵对于任意的[0,3]x ∈,有2()f x c <恒成立,∴298c c +<,解得1c <-或9c >, 因此c 的取值范围为(,1)(9,)-∞-+∞. 最值法总结:区间给定情况下,转化为求函数在给定区间上的最值. 【针对练习2】(07重庆理)已知函数44 ()ln (0)f x ax x bx c x =+->在1x =处取得极值3c --,其中 a 、b 、c 为常数. (1)试确定a 、b 的值;(2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2()2f x c ≥-恒成立,求c 的取值范围.

导数证明和不等式综合典型

用导数证明和式不等式-典型 (1)若护(工)=『J 上再減睛It求宾畫以杓取恒范 寵 (町证明车等式t 2n 1 L 1 I lii J J 1H^ In 4 hi(” +1) n , 1 1 1 < —+ l + - + —— 2 2 3 n 解析: :郭问圖利斛出 来看第二问? 1. 读者朋友们一起来思考这样一个命题逻辑:第二问单独出一道证明题行不行? 当然行? 2. 为什么不那样出呢? 因为那样出的话,难度太大. 3. 为什么出在本题的第二问的位置? 因为这样命题使得学生解题相对容易一些. 4. 为什么会容易一些呢? 因为题干和第一问,为我们顺利解决第二问提供帮助.这些内容可作为梯子,为我们搭桥、铺路. 5. 从第1问能得到什么结论呢? '"|加 < 数特(打=—■—luz 在[人炖)上対城函

6. 这个结论对解决第 2问有什么帮助呢? 第2问是证明不等式,我们希望能够通过第 1问得到不等式? 通过函数的单调性,我们可以得到什么样的不等式呢? di 沿-1) 小如取= 2,则鸭(.工)= -- - Inx 凶为卩(工)在仏是内诚函数, 所以貯(1)=山 即——-hi^ 0, £ > 0 ' * 建+】 不芳式网边同时戕讨数得: i i + i Qr I 1 1 .1】』2(r — I j lui 2 f - J 下面对x 进行赋值,以便于进一步靠近所证不等式 ?同时注意到, 需要采用累加的办法? 令雷■ n + 1. —」—r < - + - Itifn + 1J 2 T 将上述所右不等式相加御: 111 I hi2 Ind Ini UnZl 所证不等式的右半部分得证了,下面来看左半部分 观察这个不等式,不等号右边为和式的形式, 左边不是,为了有利于证明,我们把左边也变 为和式? 不等式为求和型的不等式 ,

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧 趣题引入 已知函数 设, 证明:分析:主要考查利用导数证明不等式的能力。证明:,设 当时 ,当时 , 即在上为减函数,在上为增函数 ∴,又 ∴, 即 设 当时,,因此在区间上为减函数; 因为,又 ∴, 即 故综上可知,当 时,本题在设辅助函数时,考虑到不等式涉及的变量是区间的两个端点,因此, 设辅助函数时就把其中一个端点设为自变量,范例中选用右端点,读者不妨设为左端点试一试,就能体会到其中的奥妙了。技巧精髓 一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、 不等式综合中的一个难点,也是近几年高考的热点。 二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的 单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个 x x x g ln )(=b a <<02ln )(2 ( 2)()(0a b b a b g a g -<+-+<1ln )(+='x x g )2 (2)()()(x a g x g a g x F +-+=2 ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=?+-='a x <<00)(<'x F a x >0)(>'x F )(x F ),0(a x ∈),(+∞∈a x 0)()(min ==a F x F a b >0)()(=>a F b F 0)2 (2)()(>+-+b a g b g a g 2ln )(2 (2)()()(a x x a g x g a g x G --+-+=)ln(ln 2ln 2 ln ln )(x a x x a x x G +-=-+-='∴0>x 0)('0)()(=

用导数证明不等式

用导数证明不等式 最基本的方法就是将不等式的的一边移到另一边,然后将这个式子令为一个函数f(x). 对这个函数求导,判断这个函数这各个区间的单调性,然后证明其最大值(或者是最小值)大于 0. 这样就能说明原不等式了成立了! 1.当x>1时,证明不等式x>ln(x+1) 设函数f(x)=x-ln(x+1) 求导,f(x)\'=1-1/(1+x)=x/(x+1)>0 所以f(x)在(1,+无穷大)上为增函数 f(x)>f(1)=1-ln2>o 所以x>ln(x+1 2..证明:a-a^2>0 其中0 F(a)=a-a^2 F\'(a)=1-2a 当00;当1/2 因此,F(a)min=F(1/2)=1/4>0 即有当00 3.x>0,证明:不等式x-x^3/6 先证明sinx 因为当x=0时,sinx-x=0 如果当函数sinx-x在x>0是减函数,那么它一定<在0点的值0, 求导数有sinx-x的导数是cosx-1 因为cosx-1≤0 所以sinx-x是减函数,它在0点有最大值0, 知sinx 再证x-x3/6

对于函数x-x3/6-sinx 当x=0时,它的值为0 对它求导数得 1-x2/2-cosx如果它<0那么这个函数就是减函数,它在0点的值是最大值了。 要证x2/2+cosx-1>0 x>0 再次用到函数关系,令x=0时,x2/2+cosx-1值为0 再次对它求导数得x-sinx 根据刚才证明的当x>0 sinx x2/2-cosx-1是减函数,在0点有最大值0 x2/2-cosx-1<0 x>0 所以x-x3/6-sinx是减函数,在0点有最大值0 得x-x3/6 利用函数导数单调性证明不等式X-X2>0,X∈(0,1)成立 令f(x)=x-x2 x∈[0,1] 则f\'(x)=1-2x 当x∈[0,1/2]时,f\'(x)>0,f(x)单调递增 当x∈[1/2,1]时,f\'(x)<0,f(x)单调递减 故f(x)的最大值在x=1/2处取得,最小值在x=0或1处取得 f(0)=0,f(1)=0 故f(x)的最小值为零 故当x∈(0,1)f(x)=x-x2>0。 i、m、n为正整数,且1 求证(1+m)^n > (1+n)^m 方法一:利用均值不等式 对于m+1个数,其中m个(2+m),1个1,它们的算术平均数大于几何平均数,即

导数与不等式证明

导数与不等式证明 作差证明不等式 1. (优质试题湖南,最值、作差构造函数) 已知函数. (1)求函数的单调递减区间; (2)若,求证:≤≤x . 解:(1)函数f (x )的定义域为(-1,+∞),, 由 得:,∴x >0,∴f (x )的单调递减区间 为(0,+∞). (2)证明:由(1)得x ∈(-1,0)时,, 当x ∈(0,+∞)时,,且 ∴x >-1时,f (x )≤f (0),∴≤0,≤x 令 ,则 , ∴-1<x <0时,,x >0时,,且 ∴x >-1时,g (x )≥g (0),即≥0 ∴≥ ,∴x >-1时, ≤≤x . 2. (优质试题湖北20,转换变量,作差构造函数,较容易) 已知定义在正实数集上的函数 ,x x x f -+=)1ln()()(x f 1->x 11 1+-x )1ln(+x 1 111)(+-=-+= 'x x x x f 0)(<'x f ????? -><+- 1 01x x x 0)(>'x f 0)(<'x f (0)0f '=x x -+)1ln()1ln(+x 111 )1ln()(-++ +=x x x g 2 2)1()1(111)(+=+-+= 'x x x x x g 0)(<'x g 0)(>'x g 0)0(='g 11 1 )1ln(-+++x x ) 1ln(+x 1 11+- x 1 11+- x )1ln(+x 2 1()22 f x x ax = +

,其中.设两曲线,有公 共点,且在该点处的切线相同. ⑴用表示,并求的最大值; ⑵求证:当时,. 解:⑴设与在公共点处的切线相 同. ,,由题意,. 即由得:,或(舍 去). 即有. 令,则.于是 当,即时,; 当,即 时,. 故在为增函数,在为减函数, 于是在的最大值为. ⑵设, 则. 2()3ln g x a x b =+0a >()y f x =()y g x =a b b 0x >()()f x g x ≥()y f x =()(0)y g x x =>0 ()x y ,()2f x x a '=+∵23()a g x x '=0 ()()f x g x =0 ()()f x g x ''=2 2000200123ln 2 32x ax a x b a x a x ?+=+????+=?? ,, 20032a x a x +=0 x a =03x a =-2222215 23ln 3ln 22 b a a a a a a a = +-=-2 25()3ln (0)2 h t t t t t =->()2(13ln )h t t t '=-(13ln )0t t ->13 0t e <<()0h t '>(13ln )0t t -<1 3 t e >()0h t '<()h t 1 3(0)e ,1 3()e ∞,+()h t (0)+, ∞123 33()2 h e e =2 21()()()23ln (0)2 F x f x g x x ax a x b x =-= +-->()F x '23()(3)2(0)a x a x a x a x x x -+=+-=>

相关文档
最新文档