第五章 红外辐射在大气中的传输
大气遥感第五章:大气中的热红外辐射传输

空间分辨率 (水平/垂直)
视 场 瞬时视角
(度)
mrad
AIRS大气红外探测仪 EOS(美国) 2300;6 3.74-15.4 13.5km-1km 49.5
1.1
用途 大气温度湿度
ASTER高级空间热辐射 热反射探测器
ATSR纵向扫描辐射仪
EOS (美国)
ERS-1 (欧空局)
14
2 (MWR)
ASTER模拟仪器
美国
20
8-12
始于1991年 65或104 2或5.0
云,陆地测量
CIS中国成像光谱仪
DAIS-7915数值式 航空成像光谱仪 DAIS-16115数值式 航空成像光谱仪 GER-63通道扫描仪
ISM红外成像光谱仪
中国 美国 美国 美国 法国
1
3.53-3.94
始于1993年
80
大气不仅是削弱热红外辐射的介质,而且它本身也发射热红外 辐射,有时甚至发射的辐射会超出吸收的部分。
总之,热红外辐射在大气中的传输,是一种漫射辐射在无散射 但有吸收又有发射的介质中的传输。
热红外光谱和温室效应
➢ 地气系统维持辐射平衡状态,吸收太阳辐射的同 时,也向太空发射辐射,地气系统发射的辐射称 为热红外辐射。由能量守恒原理,令 表示地
热红外遥感系统
热红外遥感在海面温度、陆面温度、大气温度、大气 水汽、云顶温度的遥测中具有无可替代的地位。热红外遥 感传感器的发展十分迅速,现在使用和即将投入使用的热 红外传感器达几十种之多。我们把主要的热红外传感器的 有关信息列于下表。
传感器
现在及将来地球观测计划红外传感器概览(星载部分)
卫星/计划 波段数 光谱范围
态分辨仪
第五章_2节_辐射的基本定律

T=300K,
T=6000K,
b max 9.66 m 300 b max 0.48 m 6000
五、太阳辐射和地球辐射的差别
1. 太阳辐射特点
•辐射集中于0 .17-4 μm,极值辐射位于0.48μm • <0.25μm的太阳辐射, 主要来自非热平衡辐射? • >4μm的太阳辐射, 很少部分
黑体与非黑体辐射 间的联系
黑体辐射定律
Kirchhoff 定律和黑体辐射定律的成立条件: 热力学平衡态,即系统内温度、密度、 动量均匀,辐射各向同性. 60公里以下大气层,某段时间内,某有限体 积元,可认为有确定的温度,近似满足 热力学平衡条件,称局地热力学平衡. 此时能量跃迁由分子碰撞决定。
历史的发展
h 6.62621034 ( J S )
•黑体辐射率随温度和波长的分布函数, 即黑体的单色(或分光)辐射率:
B ( , T ) 2hc2
5
e
1
hc kT
1
c1
5 e
1
c2 T
(W m 2 m 1 sr 1 ) 1
F ( , T ) B ( , T ) B 可看出
1859 年 基尔霍夫定律 斯蒂芬 波尔兹曼 斯蒂芬-波尔兹曼 定律
1879 年 1884 年 1893 年 1901 年
韦恩位移定律 普朗克定律
吸收率 a(吸收系数): 物体吸收的辐射能与投射到该物体上 的辐射能之比。
(和物体的性质、波长、温度有关。)
黑体:吸收率为1的物体称为绝对黑体。 灰体:物体的吸收不随波长而变 (单色吸 收率与波长无关) ,且吸收率小于1的物体称 为灰体。 放射率ε(比辐射率,黑度): 物体的辐射通量密度与同温度下黑 体的辐射通量密度之比。
大气物理中红外传输

学习必备欢迎下载大气物理中红外传输的认识先认识一下大气物理学的研究领域,大气物理学主要研究地球大气参数、大气现象和过程的物理性质及其变化规律。
大气中的物理过程研究不仅涉及大气科学的方方面面,还与陆地学、海洋学、生物学等学科密切相关。
大气科学最重要的使命是科学预测十年到百年间的环境一气候变化趋势。
现代大气物理学为了适应地球环境与全球气候变化的深入研究需求,产生许多新的学科分支,如研究大气辐射特性和辐射传输过程的大气辐射学、研究中层(或高层)大气中各种物理现象和过程的中层(或高层)大气物理学、研究大气遥感原理、技术和应用的大气遥感学、研究大气边界层中物理现象和过程的大气边界层物理学等等。
在这里,自己选择自己相对熟悉的大气物理中的大气红外辐射传输来谈谈自己的认识。
对大气辐射传输的认识大气辐射传输建立了一个简单的模型 (如下图) .在物理学中,介质与电磁波的相互作用是一个具有吸收又有发射的过程,在这里我们把整层大气也看成是一种介质,太阳穿过大气层,由于大气的存在,也会发生吸收与辐射,最后到达地面。
也正是这个热交换过程,才让我们的地球保持着一个热平衡。
我们可以用一个示意图来表示:学习必备 欢迎下载来 自 太 阳 的 辐 射辐射束通常可以按其在辐射传输场中的强度(或辐亮度) I 来表示, 根据模型的假设,可以得到一个红外传输方程1 dIv= I Jk v p a ds v v这个方程中 k v 是表示吸收系数, p a 表示吸收气体的密度, S 为倾斜的路径,J 为源函数。
这里解释一下, 电磁波在穿越大气的时候, 除了大气的吸收 (也成为大气消光) 外, 我们在测量时还有来自其他方面的辐射进入测量结果, 比如气溶胶的散 射, 会使测量的结果增加, 比如大地的黑体辐射, 也会使测量结果增加, 这些因素我们统一定义为源函数 J 。
V在红外辐射传输时, 大地近似为黑体, 可以用普朗克函数 B(T) 来代替, 而且 因为红外线波长较长, 一般大于气溶胶的尺度, 所以可以不考虑气溶胶的散射增 强。
大气中的辐射过程(ppt文档)

2平衡辐射的基本规律 物体在进行放射辐射时,都伴有能量的消耗,这些消耗 的能量,或是从外界得到补偿,或是引起物体本身能量 的减少。热辐射是靠物体吸收外界传送给它的能量或者 消耗本身的内能。当物体吸收其它物体放射来的辐射并 转为内能时,表现出物体本身温度的升高,若物体因放 射辐射而消耗内能时,面使其本身的温度降低。如果没 有其它方式的能量交换,物体的热量得失及热状态的变 化,就决定于放射与吸收辐射能量间的差值。当物体放 射的辐射能与吸收的辐射能相等时,则称该物体处于辐 射平衡。这时物体处于热平衡态,因而可以用一态函数 温度T来描写它。
辐射能可以使用能量的单位来度量,即以国际单位制
J(焦耳)来度量。单位时间内,通过任一表面的辐射能称 辐 射 通 量 , 以 W(JS-1) 计 , 例 如 太 阳 的 辐 射 通 量 约 为
3.90×1026 W。
(2)辐射通量密度
辐射通量除以辐射所通过的面积则称辐射通量密度,单
位是 Wm-2(自放射面射出的辐射通量密度也称之为辐
(1)基尔霍夫定律 基尔霍夫定律是研究热辐射的基础。它说明了在一定 温度下,物体的辐射能力与吸收率之间的关系。该定 律不仅从实验得到,1859年基尔霍夫由热力学定律并 从理论上推导出了如下定律:在辐射平衡的条件下, 任一物体的单色辐射能力与物体对该波长的吸收率之 比值,是一个温度与波长的普适函数,而与物体的性 质无关。 若以F,F,F…… 和A,A,A……分别表 示不同物体在同一温度、对同一波长的单色辐射能力 和对同一波长的吸收率,则
半球
式中
dF
Q (t
s)
若采用球面坐标,则(ຫໍສະໝຸດ .5)dr2
d sind
r2
sindd
F I cos sindd 半球
第五章:大气中的热红外辐射传输[精选]
![第五章:大气中的热红外辐射传输[精选]](https://img.taocdn.com/s3/m/9de8372ab8f67c1cfad6b8c0.png)
14
2 (MWR)
8-12
3.7,11.0 12.0
90m/无 1km×1km
AVHRR甚高分辨率 NOAA-11 (美 5
0.58-12.4
1.1km
辐射仪
国)
星下点/无
CERES云和地球
EOS
3
0.3-12.0
21km
辐射能系统
(美国)
星下点/无
HiRDLA高分辨率临界动
EOS
20.4m/无
0.753-11.77 13km/2km
0.5-12.5 78m,156m/无
ISTOK-1红外光谱辐射仪 PRIRODA-1 64
系统
(俄罗斯)
0.4-16.0
0.75-3km/无
LISS-3线形成像自扫描传 IRS-1C/1D
4
感器3型
(印度)
0.52-17.5
23.5m/无
21urad 陆地表面,水和云
dId (,)I(,)B (,)
d I(d , )I(, )B (,)
无散射大气LW辐射传输方程
向上和向下强度的解为
热红外辐射的大气传输方程
(1)地球与大气都是发射红外辐射的辐射源; (2)通过大气中的任一平面射出的都是具有各个方向的漫射辐射; (3)只考虑吸收作用,忽略散射; (4)必须把大气的发射和吸收同时考虑; (5)假定大气是水平均一的。
扫描仪
AT-1(欧)
SR扫描辐射仪
FY-2中国
3
SROM海洋监测 光谱辐射仪
ALMAZ-IB 11 (中/俄)
TMG温室气体 干涉监测仪
VIRS可见光 红外光扫描仪
ADEOS (日本)
大气中的热红外辐射传输[精选课件

01
热红外辐射在大气中传播时,会 受到气体分子和气溶胶的吸收、 散射和再辐射作用,导致能量逐 渐衰减。
02
衰减程度取决于大气组成、气溶 胶浓度、云层覆盖等因素。在计 算热红外辐射传输时,需要考虑 这些因素对衰减的影响。
04 热红外遥感在大气探测中的应用
CHAPTER
热红外遥感的基本原理
热红外遥感通过接收地球表面和大气热辐射的红外辐射,利用遥感器将 这些辐射转换为可测量的电信号,再通过数据处理和分析,实现对地球 表面和大气的探测。
特性
热红外辐射的强度与物体的温度 四次方成正比,不同温度的物体 发射的红外辐射有明显差异。
热红外辐射在大气中的传输过程
01
02
03
吸收
大气中的气体分子和气溶 胶粒子能够吸收部分热红 外辐射。
散射
大气中的气体分子和气溶 胶粒子能够散射热红外辐 射。
透射
热红外辐射在穿越大气层 时,部分能量会被大气吸 收和散射,只有部分能够 透过大气层到达地表。
研究发现,水汽、二氧化碳、臭氧等成分对热红外辐射的吸收和散射作
用是影响大气中热红外辐射传输的主要因素。
03
热红外辐射在气候变化研究中的应用
热红外辐射传输的研究对于理解气候变化具有重要的意义,通过研究热
红外辐射的传输机制,可以进一步揭示气候变化的内在机制。
未来研究方向与挑战
提高模型的精度和适用范围
未来需要进一步改进和完善热红外辐射传输模型,提高模型的模拟精度,扩大模型的适 用范围。
湿度梯度
湿度梯度影响水汽的分布和扩散,进 而影响热红外辐射在大气中的传输和 能量平衡。
03 热红外辐射在大气中的传输模型
CHAPTER
电子技术基础知识练习题与答案

电子技术基础知识练习题与答案电子技术基础知识练习题与答案电子技术是根据电子学的原理,运用电子元器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。
下面跟着小编来看看电子技术基础知识练习题与答案吧!希望对你有所帮助。
一、基础知识。
1.按照调制方式分类,光调制可以分为:强度调制、相位调制、波长调制、频率调制、偏振调制。
2.半导体激光器发光是由能带之间的电子空穴对复合产生的。
3.激励过程是使半导体中的载流子过程从平衡态激发到非平衡态。
4.固体激光器是以固体为工作物质的激光器,也就是以掺杂的离子型绝缘晶体和玻璃为工作物质。
5.光纤传感器中常用的光电探测器:光电二极管、光电倍增管、光敏电阻。
6.红外探测器的响应波长范围参数指探测器电压响应率与入射的红外波长之间的关系。
7.光子探测原理是指利用半导体在入射光的照射下产生光子效应。
8.利用温差电势制成的红外探测器称为热电偶。
9.红外辐射在大气中传播时由于大气中水分子、蒸汽等吸收和散射使辐射在传播过程中衰减。
10.当红外辐射照在热敏电阻上时,使温度上升,内部粒子无规则运动加剧,自由电子数随温度而上升,所以电阻会减小。
11.辐射出射度:辐射体单位面积向半空间发出的辐射通量。
12.光电磁是利用光生伏特效应将光能变成电能。
13.任何物质只要温度高于0K就会向外辐射能量。
14.红外无损检测是通过测量热流或热量来检测。
15.内光电探测器可分为光电导、光伏特、光电磁三种探测器。
16.红外探测器的性能参数:电压响应率、噪声等效功率、时间常数。
17.光束扫描根据其应用的目的可分为模拟扫描和数字扫描。
模拟扫描用于显示,数字扫描用于光存储。
18.固体摄像器件主要有:CCD、CMOS、CID。
19.声光相互作用分为:拉曼—纳斯衍射和布喇格衍射。
20.磁光效应:外加磁场作用引起材料光学各向异性的现象。
D的基本功能:电荷存储、电荷转移。
按结构分为线阵CCD和面阵CCD。
6第六章 红外辐射在大气中的传输

对于同一目标来说,当它距观察点的距离为x时, 那么观察者所看到的目标与背景的对比度为
Cx
Ltx Lbx Lbx
式中Ltx为观察者所看到的目标亮度;Lbx为背景亮 度
当x=V处的亮度对比度CV与x=0处的对比度 亮度C0的比值恰好等于2%时,这时的距离V 称为气象视距,即
CV (Ltv Lbv ) / Lbv 0.02
s (0 ,V )
Ltv Lt 0
e s (0 )V
(6-183)
由上面两式可得到
所以可以得到在波长λ0处,散射系数和气象 视程的关系为
ln s (0 ,V ) s (0 )V ln 0.02 3.91
上式即为视程方程式,V是长度单位,与 µS(λ0)相适应即可。
V 3.91
s (0 )
求:只考虑散射,计算在3.5~4.0µm光谱 带的平均大气透射率。
计算大气透射率
气象条件:海平面水平路程5km,气象视 程在V=27km(0.在61m ) 处,水蒸气含量 相当于5mm可降水量,考虑二氧化碳和水 蒸气的影响,计算 4.5m 附近光谱带的平均 大气透射率。(e取2.72)
6.9大气红外辐射传输计算软件介绍
6.7 大气透射率的计算举例
1 大气透射率的计算步骤 在实际大气中,尤其是在地表附近几千米的大气
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
——红外技术及应用
大气的高度
严格地说,不存在大气圈的上界。 大气圈的垂直范围通常有两种划法: (一)着眼于大气中出现的某些物理现象。大气中极光是出现高度最高 的物理现象,因此,可以把大气的上界定为1200公里。
1பைடு நூலகம்大气的基本组成
包围着地球的大气层,每单位体积中大约有78%的氮气和 21%的氧气,另外还有不到1%的氩(Ar)、二氧化碳(CO2)、 一氧化碳(CO)、一氧化二氮(N2O)、甲烷(CH4)、臭氧(O3)、 水汽(H2O)等成分。除氮气、氧气外的其他气体统称为微量 气体。
除了上述气体成分外,大气中还含有悬浮的尘埃、液滴、冰 晶等固体或液体微粒,这些微粒通称为气溶胶。
• (2)在紫外和可见光谱区域中,由氮分子和氧分子所引起的瑞
利(Rayleigh)散射是必须要考虑的。
• (3)粒子散射或米(Mie)氏散射。 • (4)大气中某些元素原子的共振吸收 。 • (5)分子的带吸收是红外辐射衰减的重要原因。
4
——红外技术及应用
§ 5.1 地球大气的基本组成和气象条件
• 3 臭氧
• 臭氧在大气中的形成和分解过程,决定了臭氧的浓度 分布以及臭氧层的温度。
19
——红外技术及应用
4 大气中的主要散射粒子
在辐射传输研究中常用的气溶胶尺度谱模式有以下两种:
(1)Diermendjian谱模式,其公式为
dN r ar exp b dr
(5-2)
式中N为单位体积中的粒子数,r为粒子半径,a,b,α, γ是依来源而定的常数。
C v L tv L bv L bv 0.02 (5-9) C 0 L t0 L b0 L b0
在实际测量中,总是让特征目标的亮度远远大于背景 的亮度,即Lt>>Lb,而Lb0=LbV。因此,上式可变为
6
——红外技术及应用
水汽
来源:江、河、湖、海及潮湿物体表面的水分蒸发 . 分布:集中在大气底层,一般随高度的增高而减少 ;且因纬度、地势高
低以及海陆的不同而有差异:低纬>高纬、夏季>冬季、湿润地 区>干旱地区 作用:是大气唯一能发生相变的气体,产生天气现象; 对地面和空气温度产生影响; 在水平和垂直方向上进行物质与能量的交换。
1 水蒸气
水蒸气在大气中,尤其在低层大气中的含量较高,是对红
外辐射传输影响较大的一种大气成分。虽然人眼看不见,但它 的分子对红外辐射有强烈的选择吸收作用。
(1)水蒸气含量描述
(2)水蒸气的分布
15
——红外技术及应用 (1)水蒸气含量描述
•
•
•
•
1)水蒸气压强:水蒸气压强是大气中水蒸气的分压强,用符号 pw表示,其单位是Pa。 2)绝对湿度:绝对湿度是单位体积空气中所含有的水蒸气的质 量,通常用符号ρw表示,其单位为g/m3。所谓绝对湿度,是指 水蒸气的密度。 3)饱和水蒸气压:在由气体转变为液体过程中的水蒸气,称为 饱和水蒸气。在饱和空气中,水蒸气在某一温度下开始发生液 化时的压强,称为饱和水蒸气压,用ps表示。 4)饱和水蒸气量:某一空气试样中,处于某一温度时,单位体 积内所能容纳最大可能的水蒸气质量,用ρs表示,其单位是 g/m3。
•
大气中水蒸气的密度随着高度的增加而迅速地减小(每升
高5km,分压强降低一个数量级)。
• 不同时间、不同气候区,不同季节水蒸气含量差别很大。
18
——红外技术及应用
• 2 二氧化碳
• 随着高度的增加,二氧化碳对红外辐射的吸收虽然减
少,但不如水蒸气吸收减少得那么显著。因此,在低空水 蒸气的吸收对红外辐射的衰减起主要作用;而在高空,水 蒸气的吸收退居次要地位,二氧化碳的吸收变得更重要了。
26
——红外技术及应用
1 气象视程与视距方程式
目标与背景的对比度随着距离的增加而减少到2%时 的距离,称为气象视程,简称为视程或视距。 我们可以以背景亮度为标准定义目标的对比度C,即
Lt Lb C Lb
式中Lt为目标亮度;Lb为背景亮度
(5-7)
27
——红外技术及应用
人眼对两个目标亮度的差异的区别能力是有限的,这 种限制的临界点称为亮度对比度阈。亮度对比度阈通常以 CV表示,对于正常的人眼来说,其标准值为0.02。
16
——红外技术及应用 (1)水蒸气含量描述
• 5)相对湿度:相对湿度是空气试样中水蒸气的含量和同温度下 该空气试样达到饱和是水蒸气含量的比值,用百分数RH表示
w pw RH s ps
•
(5-1)
6)露点温度:露点温度是给定空气试样变成饱和状态时的温度
17
——红外技术及应用 (2)水蒸气分布
5
——红外技术及应用
§ 5.1 地球大气的基本组成和气象条件
干洁空气
1 概念: 大气中除水汽、液体和固体杂质外的整个混合气体。 2 成分:主要成分是氮、氧、氩、二氧化碳等,此外还有少量的氢、 氖、氪、氙、臭氧等稀有气体 。 3 特点:(1)组成干洁空气的各种成分总是维持,(2)干洁空气的平均分 子量是28.996,(3)在垂直高度90km以下干洁空气的主要成分所占 比例不变 4 干洁空气中几种有影响的气体 (1)臭氧:含量少,20-25km最多;影响气温垂直分布,保护生物 (2)二氧化碳:集中于大气底部20公里,因时间和空间而不同(夏季较 少,冬季较多;城市较多,农村较少)强烈吸收长波辐 射,影响大气和地面温度;但含量过高影响会响人类健 康。
红外辐射在大气中的传输问题一直受到人们的普遍重 视。这是因为红外辐射自目标发出后,要在大气中传输相 当长的距离,才能达到观测仪器,由此总要受到大气中各 种因素的影响,给红外技术的应用造成限制性的困难。
3
——红外技术及应用
红外辐射在大气中传输时,主要有以下几种因素使之衰减:
• (1)在0.2~0.32µm的紫外光谱范围内,光吸收与臭氧的分解 作用有联系。
12
——红外技术及应用
(二)平流层(10~25km) 随着高度的增高,气温保持不变或微有上升,因此平流层也 称为同温层。气流比较平衡,多晴好天气,能见度高。 (三)中间层(25~80km)
该层的特点是:气温随高度增高而上升(由于臭氧层对紫外 线的吸收),而60~80km内随着高度增加温度又逐渐下降。
H O CO
2
(5-5)
2
在高度为h的水平路程x所具有的透射率等于长度为x0的等 效海平面上水平路程的透射率,用数字表达式可以表示为
p x 0 x p 0
k
(5-6)
25
——红外技术及应用 § 5.4 大气的散射衰减
辐射在大气中传输时,除因分子的选择性吸收导致辐射 能衰减外,辐射还会在大气中遇到气体分子密度的起伏及微 小微粒,使辐射改变方向,从而使传播方向的辐射能减弱, 这就是散射。 一般说来,散射比分子吸收弱,随着波长增加散射衰减 所占的地位逐渐减少。但是在吸收很小的大气窗口波段,相 对来说散射就是使辐射衰减的主要原因。
20
——红外技术及应用
(2)Junge谱模式,其公式为
dN r cr d lg r
(5-3)
式中c、ν是谱参数,c一般取2~4,ν与总浓度有关 (3)对数正态谱模式
dN r d ln r
ln r ln R 2 exp (5-4) 2 2ln 2 ln N
式中σ、R是谱参数。
21
——红外技术及应用
§ 5.3 大气的吸收衰减
本节将研究大气吸收产生的衰减
为了确定给定大气路程上分子吸收所决定的大气透射率,
可以有如下几种方法:
(1)根据光谱线参数的详细知识,一条谱线接一条谱线地 做理论计算;
(2)根据带模型,利用有效的实验测量或实际谱线资料为
依据,进行理论计算; (3)在所要了解的大气路程上直接测量; (4)在实验室内模拟大气条件下的测量。
对于同一目标来说,当它距观察点的距离为x时,那么观 察者所看到的目标与背景的对比度为
L tx L bx Cx L bx
(5-8)
式中Ltx为观察者所看到的目标亮度;Lbx为背景亮度
28
——红外技术及应用
当x=V处的亮度对比度CV与x=0处的对比度亮度C0的比值 恰好等于2%时,这时的距离V称为气象视距,即
23
——红外技术及应用
• 2 表格法计算大气的吸收
表格法计算大气的吸收是一种利用红外和大气工作者
编制的大气透过率表格可以方便地计算大气吸收。根据人 们的实验数据,采用适当的近似,已经整理出各种形式的 大气透射率数据表
24
——红外技术及应用
任意波长上的透射率为从表中观察到的水蒸气和二氧化碳 透射率的乘积,即
(二)着眼于大气密度,用接近于星际的气体密度的高度来估计大气 的上界。按照人造卫星探测资料推算,这个上界大约在2000— 3000公里高度上。
10
——红外技术及应用
2 大气的气象条件
所谓大气的气象条件,是指大气
的各种特性,如大气的温度、压 强、湿度、密度等,以及它们随 时间、地点、高度的变化情况。
大气中的固体杂质和液体微粒
1.固体杂质
定义:悬浮于大气中的烟粒、尘埃、盐粒等。 来源:物质燃烧的烟粒、海水飞溅扬入大气后而被蒸发的盐粒,被风吹 起的土壤微粒及火山喷发的烟尘,流星燃烧所产生的细小微粒和 宇宙尘埃,还有细菌、微生物、植物的孢子花粉等 。