蓄热式加热炉的工作原理
蓄热式加热炉

蓄热式加热炉一、蓄热式加热炉的分类和特点:1、分类蓄热式加热炉按预热介质种类分为如下两种方式:同时预热空气和煤气式和空气单预热方式。
按结构型式来分,则蓄热式加热炉分为烧嘴式和通道式。
其中烧嘴式又分为全分散换向和群组换向两种;通道式也可分为单通道和双通道两种方式。
按运料方式来分,蓄热式加热炉分为推钢式和步进式。
全分散换向烧嘴式蓄热式加热炉能够实现单个烧嘴自动控制,与常规加热炉操作类似,能够满足各钢种对炉温的不同要求,实现炉温的灵活控制;群组换向蓄热式加热炉一般将某一段的烧嘴作为一个整体进行集中控制,这种控制方式能够实现各段炉温的灵活控制,也能满足大多数钢种对炉温的不同要求;通道式蓄热式加热炉一般是全通道整体控制,不能实现炉温的灵活调整,只能满足少数钢种(如普碳钢)的加热要求,而不能满足大多数钢种(如合金钢)加热的需求。
2、蓄热式加热炉的优点蓄热式加热炉有如下优点:①能将空气、煤气预热到800~1000℃的高温,有利于低热值燃料的利用;②充分利用烟气余热,节约燃料;③排烟温度低,氮氧化物含量少,环境污染少;④每对烧嘴交替燃烧,炉内温度均匀,可提高钢坯加热质量。
二、蓄热式加热炉燃烧系统简介1、蓄热式加热炉的蓄热体蓄热式加热炉的蓄热体有两种型式,一种是陶瓷小球,另一种是陶瓷蜂窝体。
蜂窝体单位体积的换热面积大,在相同条件下,蜂窝体的传热能力是陶瓷小球的4~5倍。
同样换热能力时,蜂窝状蓄热体的体积只需陶瓷小球蓄热体1/3~1/4。
采用蜂窝体的烧嘴结构紧凑轻巧。
蜂窝体体内气流通道是直通道,而陶瓷小球蓄热体的通道是迷宫式的,因此蜂窝体的阻力较小,陶瓷小球蓄热体阻力较大,前者仅为后者的1/3左右。
蜂窝体壁薄,仅为0.5~1.2mm,透热深度小,蓄热放热速度快,换向时间仅需40~80秒,换向时间短,被预热介质的平均温度高,热回收效率高。
由于换向时间短,因此换热周期内的炉温波动小,有利于炉温和钢坯加热温度的控制。
蜂窝体内部是直通道,在高速气流的正吹反吹的频繁作用下,通道不容易积灰和堵塞。
预热式加热炉和蓄热式加热炉的应用对比

预热式加热炉和蓄热式加热炉的应用对比1. 前言- 对预热式加热炉和蓄热式加热炉这两种不同类型的加热设备进行介绍;- 说明论文的目的和意义。
2. 预热式加热炉的原理及应用- 介绍预热式加热炉的工作原理和特点;- 分析预热式加热炉的应用领域和优缺点;- 举例说明预热式加热炉的应用效果。
3. 蓄热式加热炉的原理及应用- 介绍蓄热式加热炉的工作原理和特点;- 分析蓄热式加热炉的应用领域和优缺点;- 举例说明蓄热式加热炉的应用效果。
4. 预热式加热炉与蓄热式加热炉的对比- 从能耗、效率、使用寿命、应用场景等多个角度,对预热式加热炉和蓄热式加热炉进行对比分析;- 探讨预热式加热炉和蓄热式加热炉各自的优劣势。
5. 结论与建议- 总结预热式加热炉和蓄热式加热炉的应用对比;- 提出未来研究的方向和可行性建议。
第一章前言加热炉是工业生产中一个重要的热能设备,广泛应用于冶金、化工、纺织、造纸等行业。
随着我国工业化的发展和对环保的重视,加热炉的能耗和效率越来越受到关注。
在推进绿色、低碳、节能的方针下,预热式加热炉和蓄热式加热炉慢慢地成为了替代传统加热炉的一种新型加热设备。
本文将对这两种加热炉进行对比分析,以期为加热设备的选择提供一些参考。
第二章预热式加热炉的原理及应用预热式加热炉,又称为预热炉,是一种基于工作介质的热能储存和传递原理的加热设备。
其原理大致是:将工作介质(如氧气、氮气等)通过加热器中流动,在加热器中与高温燃烧产生的废气进行热交换。
当工作介质达到一定温度时,即可进入下一步工艺要求的加热状态,从而实现节能效果。
预热式加热炉存在广泛的应用领域,适用于液态、气态等不同状态的介质加热。
在石油、石化、化工等行业中,预热式加热炉可以用于原料的加热、再生制氢等特殊工艺,达到提高生产效率和降低成本的目的。
在电力、钢铁等行业中,预热式加热炉也广泛应用于焙烧窑、炉前加热以及环保降低排放等方面。
预热式加热炉有其独特的优缺点。
由于采用了工作介质的热能存储转换原理,使得其能够满足不同介质的加热要求,具有较高的加热效率,节约了能源成本,并且减少了环境污染。
蓄热式加热炉的工作原理

蓄热式加热炉的工作原理蓄热式加热炉是一种利用热量积蓄和释放的加热设备。
其主要工作原理是通过蓄热材料的吸热和释热过程,实现能源的稳定供应。
蓄热式加热炉由燃烧室、蓄热室和排烟系统等组成。
燃烧室中燃烧燃料产生的高温燃烧气体经过烟道进入蓄热室,与其中的蓄热材料热交换,使其温度升高。
蓄热材料是蓄热式加热炉的关键部件,通常采用高热容量和高热传导性的材料,如陶瓷、耐火材料等。
当燃烧室中的燃料燃烧完毕或加热系统需要热量时,通过调整控制系统,蓄热室中的高温蓄热材料开始释放热能。
蓄热材料的吸热过程是指在燃烧室中,当燃料燃烧产生高温燃烧气体时,蓄热材料吸收燃烧气体中的热能并升温。
蓄热材料内部的微观孔隙结构能够有效地吸附和储存大量的热能,从而使得燃烧室内的高温烟气得到充分利用,提高燃烧效率。
蓄热材料的释热过程是指在燃烧室和加热系统需要热量时,蓄热材料开始释放其储存的热能。
控制系统通过调整燃烧室的气流方向和蓄热材料的温度,确保蓄热材料释放的热能能够有效地传递给加热系统。
蓄热材料的释热过程是一个持续而稳定的过程。
通过合理地设计蓄热室的结构和材料,以及控制系统的精确控制,蓄热式加热炉可以实现能量的高效利用和稳定供应。
蓄热式加热炉相对于传统的加热设备具有一系列的优点。
首先,蓄热式加热炉能够充分利用燃料的热能,提高热利用率。
其次,由于蓄热材料的热容量较大,热能的释放相对稳定,能够实现加热过程的均匀和稳定。
此外,蓄热式加热炉还能够实现节能和减少排放,对环境友好。
总之,蓄热式加热炉通过蓄热材料吸热和释热的过程,实现能量的稳定供应。
其工作原理主要包括燃烧室中烟气与蓄热材料的热交换和蓄热材料的热能释放。
通过合理设计和优化控制系统,蓄热式加热炉能够提高能量利用效率,实现高效、稳定和环保的加热过程。
蓄热式加热炉的工作原理

蓄热式加热炉的工作原理
蓄热式加热炉是一种利用热储存材料的热容和热传导特性来进行加热的设备。
其工作原理如下:
1. 热储存材料:蓄热式加热炉内部放置着一种称为热储存材料的物质。
这种材料具有较高的比热容和热传导率,能够吸收和存储大量的热量。
2. 加热源:蓄热式加热炉内部有一个或多个加热源,常见的有电加热元件、燃气或液体燃料的燃烧器等。
加热源将热量传递给热储存材料。
3. 热能储存:当加热源工作时,热能被传递给热储存材料,材料内部的温度升高,吸收大量热量。
这些热量会在材料中被储存起来,并逐渐释放出来。
4. 热能释放:当需要加热时,蓄热式加热炉关闭加热源,热储存材料开始释放储存的热能。
热能通过热传导或辐射的方式传递给需要加热的物体或空气,使其温度升高。
5. 加热循环:蓄热式加热炉通过循环工作,实现了热能的储存和释放。
加热源在需要加热时提供热量,而在热储存材料释放热能时,加热源则处于关闭状态。
蓄热式加热炉的工作原理可以有效地利用电能或燃料,提供持续稳定的加热效果。
在一定程度上,它也可以实现能源的节约和环境保护。
蓄热式加热炉燃烧技术36页PPT

3.蓄热式燃烧(RCB 系统) 工作原
理及系统组成
RCB系统由两个烧嘴、两个蓄热室、一套换向装置和 相配套的控制系统组成(见图1)。模式A表示烧嘴A处于 燃烧状态,烧嘴B处于排烟状态:燃烧所需空气经过换向 阀,再通过蓄热室A,其预热后在烧嘴A中与燃料混合,燃 烧生成的火焰加热物料,高温废气通过烧嘴B进入蓄热 室B,将其中的蓄热球加热,再经换向阀后排往大气。持 续一定时间后(如20s),控制系统发出换向指令,操作进 入模式B所示的状态,此时烧嘴B处于燃料状态,烧嘴A处 于排烟状态:燃烧空气进入蓄热室B被预热,在烧嘴B中 与燃料混合,废气经蓄热室A,将其中蓄热球加热后排往 大气。持续与模式A过程相同的时间后,又转换到模式A 过程,如此交替循环进行。
பைடு நூலகம்
随着我国国民经济的飞速发展, 我国各行业工业炉窑的燃料消耗迅速增加, 绝大多数工业炉窑的燃料消耗长期高于国 际先进水平有害物的超标排放相当严重, 世界10个环境污染最严重的城市,我国已 占了7座。因此提高工业炉窑的燃料利用 率和大幅度降低氮化物的排放量,已成为 我国亟待解决的问题。
目前由于能源和环境问题日益突出,要 求各轧钢单位全面推行高效清洁生产技 术,而高效蓄热技术(简称HTAC式)目 前世界上先进的燃烧技术,可以从根本 上提高企业能源及用率,对低热值煤气 进行合理利用,最大限度地减少污染排 放,很好的解决燃油炉成本高、燃煤炉 污染中的问题。
为了解决这些问题,充分利用加热炉烟气的余热, 进 一步提高加热炉的热效率,大连北岛能源技术发展有限 公司研制出了高效蓄热式余热回收系统,并在加热炉上 应用,效果很好。如韶钢2019年7月投产的蓄热式加热炉, 炉内空气煤气可预热到1100℃,排放废气温度仅130℃, 这种炉子为全封闭的,热效率高,也不需要回收热能抚顺 特钢公司500分厂2# 炉于1993年8月结合大修,进行改造 后 , 单 耗 由 1879 m3/t 减 少 至 285197m3/t, 热 效 率 由 3185% 增至31149%,平均温度由58℃减少到9℃,节能率 为85172%,装炉量增加一倍, 生产率提高30%。包头钢铁 公司初轧厂新建2 座RCB 式长坑均热炉,使用高焦炉混 合煤气,空气和煤气均预热到900~1100℃,排烟温度低 于150℃,与该厂原有长坑均热炉相比,节约燃料41%,产 量提高了13%,减少基建投资200万元。
蓄热式加热炉工作原理

蓄热式加热炉工作原理
蓄热式加热炉是一种常用于工业生产中的加热设备,它利用燃料进行加热,然后将热能储存在炉体中,通过储热材料的热容和热导率,将热能储存起来,待需要加热时释放出来。
其工作原理主要包括燃烧加热、热能储存和热能释放三个过程。
首先,燃烧加热是蓄热式加热炉的起始阶段。
在工作开始时,燃料被点燃,产生高温火焰,通过燃烧释放出大量热能。
这些热能会被传导到炉体内的蓄热材料上,使蓄热材料的温度逐渐升高。
在这一过程中,燃烧产生的废气通过烟道排出,以保持炉内的燃烧环境。
其次,热能储存是蓄热式加热炉的关键环节。
蓄热材料通常采用高热容和高热导率的材料,如陶瓷、石墨、金属等。
这些材料能够迅速吸收并储存热能,使得炉体内部温度持续升高。
在燃烧结束后,蓄热材料会保持高温状态,继续释放热能,实现能量的延续利用。
最后,热能释放是蓄热式加热炉的最终阶段。
当需要加热物体时,炉体内的蓄热材料会释放储存的热能,将其传导给待加热的物
体,使其温度迅速升高。
这样,蓄热式加热炉就能够实现对物体的
高效加热,提高生产效率。
总的来说,蓄热式加热炉通过燃烧加热、热能储存和热能释放
三个过程,实现了能量的高效利用。
它在工业生产中具有广泛的应用,能够满足不同物体的加热需求,提高生产效率,降低能源消耗。
因此,深入了解蓄热式加热炉的工作原理,对于工业生产具有重要
意义。
蓄热式加热炉

一、引言蓄热式加热炉是用于轧钢厂的一种新型的加热炉,具有高效燃烧、回收利用烟气及低二氧化碳排放等优点。
在工业企业中广泛应用,对节能减排工作起着重要的促进作用。
二、蓄热式加热炉的工作原理及其特点蓄热式加热炉的高效蓄热式燃烧系统主要由蓄热式烧嘴和换向系统组成。
它分为预热段、加热段和均热段三个主体。
其原理是采用蓄热室预蓄热全,达到在最大程度上回收调温烟气的湿热,提高助燃空气温度的效果。
新型蓄热式加热炉的蓄热室现在普遍采用陶瓷小球或蜂窝体作为蓄热体,其表面积大,极大的提高了传热系统,使蓄热室内的体积大大缩小。
再加上新型可靠的自动控制技术及预热介质预热温度高,废气预热得到接近极限的回收。
是一种新型的高效、节能的加热炉。
参与控制的主要现场设备有:各段炉温测量热电偶;煤气预热器前后烟气温度测量热电偶;各段烟气及排烟机前烟气温度测量热电偶;各段煤气、空气及烟气流量测量孔板及差压变送器;各段煤气、空气及烟气流量调节阀;各段两侧烧嘴前煤气切断阀及空气/烟气三通换向阀;炉压测量微差压变送器及用于炉压调节的烟道闸板;用于风压调节的风机入口进风阀;煤气总管切断阀及压力调节阀;其它安全保护连锁设备等。
三、换向原理换向装置是加热炉的重要部件,整个燃烧过程都是靠抽象向装置完成的。
可以说它是整个加热炉的心脏。
它的换向原理是:初始状态下,换向装置处于某一固定状态时,向炉子一侧的燃烧器输送煤气、空气,在炉内实现混合燃烧,同时从炉子另一侧的燃烧器排出烟气,经过一个周期(120s-180s)改变方向,实现周期换向。
换向装置一般采用双气缸、二位四通换向阀,它内有四个通道,每次动作开启两具通道,同时关闭两个通道以实现供气和排水气的周期性换向。
四、自动控制系统蓄热式加热炉控制系统一般有:⑴换向控制系统;⑵炉温控制系统;⑶炉内压力控制系统;⑷安全保护控制系统;⑸烟空比控制;⑹HMI人机对话界面的功能。
1、换向控制系统设备的选型换向控制是整个加热炉燃烧、控制系统的重中之重,是燃烧控制的关键控制系统。
蓄热式加热炉工作原理

蓄热式加热炉工作原理蓄热式加热炉是一种利用热能储存技术进行加热的设备,其工作原理是利用热能储存材料在低温条件下吸收热能,然后在需要加热时释放储存的热能,从而实现加热的目的。
蓄热式加热炉广泛应用于工业生产中的热处理、烧结、热解等领域,具有节能、环保、高效的特点。
蓄热式加热炉的工作原理主要包括热能吸收、储存和释放三个过程。
首先是热能吸收过程,当加热炉处于工作状态时,热能储存材料开始吸收热能。
这些热能储存材料通常是高热容量的材料,如陶瓷、石墨等,能够在低温条件下有效地吸收热能。
其次是热能储存过程,一旦热能储存材料吸收了足够的热能,它们就会将热能储存在自身的结构中,形成热能储存状态。
在这个过程中,热能储存材料的温度会升高,但并不会立即释放热能。
最后是热能释放过程,当需要加热时,加热炉会通过控制系统使热能储存材料释放储存的热能,从而实现加热的目的。
这种释放热能的过程通常会持续一段时间,使加热炉能够稳定地提供热能。
蓄热式加热炉的工作原理使其具有许多优点。
首先,它能够充分利用低温热能,将其转化为高温热能,从而提高能源利用率。
其次,由于热能储存材料能够稳定地释放热能,加热过程更加稳定,可以减少能源浪费。
此外,蓄热式加热炉还具有较高的加热效率和较低的排放,能够满足环保要求。
因此,蓄热式加热炉在工业生产中得到了广泛的应用。
在实际应用中,蓄热式加热炉的工作原理还需要与控制系统相结合,以实现精确的温度控制和加热过程的自动化。
控制系统可以根据加热需求调节热能储存材料的释放速度,从而实现加热过程的精确控制。
同时,控制系统还可以监测加热炉的工作状态,保证其安全稳定地运行。
总之,蓄热式加热炉通过热能储存技术实现了低温热能向高温热能的转化,其工作原理包括热能吸收、储存和释放三个过程。
蓄热式加热炉具有节能、环保、高效的特点,在工业生产中得到了广泛的应用。
通过与控制系统相结合,蓄热式加热炉能够实现精确的温度控制和自动化加热过程,为工业生产提供了可靠的加热设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蓄热式加热炉的工作原理1 蓄热式加热炉的理论基础蓄热式燃烧技术,19世纪中期就开始用于高炉热风炉、平炉、焦炉、玻璃熔炉等规模大且温度高的炉子。
其原理是采用蓄热室余热回收装置,交替切换烟气和空气,使之流经蓄热体,达到在最大程度上回收高温烟气的显热,提高助燃空气温度的效果。
但传统的蓄热室采用格子砖作蓄热体,传热效率低,蓄热室体积庞大,换向周期长,限制了它在其他工业炉上的应用。
新型蓄热室,采用陶瓷小球或蜂窝体作蓄热体,其比表面积高达200~1000m2/m3,比老式的格子砖大几十倍至几百倍,因此极大地提高了传热系数,使蓄热室的体积可以大为缩小。
另外,由于换向装置和控制技术的提高,使换向时间大为缩短,传统蓄热室的换向时间一般为20~30min,而新型蓄热室的换向时间仅为0.5~3min。
新型蓄热室传热效率高和换向时间短,带来的效果是排烟温度低(200℃以下),被预热介质的预热温度高(只比炉温低100~150℃)。
因此,废气余热得到接近极限的回收,蓄热室的温度效率可达到85%以上,热回收率达80%以上。
2 蓄热式加热炉的工作原理宣钢二高线步进梁蓄热式加热炉是将助燃空气和高炉煤气经换向系统后经各自的管道送至炉子左侧各自的蓄热式燃烧器,自下而上流经其中的蓄热体,分别被预热到950℃以上,然后通过各自的喷口喷入炉膛,燃烧后产生高温火焰加热炉内钢坯,火焰温度较同种煤气做燃料的常规加热炉高400~500℃,90%以上的热量被蓄热体回收,最后以150℃以下的温度排放到大气中,比常规加热炉节能30%~50%。
同时,高温烟气进入右侧通道,在蓄热室进行热交换,将大部分余热留给蓄热体后,烟温降到150℃左右进入换向机构,然后经排烟机排入大气。
几分钟后控制系统发出指令,换向机构动作,空气、高炉煤气、烟气同时换向将系统变为下一个状态,此时空气和高炉煤气从右侧喷口喷出并混合燃烧,左侧喷口作为烟道,在排烟机的作用下,高温烟气通过蓄热体后排出,一个换向周期完成。
图1 蓄热式加热炉燃烧系统工作原理简图加热炉简介及其性能特点1 加热炉基本结构宣钢二高线厂加热炉为悬臂辊侧进料、侧出料的步进式加热炉。
加热炉从进料端到出料端分为I加热段、II加热段、均热段,采用蓄热式燃烧技术, 蓄热式烧嘴在I加热段、II加热段、均热段进行上下供热,燃烧高炉煤气,热值为750X4.18KJ/Nm3。
炉子的主要尺寸见表1:表1:加热炉的主要尺寸项目尺寸(mm)有效长度22388炉子内宽12600上加热炉膛高度1400下炉膛高度2200砌底总长23888砌底总宽13800有效炉底面积(m2)282固定梁顶面标高57.5炉子钢结构由普碳钢板和型钢焊接件组成,分为四个主要部分:炉底钢结构、炉子两侧钢结构、装、出料端钢结构、炉顶钢结构。
加热炉砌体采用浇注料整体浇注,炉顶采用平顶吊挂结构,锚固砖用锚固钩吊挂在炉顶钢结构上。
炉区设有平台,平台之间安置梯子和栏杆。
加热炉除装料炉门和出料炉门外,设4个检修炉门,端墙带有耐热透视玻璃的自闭式窥孔。
炉门采用无水冷却。
加热炉设置6根固定梁和4根步进梁,采用单排布料。
在加热段和均热段间采用水梁交错技术,保证钢坯温度均匀性。
炉子的机械设备主要包括:装料炉门、炉内装料辊道、推钢机、步进机械、炉内出料辊道、出料炉门。
宣钢二高线步进梁式加热炉设置汽化冷却系统一套,采用强制循环方式。
进出料悬臂辊道和工业电视采用循环水冷却。
钢坯进入加热炉前在炉外上料辊道上通过测长后由炉外上料辊道送入炉内,通过悬臂辊道减速定位,然后由炉后液压推钢机推到固定梁上。
通过步进梁上升——前进——下降——后退的周期运动,炉内钢坯被输送到加热炉出料端并放置在出料悬臂辊道上,然后由悬臂辊道输出炉外。
2 供热制度和燃烧系统宣钢二高线加热炉采用蓄热燃烧技术,蓄热体为蜂窝体。
通过炉墙侧部的空气蓄热烧嘴和煤气蓄热烧嘴进行供热,将空气和煤气分别预热到950℃以上再喷入炉膛。
加热炉分为三个供热段,分别为I加热段、II加热段、均热段, 沿炉长方向上设置多个供热点,两侧上下蓄热烧嘴供热,供热烧嘴共64只,采用三段炉温制度(各段空气蓄热烧嘴和煤气蓄热烧嘴的分布见表2),其中,I加热段炉温为850~1050℃;II加热段炉温为1050~1150℃;均热段炉温为1150~1250℃,各段上下供热比约为45%/55%。
各供热段的流量和空燃比通过自动控制系统调节,上下供热量的调节通过烧嘴的能力和烧嘴前手动蝶阀实现。
表2:各段空气蓄热器烧嘴和煤气蓄热器烧嘴的分布及燃料配比蓄热式燃烧系统由空(煤)气蓄热室、换向系统及控制单元组成,采用分侧分散换向系统对空气和煤气蓄热烧嘴进行换向。
分侧分散换热系统采用二位三通换向阀对空气与烟气进行换向,每侧同一段内的上下几个煤气烧嘴共用一个二位三通换向阀对煤气和烟气进行换向。
这种换向方式可以将换向阀到各烧嘴之间的管道体积减少到最小,这样,换向过程中的熄火时间可以缩短2秒以下,换向过程中的煤气损耗也可以减少到最小。
另外,采用分段分侧二位三通换向,炉子两侧的换向阀和管道对称,消除了炉子两侧热状态不均的问题。
二位三通换向阀采用双作用形式,并遵守先关供气,后开排烟的操作策略,双作用换向阀在换向过程中可以当作切断阀使用,避免了煤气或空气与烟气相遇的可能。
分侧分散换向系统的优点:-解决了集中换向方式存在的问题,缩小了换向阀到烧嘴之间的管道长度和体积;-节约了煤气消耗;-解决了全分散换向方式管路过多、设备过多、故障点过多和检修空间太小的问题-系统简洁可靠,设备故障点少,管道美观大方,检修空间宽敞。
换向系统采用PLC控制。
主要功能有:-当换向系统处自动运行状态时,换向阀以一定的时间间隔完成换向动作。
-当排烟温度过高时,系统将强制换向阀换向,直至排烟温度下降到设定的温度范围内。
系统处于手动状态时,可在触摸屏上进行手动换向。
-超温报警-动作异常报警:当换向阀阀位异常或长时间动作不到位时,触摸屏上会出现报警指示灯闪烁并指示故障点所在位置,蜂鸣器报警,系统作出相应的应急或人工干预。
3 炉区控制系统全炉采用的自动控制系统包括各设备的控制设定及所有设备的顺序联锁控制。
控制方式为手动,半自动和自动控制。
自动控制具体包括:1)各段炉区的自动控制,以合理的空燃比进行调节,对各段空气和煤气流量进行计量和检测;2)对各种危险情况进行报警;3)汽化冷却系统自动化控制;4)微机监控软件显示系统流程图、趋势图控制,并能生成报表。
4 加热炉主要技术性能参数炉型:蓄热式步进梁加热炉钢种:普碳钢、优质碳素结构钢、焊条钢、焊丝钢、低合金钢、弹簧钢、冷墩钢等坯料尺寸(mm):150×150×12000短尺长度不短于9000 mm单根坯料重量级2052kg燃料种类高炉煤气入炉温度:冷装:室温热装:>600℃,热装率60~80%出炉温度:950~1150℃炉子加热能力:150 t/h空气预热温度:≥950℃煤气预热温度:≥950℃装料方式:采用炉内悬臂辊道加对齐推钢机侧装料出料方式:采用炉内悬臂辊道侧出料(轧制线标高为+5.80米)炉内布料方式: 单排布料蓄热烧嘴式加热炉的优点及存在问题宣钢二高线加热炉投产以后,加热能力较一线将有大幅度提高,年产量可达45万吨以上。
与普通加热炉相比较,由于该加热炉的废气排放温度仅为150℃左右,几乎达到了能源利用的极限值,因此节能效果好,较常规的加热炉节能;另外,由于燃烧完全,热耗降低减少CO2排放,这将极大地改变环境。
同时,高效蓄热燃烧,烟气的排放温度低于150℃,不仅减少排烟的热效应而且其排放烟尘的黑度是肉眼所看不见的,噪声减小,环境清洁,这对保护环境是一大贡献。
由于高温煤气和空气混合燃烧产生了较高的理论燃烧温度,这种低热值的高炉煤气可以迅速、稳定、充分的燃烧,高温烟气均匀充满整个炉膛,钢坯加热温度十分均匀,为轧制高质量的钢材创造了条件。
与其它蓄热式加热炉比较,蓄热式烧嘴加热炉不象其它蓄热式加热炉有专设的蓄热室,它的烧嘴就是一个小小的蓄热室,能直接安装在炉子的侧墙上,减少炉墙占用空间;蓄热式烧嘴是由煤气蓄热式燃烧器与空气蓄热式燃烧器组成,它们在炉外分开布置,使煤气与空气通道分离,避免了煤气与空气互串的危险;蓄热式烧嘴的燃烧器中采用陶瓷小球作为蓄热体,具有表面积大、耐高温、耐急冷、导热性强、更换容易的特点;每个燃烧器前的煤气和空气连接管上都安有手动调节阀,从而使得各个燃烧器,特别是上部与下部燃烧器的能力能够按需要进行调节,简便易行。
通过对已采用蓄热式加热炉的生产企业进行调研,发现蓄热式加热炉也存在一些问题。
加热炉必须换向方可工作,因此换向系统工作正常与否十分关键,操作时必须严格遵守操作规程;因其燃料为高炉煤气,使用时安全问题尤为重要,炉区CO浓度超过100PPm时,CO检测仪报警,操作工必须及时对炉区进行巡检和对漏点进行处理;因蓄热式加热炉升温速度快,一旦出现大的生产事故,停轧时间较长时,降温时间不及时易出现粘钢事故。
针对以上问题,宣钢二高线采取妥善准备措施,避免事故出现。
结语宣钢第二高线厂采用了先进的生产工艺,选用全连续小型轧机,轧制保证速度高达90m/s,大大缩短了轧制周期,使轧件温降减小,节约了工序能耗。
本厂采用的双蓄热式步进梁加热炉,并采用PLC控制,通过合理的热工制度,使燃料合理燃烧,给企业创造可观的经济效益。
在总烟道上布置有金属空气预热器,降低尾气温度,减少废气带走的热量损失,大大提高生产的社会效益。