密码学论文

合集下载

破解密码密码学专业毕业论文

破解密码密码学专业毕业论文

破解密码密码学专业毕业论文密码学作为一门应用数学科学,经过多年的发展与探索,已经成为信息安全领域中不可或缺的重要学科。

而在密码学专业的学习中,毕业论文是对学生全面能力的一次综合考核,也是展示学术研究成果的平台。

本文将探讨破解密码的方法与技术,以及密码学专业毕业论文的撰写要点。

一、破解密码的方法与技术破解密码是密码学专业中的核心研究领域之一,旨在通过对密码系统的分析和攻击,揭示其中的安全弱点,以提升密码系统的安全性。

下面将介绍几种常见的密码破解方法和技术。

1.1 暴力破解法暴力破解法是密码破解中最常见的方法之一。

它通过穷举所有可能的密码组合,逐个尝试来找出正确的密码。

该方法的优点是能够保证找到正确的密码,但缺点是耗时较长,特别是对于密码较复杂的情况下。

1.2 字典攻击法字典攻击法是一种基于预先准备好的密码词典的方法。

攻击者通过将密码词典与被破解的密码进行对比,如果匹配成功,即可找到正确的密码。

这种方法相对于暴力破解法而言,耗时较短,特别是在密码使用常见单词或常见组合时。

1.3 差分攻击法差分攻击法是一种特殊的密码分析方法,它通过对密码系统中的特定差异进行观察,从而获取密码信息。

该方法要求攻击者对密码系统的设计和运行机制有一定的理解和专业知识,因此是一种相对高级的密码破解技术。

1.4 混合攻击法混合攻击法是多种密码破解方法的综合应用,其目的是为了提高破解密码的效率和准确性。

通过结合暴力破解、字典攻击和差分攻击等多种技术手段,攻击者能够更快速地找到密码系统的弱点并进行破解。

二、密码学专业毕业论文撰写要点在撰写密码学专业毕业论文时,需要注意以下几个要点:2.1 研究背景与目的毕业论文的引言部分应清晰地阐述研究背景和目的,说明该研究对密码学领域的重要性和意义。

2.2 相关研究综述在论文的文献综述部分,要对相关的密码破解技术、密码系统设计原理等进行全面深入的探讨,分析前人的研究成果,并指出他们的不足之处。

2.3 研究方法与实验设计详细描述自己的研究方法和实验设计,包括使用的工具和算法,实验参数设置等。

数学在密码学中的应用浅析密码学论文写作范例论文-V1

数学在密码学中的应用浅析密码学论文写作范例论文-V1

数学在密码学中的应用浅析密码学论文写作范例论文-V1正文:密码学作为一种保障隐私和安全的技术,其应用范围愈发广泛。

而在密码学中,数学的应用尤为重要。

本文将就数学在密码学中的应用进行浅析,并给出密码学论文写作范例,以供参考。

一、数学在密码学中的应用密码学的核心问题是保护信息的安全,而数学提供的基础和工具是解决这一问题的关键。

1. 整数论在密码学中,整数论最常见的应用是在RSA加密算法中。

RSA算法基于整数的因式分解难题,通过大数的质因数分解实现加密。

在该算法中,质数是加密和解密过程中的关键因素,因此整数论的相关理论成为RSA 算法可行性的前提。

2. 群论群论是密码学中使用最为广泛的数学分支之一。

在密码学中,群论可以用来描述密码学中各个算法的密钥空间、明文和密文的转换、算法的复杂度等。

例如,Diffie-Hellman密钥交换算法就是基于群论的,用来方便地协商出双方的密钥。

此外,AES对称加密算法也使用了群论的相关理论,其密钥扩展算法利用了有限域的结构。

3. 椭圆曲线椭圆曲线密码学是当前流行的密码学分支之一,在移动终端等资源受限场景下有着十分广泛的应用。

在椭圆曲线密码学中,数学中的椭圆曲线理论是其核心基础。

通过椭圆曲线的相关理论,密钥交换、数字签名等广泛应用的密码学问题都可以得到切实可行的解决方案。

此外,椭圆曲线密码学还具有安全性高、密钥长度短、运算速度快等优点。

二、密码学论文写作范例在密码学研究中,必须得对算法进行一定的改进才能应对攻击,提高其安全性。

在撰写论文的过程中,应着力于解决某个具体问题,清晰表述研究思路,并结合实验结果进行论述。

以下为密码学论文写作范例:第一部分:引言在此部分中,需要对密码学的定义进行解释,并讨论研究算法的重要性和关键问题。

第二部分:问题描述在此部分中,需要详细描述所研究的算法、现有的问题和存在的威胁。

第三部分:技术方案在此部分中,需要介绍自己提出的算法,同时应包括解释和理论的基础,以及应用实现和结果分析。

《基于时空混沌的密码学算法研究》范文

《基于时空混沌的密码学算法研究》范文

《基于时空混沌的密码学算法研究》篇一一、引言随着信息技术的快速发展,数据安全和隐私保护变得越来越重要。

密码学作为保障信息安全的核心技术,其算法的复杂性和安全性至关重要。

近年来,基于时空混沌的密码学算法因其独特的特性和高安全性而备受关注。

本文将针对基于时空混沌的密码学算法进行深入研究,旨在为信息安全领域提供新的研究思路和方法。

二、时空混沌理论概述时空混沌理论是一种描述动态系统中复杂行为的理论。

在密码学中,时空混沌系统被用来生成伪随机数,以增强密码算法的安全性。

时空混沌系统具有高度的复杂性和不确定性,能够抵抗各种攻击手段,因此被广泛应用于密码学领域。

三、基于时空混沌的密码学算法研究(一)算法设计基于时空混沌的密码学算法设计主要包括以下几个方面:1. 混沌系统建模:根据实际需求,建立适合的时空混沌系统模型。

该模型应具有高度的复杂性和不确定性,以保证生成伪随机数的质量。

2. 参数设置:根据混沌系统模型的特点,设置合适的参数,如初始值、迭代次数等,以保证算法的安全性和效率。

3. 伪随机数生成:利用时空混沌系统的特性,生成高质量的伪随机数。

这些伪随机数将作为密码算法的核心组成部分。

4. 加密与解密过程:将生成的伪随机数应用于传统的加密算法中,形成基于时空混沌的加密与解密过程。

(二)算法实现基于时空混沌的密码学算法实现主要涉及到编程和实验验证。

具体步骤如下:1. 编程实现:利用编程语言(如C++、Python等)实现算法设计中的各个步骤,包括混沌系统建模、参数设置、伪随机数生成以及加密与解密过程。

2. 实验验证:通过实验验证算法的正确性和安全性。

这包括对算法进行各种攻击测试,如差分攻击、线性攻击等,以验证其抵抗能力。

(三)算法分析对基于时空混沌的密码学算法进行分析,主要包括以下几个方面:1. 安全性分析:分析算法的抗攻击能力,包括抵抗差分攻击、线性攻击、穷举攻击等各种攻击手段的能力。

2. 性能分析:分析算法的执行效率、计算复杂度等方面的性能指标,以评估其在实际应用中的可行性。

加密和密码学的毕业论文AES加密算法

加密和密码学的毕业论文AES加密算法

第一章绪论AES高级加密标准随着Internet的迅猛发展,基于Internet的各种应用也日新月异,日益增长。

但是,由于Int ernet是一个极度开放的环境,任何人都可以在任何时间、任何地点接入Internet获取所需的信息,这也使得在Internet上信息传输及存储的安全问题成为影响Internet应用发展的重要因素。

正因为如此,信息安全技术也就成为了人们研究Internet应用的新热点。

信息安全的研究包括密码理论与技术、安全协议与技术、安全体系结构理论、信息对抗理论与技术、网络安全与安全产品等诸多领域。

在其中,密码算法的理论与实现研究是信息安全研究的基础。

而确保数据加密算法实现的可靠性和安全性对于算法理论应用到各种安全产品中起到了至关重要的作用。

对各类电子信息进行加密,以保证在其存储,处理,传送以及交换过程中不会泄露,是对其实施保护,保证信息安全的有效措施。

1977年1月数据加密标准DES(Data Encryption Standard)正式向社会公布,它是世界上第一个公认的实用分组密码算法标准。

但DES在经过20年的实践应用后,现在已被认为是不可靠的。

1997年1月2日NIST发布了高级加密标准(AES-FIPS)的研发计划,并于同年9月12日正式发布了征集候选算法公告,NIST希望确定一种保护敏感信息的公开、免费并且全球通用的算法作为AES,以代替DES,用以取代DES的商业应用。

在征集公告中,NIST对算法的基本要求是:算法必须是私钥体制的分组密码,支持128bits分组长度和128,192,256bits密钥长度。

经过三轮遴选,Rijndael最终胜出。

2000年10月2日,NIST宣布采用Rijndael算法作为新一代高级加密标准。

Rijndael的作者是比利时的密码专家Joan Daemon博士和Vincent Rijmen博士。

美国国家标准和技术研究所(NIST)在1999年发布了FIPS PUB 46-3,该标准指出DES只能用于遗留系统,同时3DES将取代DES。

信息安全技术论文-密码学密码算法概述

信息安全技术论文-密码学密码算法概述

信息安全技术论文密码学密码算法概述摘要:密码学是研究编制密码和破译密码的技术科学。

研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学。

总称密码学。

密码是通信双方按约定的法则进行明密特殊变换的一种重要保密手段。

依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。

密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。

关键字:密码学对称密码学密钥密码学[1](在西欧语文中之源于希腊语kryptós,“隐藏的”,和gráphein,“书写”)是研究如何隐密地传递信息的学科。

在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。

著名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,自工程学的角度,这相当于密码学与纯数学的异同。

密码学是信息安全等相关议题,如认证、访问控制的核心。

密码学的首要目的是隐藏信息的涵义,并不是隐藏信息的存在。

密码学也促进了计算机科学,特别是在于电脑与网络安全所使用的技术,如访问控制与信息的机密性。

密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑使用者存取密码、电子商务等等。

直到现代以前,密码学几乎专指加密(encryption)算法:将普通信息(明文,plaintext)转换成难以理解的资料(密文,ciphertext)的过程;解密(decryption)算法则是其相反的过程:由密文转换回明文;加解密包含了这两种算法,一般加密即同时指称加密(encrypt或encipher)与解密(decrypt或decipher)的技术。

加解密的具体运作由两部分决定:一个是算法,另一个是密钥。

密钥是一个用于加解密算法的秘密参数,通常只有通讯者拥有。

历史上,密钥通常未经认证或完整性测试而被直接使用在密码机上。

密码学论文——精选推荐

密码学论文——精选推荐

通过这个学期对应用密码学的学习,我深刻地体会到应用密码学的魅力,也认识到随着科学的发展,密码学越来越成为一个国家不可缺少的一项科学技术。

密码学是研究编制密码和破译密码的技术科学。

研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。

密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。

依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。

密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。

密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。

它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。

它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。

密码学主要经历了三个阶段:古代加密方法、古代密码和近代密码。

首先,古代加密方法处于手工阶段,其源于应用的无穷需求总是来推动技术发明和进步的直接动力。

存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。

从某种意义上说,战争是科学技术进步的催化剂。

人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。

古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。

当时为了安全传送军事情报,奴隶主剃光奴隶的头发,将情报写在奴隶的光头上,待头发长长后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落之间的秘密通信。

公元前 400 年,斯巴达人就发明了“塞塔式密码” ,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。

解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。

密码学论文(网络安全期末)

密码学论文(网络安全期末)

密码学是一门古老而深奥的学科,从古代的加密军书到如今的手机解锁,密码研究已有数千年的历史。

密码学也经历了从古典密码学到现代密码学的演变,虽然密码学的科技在不断地进步,古典密码的难度已经不足一提,但是古老的密码学思想奠定了密码学发展的基础,至今仍然被广泛使用。

密码学是信息安全的一门科学,密码技术是信息安全的核心,现代密码学所涉及的学科很广,包括信息论、概率论、数论、计算复杂性理论、近世代数、离散数学、代数几何学和数字逻辑等。

密码学主要包括两大分支,一是密码编码学,二是密码分析学。

密码学是对这两门分支学进行综合分析、系统研究的科学,是保护信息安全最主要的手段之一。

编码学与分析学是相互对立、相互依存,正是因为这种对立统一的关系,才推动了密码学自身的发展,下面将对这两门学科分别进行介绍。

1.密码编码学密码编码学是研究密码体制的设计的一门学问,主要内容是对信息进行编码密码,以实现对信息的加密。

密码编码技术的主要任务是寻求产生安全性高的有效密码算法和协议,以满足对消息进行加密或认证的要求。

2.密码分析学密码分析学是研究如何破解被加密信息的一门学问,即通过破译密码,来获取到所加密的信息。

经历了多个发展阶段。

密码分析技术的主要任务是破译密码或伪造认证信息,实现窃取机密信息或进行诈骗破坏活动。

密码学的基本思想是通过改变原有信息的顺序或者用不同的字母、数字、汉字等字符去替换原有字符,使原始信息变成混乱无章的乱码,保证了即使被非法获得信息后,也无法了解传送双方在信息中想表达的含义。

由于传送双方在事先进行了约定,接收方会根据某种规则,通过乱码来恢复出原始的信息含义。

伴随着信息科技不断地发展,现如今的密码学应用领域也不仅仅局限于信息的加密,也扩展到了对身份的识别和电子的认证等方面,比如日常所使用的手机指纹识别、解锁图案等,都属于密码学的范畴。

综上所述,密码学思想主要分为加密和解密两大部分,常用的方法有顺序法则和替代法则。

《2024年基于时空混沌的密码学算法研究》范文

《2024年基于时空混沌的密码学算法研究》范文

《基于时空混沌的密码学算法研究》篇一一、引言密码学作为信息安全领域的重要组成部分,一直以来都是学术界和工业界研究的热点。

近年来,随着网络技术的发展和应用的广泛普及,密码学面临着越来越多的挑战和需求。

传统的密码学算法在应对复杂多变的安全威胁时,其局限性逐渐显现。

因此,研究新的密码学算法,特别是基于复杂动态系统的密码学算法,具有重要的理论意义和应用价值。

本文将重点研究基于时空混沌的密码学算法,探讨其原理、性质及在密码学中的应用。

二、时空混沌理论概述时空混沌理论是一种描述动态系统中复杂行为的数学理论。

在密码学领域,时空混沌理论被广泛应用于设计新型的加密算法。

时空混沌系统具有高度的复杂性和随机性,能够为密码学提供强大的安全保障。

该系统通过非线性动力学方程描述空间和时间上的变化,产生复杂的混沌行为。

在密码学算法中,可以利用这种复杂性来增强算法的安全性。

三、基于时空混沌的密码学算法原理基于时空混沌的密码学算法利用时空混沌系统的复杂性和随机性,通过特定的映射关系和加密策略,将明文转化为密文。

该类算法通常包括混沌映射、密钥生成、加密和解密等步骤。

其中,混沌映射是算法的核心部分,通过非线性动力学方程描述时空混沌系统的行为。

密钥生成则是根据混沌映射产生的序列生成加密密钥。

在加密过程中,明文经过密钥的映射和变换,转化为密文;在解密过程中,密文通过反向的映射和变换,还原为明文。

四、基于时空混沌的密码学算法性质基于时空混沌的密码学算法具有以下性质:1. 高度复杂性:算法利用时空混沌系统的复杂性,使得加密过程具有高度的复杂性,难以被破解。

2. 随机性:算法中的混沌映射产生的序列具有随机性,保证了密钥的空间复杂性和难以预测性。

3. 抗攻击性:由于算法的高度复杂性和随机性,使得攻击者难以通过暴力破解或数学分析等方式获取明文信息。

4. 灵活性:算法可以根据具体的应用场景和需求进行定制和优化,具有较强的灵活性。

五、基于时空混沌的密码学算法应用基于时空混沌的密码学算法在信息安全领域具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DES算法介绍
姓名:***
班级:2011级数学3班
学号:**********
目录
1引言 (1)
2对称密码算法 (1)
3 DES介绍 (1)
4 DES加密算法的处理过程 (1)
5 DES算法入口参数 (2)
6 算法步骤 (4)
7算法特点 (6)
8结束语 (6)
参考文献 (8)
1.引言
所谓加密就是利用不同的反跟踪技术将一些程序代码保护起来,在程序正常执行时,再将其解开。

密码学主要研究通信保密,而且仅限于数据通信保密。

DES算法是对称加密算法体系中的代表,在计算机网络系统中被广泛使用。

2.对称密码算法
对称密码算法就是加密和解密用同一个密钥。

对称加密算法有时又叫做传统密码算法,加密密钥可以从解密密钥中推导出来,解密密钥也可以从加密密钥中推导出来。

在大多数的对称算法中,加密密钥和解密密钥是相同的,因此也成为秘密密钥算法或者单密钥算法。

它要求发送发和接收方在安全通信之前先商定一个密钥。

对称算法的安全性依赖于密钥,所以密钥的保密性对通信至关重要。

对称加密算法主要有分组加密和流加密两类。

分组加密是指将明文分成固定商都的组,用同一密钥分别对每一组加密,输出固定长度的密文,典型代表:DES、3DES、IDEA。

3.DES介绍
DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1976年被美国联邦政府的国家标准局确定为联邦资料处理标准(FIPS),随后在国际上广泛流传开来。

它是迄今为止世界上最为广泛使用和流行的分组密码算法。

4.DES加密算法的处理过程
DES加密算法是分组加密算法,明文以64位为单位分成块。

64位数据在64位密钥的控制下,经过初始变换后,进行16轮加密迭代:64位数据被分成左右两半部分,每部分32位,密钥与右半部分相结合,然后再与左半部分相结合,结果作为新的右半部分;结合前的右半部分作为新的左半部分。

这一系列步骤组成一轮。

这种轮换要重复16次。

最后一轮之后,再进行初始置换的逆置换,就得到了64位的密文。

5.DES算法入口参数
DES算法的入口参数有三个:Key、Data、Mode。

其中Key为7个字节共56位,是DES算法
的工作密钥;Data为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。

6.算法步骤
DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,其算法主要分为两步:
1)初始置换
其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长3 2位,其置换规则为将输入的第58位换到第一位,第50位换到第2位......依此类推,最后一位是原来的第7位。

L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50......D8;R0=D57D49 (7)
其置换规则见下表:
58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
2)逆置换
经过16次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,逆置换正好是初始置换的逆运算,由此即得到密文输出。

7.算法特点
分组比较短、密钥太短、密码生命周期短、运算速度较慢。

DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。

而56位长的密钥的穷举空间为256,这意味着如果一台计算机的速度是每一秒钟检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的时间,可见,这是难以实现的。

然而,这并不等于说DES是不可破解的。

而实际上,随着硬件技术和Intemet 的发展,其破解的可能性越来越大,而且,所需要的时间越来越少。

8.结束语
DES算法具有极高的安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。

通过穷尽搜索空间,可获得总共256(大约7.2×1016)个可能的密钥。

如果每秒能检测一百万个的话,需要2000年完成检测。

可见,这是很难实现的。

当然,随着科学技术的发展,当出现超高速计算机后,可以考虑把DES密钥的长度再增长一些,以此来达到更高的保密程度。

随着信息化和数字化社会的发展,随着计算机和Inte rnet的普及,密码学必将在国家安全、经济交流、网络安全及人民生活等方面发挥更大作用。

参考文献
[1]李辉:计算机安全与保密.清华大学出版社2003.2
[2]蔡永泉:数字鉴别与认证.八级航天航空大学出版社2011.7
[3]Diffie W,Hellman M. New directions in cryptography. IEEE Transactions on Information Theory,1976,22(6):644-654
[4]张基温:信息系统安全原理.中国水利水电出版社,2005.1
[5]顾巧论蔡振山贾春福:计算机网络安全.科学出版社,2003.1
[6]蔡立军计算机网络安全技术.中国水利水电出版社,2002.1
[7] 。

相关文档
最新文档