单相交流通用电动机控制电路

合集下载

电气控制技术项目教程第3版 项目1 电动机单向直接起动控制电路安装与检修

电气控制技术项目教程第3版 项目1 电动机单向直接起动控制电路安装与检修
6
任务一 单向手动控制电路安装
电工通用工具及仪表
7
任务一 单向手动控制电路安装
2)按材料明细表配齐本任务所用元器件,并认识和 熟悉器件的正确选择使用。
• 三相异步电动机 • 熔断器 • 低压断路器 • 端子排 • 木螺钉 • 导线 • 保护零线(PE)
8
任务一 单向手动控制电路安装 三、认识器件
11
任务一 单向手动控制电路安装
2)封闭式负荷开关
封闭式负荷开关外形、结构、符号 1—速断弹簧 2—转轴 3—手柄 4—闸刀 5—夹座 6—熔断器
12
任务一 单向手动控制电路安装
4、组合开关
a)
b)
c)
d)
组合开关外形、结构、符号
a)HZ10系列 b)HZ3系列 c)HZ10-10/3型的结构 d)符号
16
任务二 电路图的识读与绘制
一、识读电气控制系统图
电气控制系统图是一种统一的工程语 言,它采用统一的图形符号和文字符号来 表达电气设备控制系统的组成结构、工作 原理及安装、调试和检修等技术要求。一 般包括电气原理图、电器布置图和电气接 线图。
17
任务二 电路图的识读与绘制
1. 电气原理图
电气原理图一般 由主电路、控制电 路、辅助电路、保 护及联锁环节以及 特殊控制电路等部 分组成。
25
任务三 单向连续运行电路安装
三、元器件的识别与检测 1.按钮 1)外形、结构与符号
1-按钮帽 2-复位弹簧 3-动触头 4-常开静触头 5-常闭静触头
26
任务三 单向连续运行电路安装
2)按钮的检测
1)万用表选择×100或者×1K档, 并进行欧姆调零;
2)将触头两两测量查找,未按 下按钮时阻值为∞,而按下按 钮时阻值为0的一对为常开触 头;相反,不按时阻值为0, 而按下按钮时阻值为∞的一对 为常闭触头。

单相交流调压电路仿真研究课程设计

单相交流调压电路仿真研究课程设计

1.主电路设计1.1.设计内容及初始条件:输入为单相交流电源,有效值220V ,要求完成的主要任务:(1)掌握单相交流调压电路的原理;(2)设计出系统结构图,并采用Matlab 7.0/Simulink 对单相交流调压电路进行仿真;(3)采用Protues 设计出单相交流调压主电路及采用KJ004控制电路1.2.总体电路设计方案本系统主要设计思想是:采用两个晶闸管反向并联加负载为主电路,外加触发电路;触发电路控制晶闸管的导通,从而控制输出。

其系统框图如下所示:图1-1 系统原理方框图1.3.工作原理1.3.1.主电路工作情况单相交流调压电路带阻感性负载时的电路以及工作波形如下图1-2、1-3、1-4、1-5所示。

产生的滞后是因为阻感性负载时电流滞后电压一定角度,再加上移相控制所产生的滞后,使得交流调压电路在阻感性负载时的情况比较复杂,其输出电压,电流与触发角α,负载阻抗角φ都有关系。

当两只反并联的晶闸管中的任何一个导通后,其通态压降就成为另一只的反向电压,因此只有当导通的晶闸管关断以后,另一只晶闸管才有可能承受正向电压被触发导通。

由于感性负载本身滞后于电压一定角度,再加上相位控制产生的滞后,使得交流调压电路在感性负载下大的工作情况更为复杂,其输出电压、电流波形与控制角α、负载阻抗角φ都有关系。

其中负载阻抗角)arctan(R wL =ϕ,相当于在电阻电感负载上加上纯正弦交流电压时,其电流滞后于电压的角度为φ。

为了更好的分析单相交流调压电路在感性负载下的工作情况,此处分φαφαφα<=>,,三种工况分别进行讨论。

图1-2电路图(1)φα>情况上图1-2所示为单相反并联交流调压电路带感性负载时的电路图,以及在控制角触发导通时的输出波形图,同电阻负载一样,在i u 的正半周时,在αω=t 时触发Vt1,Vt1导通,输出电压o u =i u ,电流o i 从0开始上升。

当电压到达过零点时,由于是感性负载,电流o i 滞后于电压o u ,当电压达到过零点时电流不为0电流不为零,之后o i 继续下降,Vt1仍然导通,输出电压出现负值。

交流电动机(图解说明)

交流电动机(图解说明)

电动机的分类:
电动机
交流电动机
异步机 同步机
鼠笼式 绕线式
直流电动机 他励、异励、串励、复励
鼠笼式交流异步电动机授课内容: 基本结构、工作原理、 机械特性、控制方法
§8.1 三相异步电动机的构造
定子绕组
三相定子绕组:产生旋转 磁场。
转子:在旋转磁场作用下,
(三相)
A
Y
定子
Z
产生感应电动势或
电流。
f2
n0 60
n
P
n0 n0
n
n0 60
P
Sf1
§8.4 三相异步电动机的转矩与机械特性
8.4.1 转矩公式 电磁转矩 T:转子中各载流导体在旋转磁场的作用下,
受到电磁力所形成的转距之总和。
T KTΦmI2 cos2
常数 每极磁通
转子电流
转子电路的
cos2
I2
其中
E2
R22
X
2 2
SE20 R22 (SX 20 )2
U2
分析规定: 电流 I 为正时,从首端流入、末端流出; 电流 I 为负时,从首端流出、末端流入。
旋转磁场的连续观察
S N
S
U1
N
V2 W2
W1 V1
U2
S
N
2、旋转磁场的旋转方向
旋转方向:取决于三相电流的相序。
iA iB iC
iA iC
Im
Im
t
iB t
n0
n0
改变电机的旋转方向的方法:改变相序(换接其中两相)
( 3 ) 起动转矩 Tst:
电机起动时的转矩。
n
n
T
K
R22

单相交流通用电动机控制电路

单相交流通用电动机控制电路
有稳压器、振荡器、PLL、过零检测、ADC、控制逻辑、 双向可控硅驱动等电路。
整理课件
整理课件
图6.5.1 MLX90804内部结构方框图
• (1)速度调节 • 速度由一个PI调节器控制,PI调节器参数Kp和Ki可编程。Kp和Ki参数
是在掩模时配置。 • (2)速度测量 • 可采用一个线圈或一个霍尔传感器获得电动机转速脉冲。 • (3)速度设置 • 速度设置由பைடு நூலகம்到SET引脚端上的电压确定。SET引脚端上的电压输入
• 芯片内部包含有: • (1)稳压器 • 芯片电源以交流线电压经半波整流器获得,VDDA引脚端的电压限制
在15.5V以内,芯片内部的数字电路部分和一些外围电路电源电压由 片内稳压器提供,电压为5V。 • (2)模拟电源导通复位 • 模拟电源导通复位电路跟踪电源电压VDDA,只有当VDDA>13V时才 产生Triac(双向三端可控硅)触发脉冲。 • (3)振荡器 • 振荡器为芯片内部电路提供时钟。 • (4)频率锁相环 • 频率锁相环电路从电流控制的振荡器获得一个以电网频率作为参考的 时钟频率,利用逐次近似计算法减少振荡器调整时间。 • (5)基准电压 • 基准电压来自外接的电位器,用来设定不同的速度。
整理课件
图6.5.5 具有软起动功能与采用2线式设置速度的应用电路
整理课件
• (3)具有软起动功能与采用3线式设置速度的应用电路 • 采用MLX90805具有软起动功能与采用3线式设置速度的
应用电路如图6.5.6所示,电路具有软起动和速度控制功能。 电位器采用3线形式连接到芯片,用来设置不同的速度。 ADC输入信号在0和VREF之间变化。对于最低速度,在 SET引脚端的电压为最大值;对于最高速度,在SET引脚 端的电压为最小值。当加上电网电压后,电动机启动,在 软起动完成后,电机运转到由电位器设定的速度。 • R1、R2和NTC热敏电阻仅在过热保护时才需要,通常 可不采用。

交流电动机驱动及其控制

交流电动机驱动及其控制
交流电动机驱动及其控制
5、4、1 交流伺服电机特点及其调速方法
直流伺服电机具有电刷与整流子,尺寸较大且必须 经常维修,使用环境也受到一定影响,特别就是其容量较 小,受换向器限制,很多特性参数随速度而变化,因而限制 了直流伺服电机向高转速、大容量发展。
交流伺服电机采用了全封闭无刷结构,以适应实际 生产环境,不需要定期检查与维修。其定子省去了铸件壳 体,结构紧凑、外形小、重量轻(只有同类直流电机得75 %~90%)。定子铁芯较一般电机开槽多且深,绕组绕在 定子铁芯上,绝缘可靠,磁场均匀。可对定子铁芯直接冷 却,散热效果好,因而传给机械部分得热量小,提高了整个 系统得可靠性。转子采用具有
5、4、2 变频器调速装置(VFD)
一、晶闸管变频器得工作原理
图5-36所示为交-直-交变频器得主电路,它由整 流器、中间滤波环节及逆变器三部分组成。整流器为 晶闸管三相桥式电路,它得作用就是将恒压恒频交流电 变换为直流电,然后再用作逆变器得直流供电电源。逆 变器也就是晶闸管三相桥式电路,但它得作用与整流器 相反,它就是将直流电变换调制为可调频率得交流电,就 是变频器得主要组成部分。中间滤波环节由电容器、 电抗器组成,它得作用就是对整流后得电压或电流进行 滤波。
需要运动与位置控制场合得就是同步型交流伺服电机。 这种伺服电机通常具有永磁得转子,故称为永磁交流伺 服电机,以区别于有笼型转子得异步型交流伺服电机。 在这里主要讨论永磁交流伺服系统。
现代永磁交流伺服系统中所采用得永磁同步电机 经特殊设计,同轴安装有转子位置传感器、速度传感器, 根据需要还可以安装安全制动器与强迫冷却得风机等。
永磁交流伺服驱动系统按照其工作原理、驱动电 流波形与控制方式得不同,又可分为两种伺服系统;矩形 波电流驱动得永磁交流伺服系统与正弦波驱动得永磁 交流伺服系统。其原理分别如图5-42与5-43所示。

电工线路 开关 电机 电表 电箱接线图

电工线路 开关 电机 电表 电箱接线图
75
动断(常闭)触点
76
先断后合的转换触点
77
中间断开的双向触点
78
先合后断的转换触点(桥接)
79
当操作器件被吸合时延时闭合的动合触点
80
有弹性返回的动合触点
81
无弹性返回的动合触点
82
有弹性返回的动断触点
83
左边弹性返回,右边无弹性返回的中间断开的双向触点
84
指示仪表的一般符号星号须用有关符号替代,如A代表电流表等
电工必不可少的线路 开关 电机 电表 电箱接线图
收集了一些电工工作中最最常用的电路接线图,包括基本配线、照明、电机、断路器、电度表等常用电器设备的电路图。我把这些电气元件的工作原理图、接线图和实物对照图放在一块,相信大家学习起来会更有效果吧,保证值得每一位电力工作者收藏的文章!
常见电路
一、日光灯类:
165
光敏电阻具有对称导电性的光电器件
166
光电二极管具有非对称导电性的光电器件
167
光电池
168
光电半导体管(示出PNP型)
169
原电池或蓄电池
170
原电池组或蓄电池组
171
“或”单元,通用符号只有一个或一个以上的输入呈现“1”状态,输出才呈现“1”状态注:如果不会引起意义混淆,“≥1”可以用“1”代替
5
100~600Hz
示例2:交流频率范围100~600Hz
6
380/220V 3N
50Hz
示例3:交流,三相带中性线, 50Hz, 380V(中性线与相线之间为220V)。3N可用3+ N代替
7
3N
50Hz/TN-S
示例4:交流,三相,50Hz,具有一个直接接地点且中性线与保护导线全部分开的系统

电力电子单相桥式全控整流电路

电力电子单相桥式全控整流电路

目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。

大多数整流电路由变压器、整流主电路和滤波器等组成。

它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。

整流电路通常由主电路、滤波器和变压器组成。

20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。

滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。

变压器设置与否视具体情况而定。

变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。

可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。

第五章 交流调压电路与斩波电路

第五章 交流调压电路与斩波电路


交流调压与斩波电路 压力检测方法及仪表
19
(2) 电感性负载的功率因数角为
arctan wL
R arctan 2.3 2.3 4
最小控制角为
min

4
故控制角的范围为 π/4≤α≤π。
最大电流发生在 αmin=φ=π/4处,负载电流为正弦波,其 有效值为
Io Uo R (wL)
交流调压与斩波电路 压力检测方法及仪表
1

基本方式:
交流电力 控制电路 只改变电压,电流 或控制电路的通 断,而不改变频率 的电路。
交流调压电路 相位控制
在每半个周波内通过对晶闸管开通相位 的控制,调节输出电压有效值的电路。
交流调功电路 通断控制
以交流电的周期为单位控制晶闸管的 通断,改变通态周期数和断态周期数的 比,调节输出功率平均值的电路。
2 1 2 2
阻抗角
9
交流调压与斩波电路 压力检测方法及仪表
因为ω t=α +θ 时,io=0。将此条件代入式
2U io [sin(wt ) sin( )e tan ] Z
可求得导通角θ 与控制角α 、负载阻抗角φ 之间的定量关系表达式为

tan
wt
sin( ) sin( )e
交流调压与斩波电路 压力检测方法及仪表
12
VT1
3) 当α <φ 时,导通角θ >π 。 电源接通后,在电源的正半周,若先触发VT1,
若采用窄脉冲触发:若触发脉冲的宽度小于a+θ -(a+π )=θ -π 时,
当VT1的电流下降为零关断时,VT2的门极脉冲已经消失,VT2无法导通。 到了下个周期,VT1又被触发导通重复上一周期的工作,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 2. MLX90805的引脚功能与封装形式 • MLX90805采用PDIP-8和SOIG8封装,引脚端功能如表 6.5.2所示。 • 3. MLX90805的内部结构与工作原理 • MLX90805内部结构方框图如图6.5.3所示。
图6.5.3 MLX90805内部结构方框图
• 芯片内部包含有: • (1)稳压器 • 芯片电源以交流线电压经半波整流器获得,VDDA引脚端的电压限制 在15.5V以内,芯片内部的数字电路部分和一些外围电路电源电压由 片内稳压器提供,电压为5V。 • (2)模拟电源导通复位 • 模拟电源导通复位时才 产生Triac(双向三端可控硅)触发脉冲。 • (3)振荡器 • 振荡器为芯片内部电路提供时钟。 • (4)频率锁相环 • 频率锁相环电路从电流控制的振荡器获得一个以电网频率作为参考的 时钟频率,利用逐次近似计算法减少振荡器调整时间。 • (5)基准电压 • 基准电压来自外接的电位器,用来设定不同的速度。
图6.5.4 只有软起动功能的应用电路
• (2)具有软起动功能与采用2线式设置速度的应用电路 • 采用MLX90805具有软起动功能与采用2线式设置速度的 应用电路如图6.5.5所示,电路具有软起动和速度控制功能。 电位器采用2线形式连接到芯片,用来设置不同的速度。 一个与电位器阻值相等的电阻RP接到VREF引脚端,用来 保持ADC输入的比例。ADC的输入信号在0和VREF/2之 间变化。对于最低速度,电位器调节到最大值;对于最高 速度,电位器调节到最小值。当加上电网电压后,电动机 启动,在软起动完成后,电机运转到由电位器设定的速度。 • 对于最低速度的设定,采用2线式设置速度是不利的,电 位器绝对值的偏差使SET引脚端的输入电压产生误差,影 响最低速度的精确度。使用3线式连接可以避免这一缺点。 • R1、R2和NTC热敏电阻仅在过热保护时才需要,通常可 不采用。
• (10)Triac驱动器 • Triac驱动器输出通过一个外接电阻RT(150Ω)驱动Triac,它确定 Triac的门极电流和控制Triac作为开关工作。 • (11)自动再触发 • 自动再触发电路跟踪Triac在每个触发脉冲后是否开通,如果一个触发 脉冲之后Triac是关断的,在20μs后,会再产生一个新的触发脉冲。 • (12)过热保护 • 芯片能够提供一个外部保护电路,典型的是利用一个NTC电阻作为基 准电阻,用来跟踪环境温度。如果在THP引脚端的电压等于Vref/2, 保护功能有效,芯片即设定的触发角是在ROM地址1存储的数值。连 接一个电阻到FB引脚端,可以使检测滞后。 • (13)选项 • 选项电路定义芯片的不同操作模式。
• 2. MLX90804的引脚功能与封装形式 • MLX90804采用DIP-8、PDIP-8、DIL-8或者PDIL-8封装, 引脚功能如表6.5.1所示。 • 3. MLX90804的内部结构与控制原理 • MLX90804内部结构方框图如图6.5.1所示,芯片内部包含 有稳压器、振荡器、PLL、过零检测、ADC、控制逻辑、 双向可控硅驱动等电路。
• (6)ADC • 来自电位器的模拟信号用来设定速度,利用一个4bit的 ADC转换为数字信号。 • (7)ROM • 来自ADC的数字作为ROM的表地址,ROM表中存储有不 同的导通角,总共有16个不同的导通角可选择。 • (8)过零点检测 • 过零点检测电路检出电网线电压过零点,精确的检测可获 得好的同步,使驱动Triac的导通脉冲能够在正确的时刻产 生。 • (9)控制逻辑 • 控制逻辑电路完成所有的控制功能,如实时同步、平滑软 起动、Triac触发等,使电动机运转在设定的速度上。
6.5 单相交流通用电动机控制 专用电路设计
• 6.5.1 基于MLX90804的单相交流电机控制电路 • 1. MLX90804的主要技术性能与特点 • MLX90804是MELEXIS公司生产的一个功率控制集成电路, 利用Triac(三端双向可控硅)控制交流电动机的转速。从 SET引脚端输入一个电压(通常采用电位器调节)即可设 定电动机的转速。这个转速设定电压与在SPD引脚端输入 脉冲比较。SPD引脚端输入可以接受感应式或磁敏式(如 霍尔传感器)检测器信号。Triac所需触发相位角由PI调节 器计算,是完全数字式的。芯片具有软起动、过载和超速 保护功能,可消除电动机起动时出现大冲击电流问题。内 部锁相环(PLL)电路用来补偿电网线电压频率的变化,使 触发频率稳定。最小和最大转速、软起动延时,整定PI调 节器的增益等参数可以编程存储在掩模存储器中。 • MLX90804的电源电压VDD1为14~18V,电流消耗5mA, 内部基准电压VDD为5V,三端双向可控硅门极驱动电流 为30~90mA。
图6.5.1 MLX90804内部结构方框图
• (1)速度调节 • 速度由一个PI调节器控制,PI调节器参数Kp和Ki可编程。Kp和Ki参数 是在掩模时配置。 • (2)速度测量 • 可采用一个线圈或一个霍尔传感器获得电动机转速脉冲。 • (3)速度设置 • 速度设置由加到SET引脚端上的电压确定。SET引脚端上的电压输入 到ADC转换成一个4bit的数码,对应存储在内部ROM的表格地址,表 格内容表示了16种不同的速度,输入电压与对应速度之间的关系可以 自由选择,无须线性。 • (4)软起动 • 存储的软起动程序可保证电动机实现平滑的起动,软起动函数是在掩 模时配置。电动机开始运转延迟时间最大为300ms。 • (5)速度斜坡设定 • 运行中,当设定速度改变为新的速度时,在内部产生一条速度变化斜 坡,以优化PI调节器暂态性能。这一个斜坡函数是在掩模时配置。
• 4. MLX90804的应用电路 • MLX90804的应用电路如图6.5.2所示,图中,L端是相线, N端是中线,Load端连接电机,速度检测可采用线圈作为 速度传感器或者霍尔速度传感器(如MLX5881)。R1、 R2、R3、R4、VD1和C1构成芯片的电源电路。图中数值 适合在电网线电压为220V使用。电阻功率一般需要0.5W 或更高的。设定速度需要采用一个线性的电位器,电位器 的阻值约200kΩ。电阻R7用来限制Triac的栅极驱动电流, 不是必要的。TEST测试端可开路或连接到VDD上。 • MLX90804内部参数的编程需参考MLX90804用户手册。
图6.5.6 具有软起动功能与采用3线式设置速度的应用电路
• 4. MLX90805的应用电路 • (1)只有软起动功能的应用电路 • 采用MLX90805只有软起动功能的应用电路如图6.5.4所示, 可实现电动机的平滑软起动,当电网电压加上时, MLX90805将产生Triac触发脉冲,电动机开始升速,并在 预定时间之后到达最高速度(电动机以全功率运行)。在 软启动后,总是选择最高速度运行(对应于最高的ROM 表地址)。图中,SET引脚端连接到Vss。
图6.5.2 MLX90804的应用电路
• 6.5.2 基于MLX90805的三端双向可控硅单相交流电机控 制电路 • 1. MLX90805的主要技术性能与特点 • MLX90805是MELEXIS公司生产的一个功率控制集成电路, 适合采用三端双向可控硅(Triac)控制的电阻性或电感性 负载,主要用于交流电动机起动和转速控制,也可用于白 炽灯控制。 • 该芯片具有软起动、过热保护功能;可消除电动机起动时 的浪涌电流;从最小到最大功率,Triac利用一个线性“斜 坡”进行控制;起动速度为0.5~3s,通过改变选择位选 择;片内具有一个用来稳定触发点的频率锁相环;电源电 压VDDA为13.5~16.5V,基准电压VREF为4.3~5.4V, Triac门极电流ITRG为90mA;掩模可订制在50或60Hz工 作。
图6.5.5 具有软起动功能与采用2线式设置速度的应用电路
• (3)具有软起动功能与采用3线式设置速度的应用电路 • 采用MLX90805具有软起动功能与采用3线式设置速度的 应用电路如图6.5.6所示,电路具有软起动和速度控制功能。 电位器采用3线形式连接到芯片,用来设置不同的速度。 ADC输入信号在0和VREF之间变化。对于最低速度,在 SET引脚端的电压为最大值;对于最高速度,在SET引脚 端的电压为最小值。当加上电网电压后,电动机启动,在 软起动完成后,电机运转到由电位器设定的速度。 • R1、R2和NTC热敏电阻仅在过热保护时才需要,通常 可不采用。
相关文档
最新文档