主成分分析matlab程序
主成分分析 MATLAB代码

%特征向量图(效果等价于主成分载荷图)
figure(4); %创造第二个图形窗口
e1=-E(:,1);e2=-E(:,2); %提取特征向量并转换符号
Co2=Co1+A(:,2).^2; %提取2个主成分的公因子方差
Co3=Co2+A(:,3).^2; %提取3个主成分的公因子方差
Co4=Co3+A(:,4).^2; %提取4个主成分的公因子方差
Rz=cov(F); %计算协方差矩阵
Rz=corrcoef(F); %计算相关系数矩阵
Rz=corrcoef(Z); %计算相关系数矩阵
%计算非标准化数据协方差矩阵的三种方法
Covz=Z'*Z/(n-1); %计算协方差矩阵
Covz=cov(Z); %计算协方差矩阵
%计算主成分得分相关系数的四种方法
Rz=F'*F/(n-1); %计算相关系数矩阵
grid on %添加网格
%几个用于检验的语句
%计算再生相关系数矩阵
Rp=H*H'; %计算再生相关矩阵
Re=R-Rp; %计算相关矩阵的残差矩阵
%综合得分
S=Z(:,1)+Z(:,2)+Z(:,3)+Z(:,4) %非标准化得分四列加和
S1=F(:,1)*eigv(1)^0.5+F(:,2)*eigv(2)^0.5+F(:,3)*eigv(3)^0.5+F(:,4)*eigv(4)^0.5
%计算T平方统计量(2)
eigv=diag(G); %提取角矩阵的对角线元素
最新主成分分析及matlab实现

1.将原始数据标准化。这里不妨设上边矩阵已 标准化了。
2.建立变量的相关系数阵:
rij
n
(xki xi )(xkj xj )
k1
n
n
(xki xi )2 (xkj xj )2
k1
k1
3.求R的特征根 及相应的单位特征向量:
主成分分析及matlab实现
问题的提出:
在实际问题研究中,多变量问题是经常 会遇到的。变量太多,无疑会增加分析问题 的难度与复杂性,而且在许多实际问题中, 多个变量之间是具有一定的相关关系的。
因此,人们会很自然地想到,能否在相 关分析的基础上,用较少的新变量代替原来 较多的旧变量,而且使这些较少的新变量尽 可能多地保留原来变量所反映的信息?
1 1 .9 9 9 ,2 0 .9 9 8 ,3 0 .0 0 3
前2个主成分的累计贡献率在99%以上,故取2个主成分( x
* i
表示xi的标准化变量):
Z10.7063x* 10.0435x2 *0.7065x3 *,
Z20.0357x* 10.9990x2 *0.0258x3 *
由主成分回归得到的标准化回归方程为
第一步 将原始数据标准化。 第二步 建立指标之间的相关系数阵R如下
第三步 求R的特征值和特征向量。
从上表看,前3个特征值累计贡献率已达89.564%, 说明前3个主成分基本包含了全部指标具有的信息,我们 取前3个特征值,并计算出相应的特征向量:
因而前三个主成分为: 第一主成分:
第二主成分:
x1
149.3 161.2 171.5 175.5 180.8 190.7 202.1 212.4 226.1 231.9 239.0
matlab主成分分析案例

1•设随机向量X= (X i , X 2, X 3)T 的协方差与相关系数矩阵分别为1 4,R4 25分别从,R 出发,求X 的各主成分以及各主成分的贡献率并比较差异况。
解答: >> S=[1 4;4 25];>> [P C,vary,ex plain ed]=p cacov(S); 总体主成分分析:>> [P C,vary,ex plain ed]=p cacov(S) 主成分交换矩阵: PC =-0.1602 -0.9871 -0.9871 0.1602 主成分方差向量: vary = 25.6491 0.3509各主成分贡献率向量 explained = 98.6504 1.3496则由程序输出结果得出,X 的主成分为: Y 1=-0.1602X 1-0.9871X 2 Y 2=-0.9871X 1+0.1602X 2两个主成分的贡献率分别为:98.6504%, 1.3496%;贝U 若用第一个主成分代替原 来的变量,信息损失率仅为1.3496,是很小的。
2.根据安徽省2007年各地市经济指标数据,见表 5.2,求解: (1) 利用主成分分析对17个地市的经济发展进行分析,给出排名; (2) 此时能否只用第一主成分进行排名?为什么?1 0.8 0.8 11.0000 0.9877 0.9980 0.9510 0.9988 0.9820 0.4281 0.9999解答:(1)>> clear>> A=[491.70,380.31,158.39,121.54,22.74,439.65,344.44,17.43;21.12,30.55,6.40,12.40,3.31,21.17,17.71,2.03;1.71,2.35,0.57,0.68,0.13,1.48,1.36,-0.03;9.83,9.05,3.13,3.43,0.64,8.76,7.81,0.54;64.06,77.86,20.63,30.37,5.96,63.57,52.15,4.71;30.38,46.90,9.19,9.83,17.87,28.24,21.90,3.80;31.20,70.07,8.93,18.88,33.05,31.17,26.50,2.84;79.18,62.09,20.78,24.47,3.51,71.29,59.07,6.78;47.81,40.14,17.50,9.52,4.14,45.70,34.73,4.47;104.69,78.95,29.61,25.96,5.39,98.08,84.81,3.81;21.07,17.83,6.21,6.22,1.90,20.24,16.46,1.09;214.19,146.78,65.16,41.62,4.39,194.98,171.98,11.05;31.16,27.56,8.80,9.44,1.47,28.83,25.22,1.05;12.76,14.16,3.66,4.07,1.57,11.95,10.24,0.73;6.45,5.37,2.39,2.20,0.40,5.97,4.79,0.52;39.43,44.60,15.17,15.72,3.27,36.03,27.87,3.48;5.02,3.62,1.63,1.42,0.53,4.45,4.04,0.02];得到的相关系数矩阵为:>> R=corrcoef(A)R =0.9877 1.0000 0.9884 0.9947 0.5438 0.9885 0.9835 0.94850.9988 0.9884 1.0000 0.9824 0.4294 0.9984 0.9948 0.94620.9820 0.9947 0.9824 1.0000 0.5051 0.9829 0.9763 0.93910.4281 0.5438 0.4294 0.5051 1.0000 0.4311 0.4204 0.45570.9999 0.9885 0.9984 0.9829 0.4311 1.0000 0.9986 0.95300.9980 0.9835 0.9948 0.9763 0.4204 0.99861.0000 0.95690.9510 0.9485 0.9462 0.9391 0.4557 0.9530 0.9569 1.0000计算特征值与特征向量:>> [v,d]=eig(corrcoef(A))V 一-0.3723 0.1179 0.1411 -0.2543 -0.0459 0.5917 -0.5641 0.3041-0.3741 -0.0343 0.1606 0.2247 -0.1514 -0.6284 -0.1535 0.5841-0.3719 0.1152 0.1957 -0.1954 -0.6909 -0.1351 0.0383 -0.5244-0.3713 0.0096 0.2368 0.7875 0.2168 0.2385 0.0303 -0.2845-0.1949 -0.9689 -0.0004 -0.1242 0.0119 0.0628 0.0151 -0.0593-0.3725 0.1143 0.1222 -0.2302 0.0924 0.2259 0.7946 0.2988-0.3716 0.1272 0.0353 -0.3800 0.6591 -0.3521 -0.1557 -0.3428-0.3613 0.0596 -0.9185 0.1165 -0.0872 0.0302 0.0022 -0.0096d =7.11350 00 00 0 0.77700.08100 0.02370 0.00410 0 0 0 0.00000 0 0.0001各主成分贡献率:>> w=sum(d)/sum(sum(d))计算各个主成分得分:>> F=[A-ones(17,1)*mean(A)]*v(:,8)224.3503 -24.0409 -40.0941 -35.9075 4.7573 -12.6102 -2.85731.8038 -13.9012 13.4541 -29.3847 62.3383 -23.3175 -32.4285 -38.1309 -14.8637 -39.1675>> [F1,I1]=sort(F,'descend')F1按从大到小的顺序给个主成分得分排名: F1 = 224.35030.8892 0.0971 0.0000 0.00000.0101 0.0030 0.0005 0.00010.000662.338313.45414.75731.8038 -2.8573 12.6102 13.9012 14.8637 23.3175 24.0409 29.3847 32.4285 35.9075 38.1309 39.1675 -40.0941I1 给出各个名次的序号:I1 =1121058769161321114415173 >> [F2,I2]=sort(I1)F2 =34567891011121314151617I2 给出个城市排名,即所求排名:I2 =1111714476583122101315916(2)由于第一主成分的贡献率大于80%,其他各成分贡献率都太小,所以只能用第一主成分进行排名。
主成分分析及MATLAB应用 代码

主成分分析类型:一种处理高维数据的方法。
降维思想:在实际问题的研究中,往往会涉及众多有关的变量。
但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。
一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。
因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。
一、总体主成分1.1 定义设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。
记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为()[(())(())],T ij p p E X E X X E X σ⨯∑==--它是一个 p 阶非负定矩阵。
设1111112212221122221122Tp p Tp pT pp p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X⎧==+++⎪==+++⎪⎨⎪⎪==+++⎩ (1) 则有()(),1,2,...,,(,)(,),1,2,...,.T T i i i i TT T i j ijij Var Y Var l X l l i p Cov Y Y Cov l X l X l l j p ==∑===∑= (2)第 i 个主成分: 一般地,在约束条件1T i i l l =及(,)0,1,2,..., 1.T i k i k Cov Y Y l l k i =∑==-下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的T i i Y l X =称为 X 1,X 2,…,X p 的第 i 个主成分。
1.2 总体主成分的计算设 ∑是12(,,...,)T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特征向量分别为120p λλλ≥≥≥≥及12,,...,,p e e e则 X 的第 i 个主成分为1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3)此时(),1,2,...,,(,)0,.Ti i i i Ti k i k Var Y e e i p Cov Y Y e e i k λ⎧=∑==⎪⎨=∑=≠⎪⎩ 1.3 总体主成分的性质1.3.1 主成分的协方差矩阵及总方差记 12(,,...,)T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ=由此得主成分的总方差为111()()()()(),p ppTTiii i i i Var Y tr P P tr PP tr Var X λ=====∑=∑=∑=∑∑∑即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差1()pii Var X =∑分解成 p 个互不相关变量 Y 1,Y 2,…,Y p 的方差之和,即1()pii Var Y =∑而 ()k k Var Y λ=。
主成分分析及matlab程序

举例:
某人要做一件上衣要测量很多尺寸,如身长、 袖长、胸围、腰围、肩宽、肩厚等十几项指标, 但某服装厂要生产一批新型服装绝不可能把尺寸 的型号分得过多 ,而是从多种指标中综合成几 个少数的综合指标,做为分类的型号,利用主成 分分析将十几项指标综合成3项指标,一项是反 映长度的指标,一项是反映胖瘦的指标,一项是 反映特体的指标。
2195.7 1408 422.61 4797 1011.8 119.0
5381.72 2699 1639.8 8250 656.5 114.0
1606.15 1314 382.59 5105 556.0 118.4
364.17 1814 198.35 5340 232.1 113.5
3534.00 1261 822.54 4645 902.3 118.5
111.6 1396.35
116.4 554.97
111.3 64.33
117.0 1431.81
117.2 324.72
118.1 716.65
114.9
5.57
117.0 600.98
116.5 468.79
116.3 105.80
115.3 114.40
116.7 428.76
1.将原始数据标准化。 2.建立指标之间的相关系数阵R如下:
正交化特征向量(通常用Jacobi法求特征向量):
a11
a12
1
=
a21
,
2
=
a22
,
a
p1
a
p
2
a1p
,
p
=
a2
p
,
a
主成分分析matlab代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%一如既往的x:m*n,n是样本个数,m是维度%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%错误之处望指正,虽然结果与pca函数一样吧function y=myPca(x)%%%%%%%%%%%%%%%%%%%%%求取x的协方差sigma=myCov(x)[V,D]=eig(sigma);%%%%%%%%%%%%%%%%%%%%%特征值排序和找出特征值向量duiJiao=diag(D);[xuLie,pos]=sort(duiJiao,'descend');cumsum(xuLie)/sum(xuLie);temp=cumsum(xuLie)/sum(xuLie);for i=1:length(xuLie)if temp(i)>0.85 %%%%%%%%近似一下,嘿嘿!index=i;ts=temp(i);break;endendnewXuLie=xuLie(1:index)newTezheng=V(:,pos(1:index))%%%%%%%%%%%%%%%%%%%%%求方差%%%%%%%%%%%%%%%%%%%%%下面我要开始对主成分得分了score=[];[m,n]=size(V);for i=1:nfor j=1:length(newXuLie)for k=1:mtemp(k)=newTezheng(k,j)*x(k,i);endtemp2(j)=sum(temp);endscore(:,i)=temp2;endcentered=centerMean(score); %%%%%%%%%%%%%%%%%%%%%%没有近似的temp3=V(:,pos(1:length(duiJiao))); score2=[];for i=1:nfor j=1:length(xuLie)for k=1:mtemp(k)=temp3(k,j)*x(k,i);endtemp2(j)=sum(temp);endscore2(:,i)=temp2;endcentered2=centerMean(score2);mda=newXuLie;y.score=score';y.scoreMean=centered';y.coeff=newTezheng;y.ts=ts;mdaO=xuLie;y.scoreO=score2';y.scoreOM=centered2';y.coeffO=V(:,pos(1:length(duiJiao)));%%%%%%%%%%%%%%%%%%%%%%子函数,求协方差function s=myCov(x)[p,n]=size(x);s=zeros(p,p);for i=1:pfor j=1:pfor k=1:nmeanij=mean(x,2);meani=meanij(i);meanj=meanij(j);xki=x(i,k);xkj=x(j,k);temp(k)=(xki-meani)*(xkj-meanj); ends(i,j)=sum(temp)/(n-1);endend %%%%%%%%%%%%%%%%%%%%%%%子函数,均值化function y=centerMean(x)[m,n]=size(x);A=ones(1,n);B=mean(x,2);y=x-kron(A,B);。
主成分分析matlab程序
利用Matlab编程实现主成分分析.程序结构及函数作用在软件Matlab中实现主成分分析可以采取两种方式实现:一是通过编程来实现;二是直接调用Matlab种自带程序实现。
下面主要主要介绍利用Matlab的矩阵计算功能编程实现主成分分析。
1程序结构2函数作用Cwstd.m——用总和标准化法标准化矩阵Cwfac.m——计算相关系数矩阵;计算特征值和特征向量;对主成分进行排序;计算各特征值贡献率;挑选主成分(累计贡献率大于85%),输出主成分个数;计算主成分载荷Cwscore.m——计算各主成分得分、综合得分并排序Cwprint.m——读入数据文件;调用以上三个函数并输出结果3.源程序3.1 cwstd.m总和标准化法标准化矩阵%cwstd.m,用总和标准化法标准化矩阵function std=cwstd(vector)cwsum=sum(vector,1); %对列求和[a,b]=size(vector); %矩阵大小,a为行数,b为列数for i=1:afor j=1:bstd(i,j)= vector(i,j)/cwsum(j);endend3.2 cwfac.m计算相关系数矩阵%cwfac.mfunction result=cwfac(vector);fprintf('相关系数矩阵:\n')std=CORRCOEF(vector) %计算相关系数矩阵fprintf('特征向量(vec)及特征值(val):\n')[vec,val]=eig(std) %求特征值(val)及特征向量(vec)newval=diag(val) ;[y,i]=sort(newval) ; %对特征根进行排序,y为排序结果,i为索引fprintf('特征根排序:\n')for z=1:length(y)newy(z)=y(length(y)+1-z);endfprintf('%g\n',newy)rate=y/sum(y);fprintf('\n贡献率:\n')newrate=newy/sum(newy)sumrate=0;newi=[];for k=length(y):-1:1sumrate=sumrate+rate(k);newi(length(y)+1-k)=i(k);if sumrate>0.85 break;endend %记下累积贡献率大85%的特征值的序号放入newi中fprintf('主成分数:%g\n\n',length(newi));fprintf('主成分载荷:\n')for p=1:length(newi)for q=1:length(y)result(q,p)=sqrt(newval(newi(p)))*vec(q,newi(p));endend %计算载荷disp(result)3.3 cwscore.m%cwscore.m,计算得分function score=cwscore(vector1,vector2);sco=vector1*vector2;csum=sum(sco,2);[newcsum,i]=sort(-1*csum);[newi,j]=sort(i);fprintf('计算得分:\n')score=[sco,csum,j]%得分矩阵:sco为各主成分得分;csum为综合得分;j为排序结果3.4 cwprint.m%cwprint.mfunction print=cwprint(filename,a,b);%filename为文本文件文件名,a为矩阵行数(样本数),b为矩阵列数(变量指标数)fid=fopen(filename,'r')vector=fscanf(fid,'%g',[a b]);fprintf('标准化结果如下:\n')v1=cwstd(vector)result=cwfac(v1);cwscore(v1,result);4.程序测试例题4.1原始数据中国大陆35个大城市某年的10项社会经济统计指标数据见下表。
【免费下载】MatLAB在主成分分析中的应用
§10.利用Matlab 编程实现主成分分析1.概述 Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是最有活力的软件。
它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。
它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。
Matlab 语言在各国高校与研究单位起着重大的作用。
主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
1.1主成分分析计算步骤 ① 计算相关系数矩阵 (1)⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=pp p p p p r r r r r r r r r R 212222111211在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为 (2)∑∑∑===----=n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 11221)()())((因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。
② 计算特征值与特征向量首先解特征方程,通常用雅可比法(Jacobi )求出特征值0=-R I λ,并使其按大小顺序排列,即;然后分别求),,2,1(p i i =λ0,21≥≥≥≥p λλλ 出对应于特征值的特征向量。
这里要求=1,即,i λ),,2,1(p i e i =i e 112=∑=p j ij e 其中表示向量的第j 个分量。
ij e i e ③ 计算主成分贡献率及累计贡献率主成分的贡献率为i z ),,2,1(1p i p k k i =∑=λλ累计贡献率为),,2,1(11p i p k k i k k =∑∑==λλ一般取累计贡献率达85—95%的特征值所对应的第一、第二,m λλλ,,,21 …,第m (m ≤p )个主成分。
matlab主成分分析案例
1.设随机向量X=(X 1,X 2,X 3)T 的协方差与相关系数矩阵分别为⎪⎪⎭⎫ ⎝⎛=∑25441,⎪⎪⎭⎫⎝⎛=18.08.01R 分别从∑,R 出发,求X 的各主成分以及各主成分的贡献率并比较差异况。
解答:>> S=[1 4;4 25];>> [PC,vary,explained]=pcacov(S); 总体主成分分析:>> [PC,vary,explained]=pcacov(S) 主成分交换矩阵: PC =-0.1602 -0.9871 -0.9871 0.1602 主成分方差向量: vary = 25.6491 0.3509各主成分贡献率向量 explained = 98.6504 1.3496则由程序输出结果得出,X 的主成分为: Y 1=-0.1602X 1-0.9871X 2 Y 2=-0.9871X 1+0.1602X 2两个主成分的贡献率分别为:98.6504%,1.3496%;则若用第一个主成分代替原来的变量,信息损失率仅为1.3496,是很小的。
2.根据安徽省2007年各地市经济指标数据,见表5.2,求解: (1)利用主成分分析对17个地市的经济发展进行分析,给出排名; (2)此时能否只用第一主成分进行排名?为什么?解答:(1)>> clear>> A=[491.70,380.31,158.39,121.54,22.74,439.65,344.44,17.43;21.12,30.55,6.40,12.40,3.31,21.17,17.71,2.03;1.71,2.35,0.57,0.68,0.13,1.48,1.36,-0.03;9.83,9.05,3.13,3.43,0.64,8.76,7.81,0.54;64.06,77.86,20.63,30.37,5.96,63.57,52.15,4.71;30.38,46.90,9.19,9.83,17.87,28.24,21.90,3.80;31.20,70.07,8.93,18.88,33.05,31.17,26.50,2.84;79.18,62.09,20.78,24.47,3.51,71.29,59.07,6.78;47.81,40.14,17.50,9.52,4.14,45.70,34.73,4.47;104.69,78.95,29.61,25.96,5.39,98.08,84.81,3.81;21.07,17.83,6.21,6.22,1.90,20.24,16.46,1.09;214.19,146.78,65.16,41.62,4.39,194.98,171.98,11.05;31.16,27.56,8.80,9.44,1.47,28.83,25.22,1.05;12.76,14.16,3.66,4.07,1.57,11.95,10.24,0.73;6.45,5.37,2.39,2.20,0.40,5.97,4.79,0.52;39.43,44.60,15.17,15.72,3.27,36.03,27.87,3.48;5.02,3.62,1.63,1.42,0.53,4.45,4.04,0.02];得到的相关系数矩阵为:>> R=corrcoef(A)R =1.0000 0.9877 0.9988 0.9820 0.4281 0.9999 0.9980 0.95100.9877 1.0000 0.9884 0.9947 0.5438 0.98850.9835 0.94850.9988 0.9884 1.0000 0.9824 0.4294 0.99840.9948 0.94620.9820 0.9947 0.9824 1.0000 0.5051 0.98290.9763 0.93910.4281 0.5438 0.4294 0.5051 1.0000 0.43110.4204 0.45570.9999 0.9885 0.9984 0.9829 0.4311 1.00000.9986 0.95300.9980 0.9835 0.9948 0.9763 0.4204 0.99861.0000 0.95690.9510 0.9485 0.9462 0.9391 0.4557 0.95300.9569 1.0000计算特征值与特征向量:>> [v,d]=eig(corrcoef(A))v =-0.3723 0.1179 0.1411 -0.2543 -0.0459 0.5917-0.5641 0.3041-0.3741 -0.0343 0.1606 0.2247 -0.1514 -0.6284-0.1535 0.5841-0.3719 0.1152 0.1957 -0.1954 -0.6909 -0.13510.0383 -0.5244-0.3713 0.0096 0.2368 0.7875 0.2168 0.23850.0303 -0.2845-0.1949 -0.9689 -0.0004 -0.1242 0.0119 0.06280.0151 -0.0593-0.3725 0.1143 0.1222 -0.2302 0.0924 0.22590.7946 0.2988-0.3716 0.1272 0.0353 -0.3800 0.6591 -0.3521-0.1557 -0.3428-0.3613 0.0596 -0.9185 0.1165 -0.0872 0.03020.0022 -0.0096d =7.1135 0 0 0 0 0 0 00 0.7770 0 0 0 0 0 00 0 0.0810 0 0 0 0 00 0 0 0.0237 0 0 0 00 0 0 0 0.0041 00 00 0 0 0 0 0.0006 0 00 0 0 0 0 00.0000 00 0 0 0 0 0 0 0.0001各主成分贡献率:>> w=sum(d)/sum(sum(d))w =0.8892 0.0971 0.0101 0.0030 0.0005 0.00010.0000 0.0000计算各个主成分得分:>> F=[A-ones(17,1)*mean(A)]*v(:,8)F =224.3503-24.0409-40.0941-35.90754.7573-12.6102-2.85731.8038-13.901213.4541-29.384762.3383-23.3175-32.4285-38.1309-14.8637-39.1675>> [F1,I1]=sort(F,'descend')F1按从大到小的顺序给个主成分得分排名:F1 =224.350362.338313.45414.75731.8038-2.8573-12.6102-13.9012-14.8637-23.3175-24.0409-29.3847-32.4285-35.9075-38.1309-39.1675-40.0941I1给出各个名次的序号:I1 =1121058769161321114415173>> [F2,I2]=sort(I1)F2 =1234567891011121314151617I2给出个城市排名,即所求排名:I2 =1111714476583122101315916(2)由于第一主成分的贡献率大于80%,其他各成分贡献率都太小,所以只能用第一主成分进行排名。
主成分分析报告matlab程序
主成分分析报告matlab程序主成分分析报告 Matlab 程序在数据分析和处理的领域中,主成分分析(Principal Component Analysis,PCA)是一种常用且强大的工具。
它能够将多个相关变量转换为一组较少的不相关变量,即主成分,同时尽可能多地保留原始数据的信息。
在 Matlab 中,我们可以通过编写程序来实现主成分分析,这为我们的数据处理和理解提供了极大的便利。
主成分分析的基本思想是找到数据中的主要方向或模式。
这些主要方向是通过对数据的协方差矩阵进行特征值分解得到的。
最大的特征值对应的特征向量就是第一主成分的方向,第二大的特征值对应的特征向量就是第二主成分的方向,以此类推。
在 Matlab 中,我们首先需要导入数据。
假设我们的数据存储在一个名为`data` 的矩阵中,每一行代表一个观测值,每一列代表一个变量。
```matlabdata = load('your_data_filetxt');%替换为您的数据文件路径```接下来,我们需要对数据进行中心化处理,即每个变量减去其均值。
```matlabcentered_data = data repmat(mean(data), size(data, 1), 1);```然后,计算协方差矩阵。
```matlabcov_matrix = cov(centered_data);```接下来进行特征值分解。
```matlabV, D = eig(cov_matrix);````V` 是特征向量矩阵,`D` 是对角矩阵,其对角元素是特征值。
我们对特征值进行从大到小的排序,并相应地对特征向量进行重新排列。
```matlablambda, index = sort(diag(D),'descend');sorted_V = V(:, index);```此时,`sorted_V` 的每一列就是一个主成分的方向。
为了计算每个观测值在主成分上的得分,我们可以使用以下代码:```matlabprincipal_components = centered_data sorted_V;```我们还可以计算每个主成分解释的方差比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab编程实现主成分分析
.程序结构及函数作用
在软件Matlab中实现主成分分析可以采取两种方式实现:一是通过编程来实现;二是直接调用Matlab种自带程序实现。
下面主要主要介绍利用Matlab 的矩阵计算功能编程实现主成分分析。
1程序结构
2函数作用
——用总和标准化法标准化矩阵
——计算相关系数矩阵;计算特征值和特征向量;对主成分进行排序;计算各特征值贡献率;挑选主成分(累计贡献率大于85%),输出主成分个数;计算主成分载荷
——计算各主成分得分、综合得分并排序
——读入数据文件;调用以上三个函数并输出结果
3.源程序
总和标准化法标准化矩阵
%,用总和标准化法标准化矩阵
function std=cwstd(vector)
cwsum=sum(vector,1); %对列求和
[a,b]=size(vector); %矩阵大小,a为行数,b为列数
for i=1:a
for j=1:b
std(i,j)= vector(i,j)/cwsum(j);
end
end
计算相关系数矩阵
%
function result=cwfac(vector);
fprintf('相关系数矩阵:\n')
std=CORRCOEF(vector) %计算相关系数矩阵
fprintf('特征向量(vec)及特征值(val):\n')
[vec,val]=eig(std) %求特征值(val)及特征向量(vec)
newval=diag(val) ;
[y,i]=sort(newval) ; %对特征根进行排序,y为排序结果,i为索引fprintf('特征根排序:\n')
for z=1:length(y)
newy(z)=y(length(y)+1-z);
end
fprintf('%g\n',newy)
rate=y/sum(y);
fprintf('\n贡献率:\n')
newrate=newy/sum(newy)
sumrate=0;
newi=[];
for k=length(y):-1:1
sumrate=sumrate+rate(k);
newi(length(y)+1-k)=i(k);
if sumrate> break;
end
end %记下累积贡献率大85%的特征值的序号放入newi中fprintf('主成分数:%g\n\n',length(newi));
fprintf('主成分载荷:\n')
for p=1:length(newi)
for q=1:length(y)
result(q,p)=sqrt(newval(newi(p)))*vec(q,newi(p));
end
end %计算载荷
disp(result)
%,计算得分
function score=cwscore(vector1,vector2);
sco=vector1*vector2;
csum=sum(sco,2);
[newcsum,i]=sort(-1*csum);
[newi,j]=sort(i);
fprintf('计算得分:\n')
score=[sco,csum,j]
%得分矩阵:sco为各主成分得分;csum为综合得分;j为排序结果
%
function print=cwprint(filename,a,b);
%filename为文本文件文件名,a为矩阵行数(样本数),b为矩阵列数(变量指标数)
fid=fopen(filename,'r')
vector=fscanf(fid,'%g',[a b]);
fprintf('标准化结果如下:\n')
v1=cwstd(vector)
result=cwfac(v1);
cwscore(v1,result);
4.程序测试例题
原始数据
中国大陆35个大城市某年的10项社会经济统计指标数据见下表。
运行结果
>> cwprint('',35,10)
fid =
6
数据标准化结果如下:v1 =
相关系数矩阵:
std =
特征向量(vec):
vec =
特征值(val)
val =
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
特征根排序:
各主成分贡献率:
newrate =
第一、二主成分的载荷:
1
3
7
5
6
3
7
7
9
6
第一、二、三、四主成分的得分:score =
5 9 4
6 6 2
8 3 4
6 1 7
9 5 4
8 0 8 0。