蚁群算法人工智能实验报告

合集下载

蚁群算法

蚁群算法

蚁群算法报告及代码一、狼群算法狼群算法是基于狼群群体智能,模拟狼群捕食行为及其猎物分配方式,抽象出游走、召唤、围攻3种智能行为以及“胜者为王”的头狼产生规则和“强者生存”的狼群更新机制,提出一种新的群体智能算法。

算法采用基于人工狼主体的自下而上的设计方法和基于职责分工的协作式搜索路径结构。

如图1所示,通过狼群个体对猎物气味、环境信息的探知、人工狼相互间信息的共享和交互以及人工狼基于自身职责的个体行为决策最终实现了狼群捕猎的全过程。

二、布谷鸟算法布谷鸟算法布谷鸟搜索算法,也叫杜鹃搜索,是一种新兴启发算法CS算法,通过模拟某些种属布谷鸟的寄生育雏来有效地求解最优化问题的算法.同时,CS也采用相关的Levy飞行搜索机制蚁群算法介绍及其源代码。

具有的优点:全局搜索能力强、选用参数少、搜索路径优、多目标问题求解能力强,以及很好的通用性、鲁棒性。

应用领域:项目调度、工程优化问题、求解置换流水车间调度和计算智能三、差分算法差分算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异、交叉、选择三种操作。

算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向量加权后按照一定的规则与第三个个体求和而产生变异个体,该操作称为变异。

然后,变异个体与某个预先决定的目标个体进行参数混合,生成试验个体,这一过程称之为交叉。

如果试验个体的适应度值优于目标个体的适应度值,则在下一代中试验个体取代目标个体,否则目标个体仍保存下来,该操作称为选择。

在每一代的进化过程中,每一个体矢量作为目标个体一次,算法通过不断地迭代计算,保留优良个体,淘汰劣质个体,引导搜索过程向全局最优解逼近。

四、免疫算法免疫算法是一种具有生成+检测的迭代过程的搜索算法。

从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。

五、人工蜂群算法人工蜂群算法是模仿蜜蜂行为提出的一种优化方法,是集群智能思想的一个具体应用,它的主要特点是不需要了解问题的特殊信息,只需要对问题进行优劣的比较,通过各人工蜂个体的局部寻优行为,最终在群体中使全局最优值突现出来,有着较快的收敛速度。

蚁群算法在最优路径选择中的改进及应用

蚁群算法在最优路径选择中的改进及应用

c law enforcement. Therefore, c congestion was ciency of the improved algorithm with the Dijkstra algorithm. Thus, it could simulate the optimal driving path with better performance, which was targeted and innovative.关键词:蚁群算法;实际路况;最优路径Key words :ant colony optimization; actual road conditions; optimal path文/张俊豪蚁群算法在最优路径选择中的改进及应用0 引言在国务院发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,将交通拥堵问题列为发展现代综合交通体系亟待解决的“三大热点问题”之一。

智能交通系统作为“互联网+交通”的产物,利用先进的科学技术对车、路、人、物进行统一的管控、调配,成为了当下各国缓解交通拥堵的一个重要途径。

路径寻优是智能交通系统的一个核心研究内容,可以有效的提升交通运输效率,减少事故发生频率,降低对城市空气的污染以及提升交通警察的执法效率等。

最著名的路径规划算法是Dijkstra算法和Floyd算法,Dijkstra算法能够在有向加权网络中计算得到某一节点到其他任何节点的最短路径;Floyd算法也称查点法,该算法和Dijkstra算法相似,主要利用的是动态规划思想,寻找加权图中多源节点的最短路径。

近些年,最优路径的研究主要集中以下几个方面:(1)基于A*算法的路径寻优。

A*算法作为一种重要的路径寻优算法,其在诸多领域内都得到了应用。

随着科技的发展,A*算法主要运用于人工智能领域,特别是游戏行业,在游戏中,A*算法旨在找到一条代价(燃料、时间、距离、装备、金钱等)最小化的路径,A*算法通过启发式函数引导自己,具体的搜索过程由函数值来决定。

人工智能实验总结

人工智能实验总结
对于同一个问题 由于搜索规模增大,宽度优先搜索和深度 优先搜索都未能得出解,宽度只显示有解, 但未能搜索出结果,深度达到了指定搜索 深度也未能找到目标,而且启发式搜索仍 然可以求出解来。
总结
宽度优先搜索法
在有解的情形总能保证搜索到最短路经,也 就是移动最少步数的路径。但宽度优先搜索法的 最大问题在于搜索的结点数量太多,因为在宽度 优先搜索法中,每一个可能扩展出的结点都是搜 索的对象。随着结点在搜索树上的深度增大,搜 索的结点数会很快增长,并以指数形式扩张,从 而所需的存储空间和搜索花费的时间也会成倍增 长。
1 2
0 1 0 1
0 0 1 1
0 1 1 0
神经网络设计
用两层神经网络来实现,其中隐层为随机 感知器层(net1),神经网络元数目设计为 3,其权值和阈值是随机的,它的输出作为 输出层(分类层)的输入;输出层为感知 器层(net2),其神经元数为1,这里仅对 该层进行训练。
程序运行结果
随机感知器层的权值向量 iw1 = 0.4267 -0.6556 -0.5439 0.9376 -0.1007 -0.2886 随机感知器层的阈值向量 b1 = 0.4074 0.0441 0.8658
运行结果分析
上面实验结果可以看出,城市数目为30的 时候,当迭代次数为100,算法收敛慢,在 迭代次数内最优解没有达到稳定,没有搜 索到最好的解。 迭代次数为200和250的时候,算法基本达 到收敛,最优解在100代以后趋于稳定,表 明搜索到问题的最优解。
运行结果
当城市数目改变的时候: CityNum=50;最大代数gnmax=100;
程序运行结果
第二层感知器层的权值向量和阈值向量 iw2 = -3 -2 2 b2 = 2

群智能是近来人工智能分析研究的一个热点话题蚁群算法作

群智能是近来人工智能分析研究的一个热点话题蚁群算法作

摘要群智能是近年来人工智能研究的一个热点话题。

蚁群算法作为群智能算法的一个热点,是意大利学者M. Dorigo通过模拟蚁群觅食行为提出的。

本文首先介绍了群智能,然后详细介绍蚁群算法原理及其优缺点。

接着依据大量实验对参数m、α、β、ρ、Q的选择进行研究,得出其选择规律,并在以前学者“三步走”的基础上提出了一种“四步走”的有效方法来选择蚁群算法最优组合参数,然后对蚁群改进算法进行分析,同时以实验的方式对这几种算法各自求解TSP问题的性能进行了对比分析,得出性能结果排名,并发现当TSP问题最优解相同时还可以依据其他性能<迭代次数、迭代时间等)得出最优结果,最后还对陈烨的“蚁群算法实验室”的可视化编程进行了优化和改进,使之能够更方便的用于几种算法性能比较和同种算法不同参数的比较。

【关键词】群智能;蚁群算法;参数选择;TSP;可视化Experimental Analysis and Parameter Selection for the Ant Colony Optimization AlgorithmXu HuiAbstract:Swarm intelligence has been a hot spot in the field of artificial intelligence in recent years.Among the algorithms of swarmintelligence,ant colony algorithm was presented by an Italy scholar M.Dorigo learningfrom the behavior simulating ant colony foraging. Firstly,this paper has introduced the group intelligence and promoted the ant colony algorithm,obtained the choice regular of “m,α,β,ρ,Q” basing on the experiment, and proposed an effective method named“four steps” in the fundation of others scholars’ “three steps” to choose the most superior combination parameter of ant group algorithm,then analied the six kinds improved algorithm of ant colony ant colony algorithm, at the same time explained the ability of several kinds of ant algorithm to solve the TSP question according to the experiments。

基于蚁群优化算法的TSP问题求解计算智能实验报告

基于蚁群优化算法的TSP问题求解计算智能实验报告

智能计算实验报告学院:班级:学号:姓名:成绩:日期:实验名称:基于蚁群优化算法的TSP问题求解题目要求:利用蚁群优化算法对给定的TSP问题进行求解,求出一条最短路径。

蚁群优化算法简介:蚁群算法是一中求解复杂优化问题的启发式算法,该方法通过模拟蚁群对“信息素”的控制和利用进行搜索食物的过程,达到求解最优结果的目的。

它具有智能搜索、全局优化、稳健性强、易于其它方法结合等优点,适应于解决组合优化问题,包括运输路径优化问题。

TSP数据文件格式分析:本次课程设计采用的TSP文件是att48.tsp ,文件是由48组城市坐标构成的,文件共分成三列,第一列为城市编号,第二列为城市横坐标,第三列为城市纵坐标。

数据结构如下所示:实验操作过程:1、TSP文件的读取:class chengshi {int no;double x;double y;chengshi(int no, double x, double y) {this.no = no;this.x = x;this.y = y;}private double getDistance(chengshi chengshi) {return sqrt(pow((x - chengshi.x), 2) + pow((y - chengshi.y), 2));}}try {//定义HashMap保存读取的坐标信息HashMap<Integer, chengshi> map = new HashMap<Integer,chengshi>();//读取文件BufferedReader reader = new BufferedReader(new (new )));for (String str = reader.readLine(); str != null; str = reader.readLine()) { //将读到的信息保存入HashMapif(str.matches("([0-9]+)(\\s*)([0-9]+)(.?)([0-9]*)(\\s*)([0-9]+)(.?)([0-9]*)")) {String[] data = str.split("(\\s+)");chengshi chengshi = new chengshi(Integer.parseInt(data[0]),Double.parseDouble(data[1]),Double.parseDouble(data[2]));map.put(chengshi.no, chengshi);}}//分配距离矩阵存储空间distance = new double[map.size() + 1][map.size() + 1];//分配距离倒数矩阵存储空间heuristic = new double[map.size() + 1][map.size() + 1];//分配信息素矩阵存储空间pheromone = new double[map.size() + 1][map.size() + 1];for (int i = 1; i < map.size() + 1; i++) {for (int j = 1; j < map.size() + 1; j++) {//计算城市间的距离,并存入距离矩阵distance[i][j] = map.get(i).getDistance(map.get(j));//计算距离倒数,并存入距离倒数矩阵heuristic[i][j] = 1 / distance[i][j];//初始化信息素矩阵pheromone[i][j] = 1;}}} catch (Exception exception) {System.out.println("初始化数据失败!");}}2、TSP作图处理:private void evaporatePheromone() {for (int i = 1; i < pheromone.length; i++)for (int j = 1; j < pheromone.length; j++) {pheromone[i][j] *= 1-rate;}}3、关键源代码(带简单的注释):蚂蚁类代码:class mayi {//已访问城市列表private boolean[] visited;//访问顺序表private int[] tour;//已访问城市的个数private int n;//总的距离private double total;mayi() {//给访问顺序表分配空间tour = new int[distance.length+1];//已存入城市数量为n,刚开始为0n = 0;//将起始城市1,放入访问结点顺序表第一项tour[++n] = 1;//给已访问城市结点分配空间visited = new boolean[distance.length];//第一个城市为出发城市,设置为已访问visited[tour[n]] = true;}private int choosechengshi() {//用来random的随机数double m = 0;//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入mfor (int i = 1, j = tour[n]; i < pheromone.length; i++) {if (!visited[i]) {m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);}}//保存随机数double p = m * random();//寻找随机城市double k = 0;//保存城市int q = 0;for (int i = 1, j = tour[n]; k < p; i++) {if (!visited[i]) {k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);q = i;}}return q;}城市选择代码:private int choosechengshi() {//用来random的随机数double m = 0;//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入mfor (int i = 1, j = tour[n]; i < pheromone.length; i++) {if (!visited[i]) {m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);}}//保存随机数double p = m * random();//寻找随机城市double k = 0;//保存城市int q = 0;for (int i = 1, j = tour[n]; k < p; i++) {if (!visited[i]) {k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);q = i;}}return q;}4、算法运行收敛图(即运行到第几步,求得的最优值是多少):run:本次为倒数第100次迭代,当前最优路径长度为41634.60本次为倒数第99次迭代,当前最优路径长度为41514.21本次为倒数第98次迭代,当前最优路径长度为38511.61本次为倒数第97次迭代,当前最优路径长度为38511.61本次为倒数第96次迭代,当前最优路径长度为38511.61本次为倒数第95次迭代,当前最优路径长度为38511.61本次为倒数第94次迭代,当前最优路径长度为37293.07、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、本次为倒数第6次迭代,当前最优路径长度为37293.07本次为倒数第5次迭代,当前最优路径长度为37293.07本次为倒数第4次迭代,当前最优路径长度为37293.07本次为倒数第3次迭代,当前最优路径长度为37293.07本次为倒数第2次迭代,当前最优路径长度为37293.07本次为倒数第1次迭代,当前最优路径长度为37293.07得到的最优的路径长度为: 37293.075、最终求得的最优解的TSP图像:最优路径如下:→1→9→38→31→44→18→7→28→37→19→6→30→43→27→17→36→46→33→15→12→11→23→14→25→13→20→47→21→39→32→48→5→29→2→26→4→35→45→10→42→24→34→41→16→22→3→40→8→1成功生成(总时间:3 秒)实验结果分析:本次通过JA V A语言实现蚁群优化算法,我们发现虽然我们找到了问题的最优解,但是最优解的收敛性并不乐观,并不能求得问题的精确解,并且随着参数的调节运行结果有随机性。

基于蚁群优化算法的TSP问题求解计算智能实验报告

基于蚁群优化算法的TSP问题求解计算智能实验报告

智能计算实验报告学院:班级:学号:姓名:成绩:日期:实验名称:基于蚁群优化算法的TSP问题求解题目要求:利用蚁群优化算法对给定的TSP问题进行求解,求出一条最短路径。

蚁群优化算法简介:蚁群算法是一中求解复杂优化问题的启发式算法,该方法通过模拟蚁群对“信息素”的控制和利用进行搜索食物的过程,达到求解最优结果的目的。

它具有智能搜索、全局优化、稳健性强、易于其它方法结合等优点,适应于解决组合优化问题,包括运输路径优化问题。

TSP数据文件格式分析:本次课程设计采用的TSP文件是att48.tsp ,文件是由48组城市坐标构成的,文件共分成三列,第一列为城市编号,第二列为城市横坐标,第三列为城市纵坐标。

数据结构如下所示:实验操作过程:1、TSP文件的读取:class chengshi {int no;double x;double y;chengshi(int no, double x, double y) {this.no = no;this.x = x;this.y = y;}private double getDistance(chengshi chengshi) {return sqrt(pow((x - chengshi.x), 2) + pow((y - chengshi.y), 2));}}try {//定义HashMap保存读取的坐标信息HashMap<Integer, chengshi> map = new HashMap<Integer,chengshi>();//读取文件BufferedReader reader = new BufferedReader(new (new )));for (String str = reader.readLine(); str != null; str = reader.readLine()) { //将读到的信息保存入HashMapif(str.matches("([0-9]+)(\\s*)([0-9]+)(.?)([0-9]*)(\\s*)([0-9]+)(.?)([0-9]*)")) {String[] data = str.split("(\\s+)");chengshi chengshi = new chengshi(Integer.parseInt(data[0]),Double.parseDouble(data[1]),Double.parseDouble(data[2]));map.put(chengshi.no, chengshi);}}//分配距离矩阵存储空间distance = new double[map.size() + 1][map.size() + 1];//分配距离倒数矩阵存储空间heuristic = new double[map.size() + 1][map.size() + 1];//分配信息素矩阵存储空间pheromone = new double[map.size() + 1][map.size() + 1];for (int i = 1; i < map.size() + 1; i++) {for (int j = 1; j < map.size() + 1; j++) {//计算城市间的距离,并存入距离矩阵distance[i][j] = map.get(i).getDistance(map.get(j));//计算距离倒数,并存入距离倒数矩阵heuristic[i][j] = 1 / distance[i][j];//初始化信息素矩阵pheromone[i][j] = 1;}}} catch (Exception exception) {System.out.println("初始化数据失败!");}}2、TSP作图处理:private void evaporatePheromone() {for (int i = 1; i < pheromone.length; i++)for (int j = 1; j < pheromone.length; j++) {pheromone[i][j] *= 1-rate;}}3、关键源代码(带简单的注释):蚂蚁类代码:class mayi {//已访问城市列表private boolean[] visited;//访问顺序表private int[] tour;//已访问城市的个数private int n;//总的距离private double total;mayi() {//给访问顺序表分配空间tour = new int[distance.length+1];//已存入城市数量为n,刚开始为0n = 0;//将起始城市1,放入访问结点顺序表第一项tour[++n] = 1;//给已访问城市结点分配空间visited = new boolean[distance.length];//第一个城市为出发城市,设置为已访问visited[tour[n]] = true;}private int choosechengshi() {//用来random的随机数double m = 0;//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入mfor (int i = 1, j = tour[n]; i < pheromone.length; i++) {if (!visited[i]) {m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);}}//保存随机数double p = m * random();//寻找随机城市double k = 0;//保存城市int q = 0;for (int i = 1, j = tour[n]; k < p; i++) {if (!visited[i]) {k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);q = i;}}return q;}城市选择代码:private int choosechengshi() {//用来random的随机数double m = 0;//获得当前所在的城市号放入j,如果和j相邻的城市没有被访问,那么加入mfor (int i = 1, j = tour[n]; i < pheromone.length; i++) {if (!visited[i]) {m += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);}}//保存随机数double p = m * random();//寻找随机城市double k = 0;//保存城市int q = 0;for (int i = 1, j = tour[n]; k < p; i++) {if (!visited[i]) {k += pow(pheromone[j][i], alpha) * pow(heuristic[j][i], beta);q = i;}}return q;}4、算法运行收敛图(即运行到第几步,求得的最优值是多少):run:本次为倒数第100次迭代,当前最优路径长度为41634.60本次为倒数第99次迭代,当前最优路径长度为41514.21本次为倒数第98次迭代,当前最优路径长度为38511.61本次为倒数第97次迭代,当前最优路径长度为38511.61本次为倒数第96次迭代,当前最优路径长度为38511.61本次为倒数第95次迭代,当前最优路径长度为38511.61本次为倒数第94次迭代,当前最优路径长度为37293.07、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、本次为倒数第6次迭代,当前最优路径长度为37293.07本次为倒数第5次迭代,当前最优路径长度为37293.07本次为倒数第4次迭代,当前最优路径长度为37293.07本次为倒数第3次迭代,当前最优路径长度为37293.07本次为倒数第2次迭代,当前最优路径长度为37293.07本次为倒数第1次迭代,当前最优路径长度为37293.07得到的最优的路径长度为: 37293.075、最终求得的最优解的TSP图像:最优路径如下:→1→9→38→31→44→18→7→28→37→19→6→30→43→27→17→36→46→33→15→12→11→23→14→25→13→20→47→21→39→32→48→5→29→2→26→4→35→45→10→42→24→34→41→16→22→3→40→8→1成功生成(总时间:3 秒)实验结果分析:本次通过JA V A语言实现蚁群优化算法,我们发现虽然我们找到了问题的最优解,但是最优解的收敛性并不乐观,并不能求得问题的精确解,并且随着参数的调节运行结果有随机性。

蚂蚁爬虫技术实验报告(3篇)

第1篇一、实验目的本次实验旨在通过观察蚂蚁的行为,了解蚂蚁爬虫技术在人工智能领域的应用潜力。

通过对蚂蚁爬虫技术的原理和实验步骤的探讨,分析其优缺点,为人工智能领域的爬虫技术研究提供参考。

二、实验原理蚂蚁爬虫技术是一种模拟蚂蚁觅食行为的网络爬虫技术。

蚂蚁在觅食过程中,会通过触角感知环境信息,并在路径上留下信息素,信息素的浓度随时间衰减。

其他蚂蚁在行进过程中,会根据信息素的浓度来选择路径,从而实现群体觅食。

蚂蚁爬虫技术具有以下特点:1. 分布式:蚂蚁爬虫技术采用分布式计算方式,可以充分利用网络资源。

2. 智能化:蚂蚁爬虫技术通过模拟蚂蚁觅食行为,具有自适应和自组织能力。

3. 可扩展性:蚂蚁爬虫技术可以根据需要调整蚂蚁数量和参数,具有较强的可扩展性。

4. 抗干扰性:蚂蚁爬虫技术具有较强的抗干扰能力,能够适应复杂网络环境。

三、实验材料1. 实验平台:Windows操作系统,Python编程语言。

2. 实验工具:网络爬虫框架(如Scrapy)、数据库(如MySQL)、Python爬虫库(如requests、BeautifulSoup)。

3. 实验数据:网络数据,如网页、图片、视频等。

四、实验步骤1. 设计爬虫框架:根据实验需求,设计爬虫框架,包括爬虫入口、任务分发、数据采集、数据处理、数据存储等模块。

2. 模拟蚂蚁行为:在爬虫框架中,模拟蚂蚁觅食行为,包括路径规划、信息素更新、路径选择等。

3. 数据采集与处理:通过爬虫框架采集网络数据,对采集到的数据进行清洗、去重、提取等处理。

4. 数据存储:将处理后的数据存储到数据库中,以便后续分析。

5. 实验结果分析:分析实验数据,评估蚂蚁爬虫技术的性能和效果。

五、实验结果与分析1. 爬虫框架设计:实验中采用Scrapy框架搭建爬虫系统,实现了任务分发、数据采集、数据处理、数据存储等功能。

2. 模拟蚂蚁行为:通过模拟蚂蚁觅食行为,实现路径规划、信息素更新、路径选择等功能。

遗传算法 蚁群算法 粒子群算法 模拟退火算法

遗传算法蚁群算法粒子群算法模拟退火算法《探究遗传算法、蚁群算法、粒子群算法和模拟退火算法》一、引言遗传算法、蚁群算法、粒子群算法和模拟退火算法是现代优化问题中常用的算法。

它们起源于生物学和物理学领域,被引入到计算机科学中,并在解决各种复杂问题方面取得了良好的效果。

本文将深入探讨这四种算法的原理、应用和优势,以帮助读者更好地理解和应用这些算法。

二、遗传算法1. 概念遗传算法是一种模拟自然选择过程的优化方法,通过模拟生物进化过程,不断改进解决方案以找到最优解。

其核心思想是通过遗传操作(选择、交叉和变异)来优化个体的适应度,从而达到最优解。

2. 应用遗传算法在工程优化、机器学习、生物信息学等领域有着广泛的应用。

在工程设计中,可以利用遗传算法来寻找最优的设计参数,以满足多种约束条件。

3. 优势遗传算法能够处理复杂的多目标优化问题,并且具有全局搜索能力,可以避免陷入局部最优解。

三、蚁群算法1. 概念蚁群算法模拟蚂蚁在寻找食物过程中释放信息素的行为,通过信息素的沉积和蒸发来实现最优路径的搜索。

蚁群算法具有自组织、适应性和正反馈的特点。

2. 应用蚁群算法在路径规划、网络优化、图像处理等领域有着广泛的应用。

在无线传感网络中,可以利用蚁群算法来实现路由优化。

3. 优势蚁群算法适用于大规模问题的优化,具有分布式计算和鲁棒性,能够有效避免陷入局部最优解。

四、粒子群算法1. 概念粒子群算法模拟鸟群中鸟类迁徙时的行为,通过个体间的协作和信息共享来搜索最优解。

每个粒子代表一个潜在解决方案,并根据个体最优和群体最优不断更新位置。

2. 应用粒子群算法在神经网络训练、函数优化、机器学习等领域有着广泛的应用。

在神经网络的权重优化中,可以利用粒子群算法来加速训练过程。

3. 优势粒子群算法对于高维和非线性问题具有较强的搜索能力,且易于实现和调整参数,适用于大规模和复杂问题的优化。

五、模拟退火算法1. 概念模拟退火算法模拟金属退火时的过程,通过接受劣解的概率来跳出局部最优解,逐步降低温度以逼近最优解。

毕业论文:蚁群算法的研究应用(定稿)-精品【范本模板】

第一章绪论1。

1选题的背景和意义受社会性昆虫行为的启发,计算机工作者通过对社会性昆虫的模拟产生了一系列对于传统问题的新的解决方法,这些研究就是群体智能的研究。

群体智能作为一个新兴领域自从20世纪80年代出现以来引起了多个学科领域研究人员的关注,已经成为人工智能以及经济社会生物等交叉学科的热点和前沿领域。

群体智能(Swarm Intelligence)中的群体(Swarm)指的是“一组相互之间可以进行直接通信或者间接通信(通过改变局部环境)的主体,这组主体能够合作进行分布问题求解,群体智能指的是无智能或者仅具有相对简单智能的主体通过合作表现出更高智能行为的特性;其中的个体并非绝对的无智能或只具有简单智能,而是与群体表现出来的智能相对而言的。

当一群个体相互合作或竞争时,一些以前不存在于任何单独个体的智慧和行为会很快出现。

群体智能的提出由来已久,人们很早以前就发现,在自然界中,有的生物依靠其个体的智慧得以生存,有的生物却能依靠群体的力量获得优势。

在这些群体生物中,单个个体没有很高的智能,但个体之间可以分工合作、相互协调,完成复杂的任务,表现出比较高的智能。

它们具有高度的自组织、自适应性,并表现出非线性、涌现的系统特征。

群体中相互合作的个体是分布式的,这样更能够适应当前网络环境下的工作状态;没有中心的控制与数据,这样的系统更具有鲁棒性,不会由于某一个或者某几个个体的故障而影响整个问题的求解。

可以不通过个体之间直接通信而是通过非直接通信进行合作,这样的系统具有更好的可扩充性。

由于系统中个体的增加而增加的系统的通信开销在这里十分小.系统中每个个体的能力十分简单,这样每个个体的执行时间比较短,并且实现也比较简单,具有简单性。

因为具有这些优点,虽说群集智能的研究还处于初级阶段,并且存在许多困难,但是可以预言群集智能的研究代表了以后计算机研究发展的一个重要方向。

随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,当前存在的一些群体智能算法有人工神经网络,遗传算法,模拟退火算法,群集智能,蚁群算法,粒子群算等等。

蚁群算法 旅行商问题 人工智能 java 代码+报告+注释

目录1. 整体结构与功能划分 (2)(一) 总体结构 (2)(二) 类的划分与功能说明 (2)i. NewJFrame 类 (2)ii. Ant类 (2)iii. ACO类 (2)iv. parameter类 (3)v. Data类 (3)2. 输入输出格式 (3)(一) 输入信息 (3)i. 城市坐标信息 (3)ii. 参数 (3)(二) 输出信息 (3)i. 图形用户界面输出 (3)ii. 控制台输出 (3)3. 完整代码(见附录) (4)4. 算法优化 (4)(一)蚁恒模型 (4)(二)信息素强度及路径信息素初始值 (4)(三)各参数对算法的影响 (4)5. 运行测试 (5)(一) 传统模型 (5)(二) 蚁恒模型 (6)6. 参考文献 (7)附录 (7)(一) NewJFrame.java (7)(二) Ant.java (13)(三) ACO.java (17)(四) Parameter.java (23)(五) Data.java (23)(六) NewJFramePath.java (24)1.整体结构与功能划分(一)总体结构程序的主类是NewJFrame,该类负责绘制图形用户界面并执行蚁群算法。

将蚁群算法中的“蚂蚁”抽象为Ant类,实现遍历所有城市(选择下一个城市)、计算本次遍历的路程等功能。

ACO类聚合了Ant类,完整的实现了蚁群算法,包括迭代遍历、更新信息素等过程。

NewJFramePath类将解路径以图形方式显示出来。

另设两个数据类parameter和Data,parameter类用于保存参数的默认值,主要参数包括:蚂蚁数量、城市数目、迭代次数、α、β、挥发因子、信息素强度Q、路径信息素初始值initQ。

Data中存储每个城市的位置信息。

(二)类的划分与功能说明i.NewJFrame类定义了各组件对鼠标事件响应方式。

图形用户界面为用户提供输入各项参数的窗口,并添加了“使用默认参数”的功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能实验报告-
姓名:
学号:
班级:
实验时间:
'
蚁群算法
·
实验原理:
蚂蚁在觅食过程中可以找出巢穴到食物源的最短路径,为什么
(1)信息素(pheromone)
(2)正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。

(3)挥发现象:路径上的信息素浓度会随着时间推进而逐渐衰减。

蚁群算法的缺点:
1)收敛速度慢
2)易于陷入局部最优

改进:
1)采用局部优化,设计了三种优化算子。

2)采用蚁群优化算法。

3)其它优化算法
实验内容:
旅行商问题(TSP,traveling salesman problem):
一商人去n个城市销货,所有城市走一遍再回到起点,使所走路程最短。

~
实验步骤:
算法代码:
%%蚁群算法的优化计算——旅行商问题(TSP)优化
%% 清空环境变量
|
clear all
clc
%% 导入数据
load
%% 计算城市间相互距离
n = size(citys,1);
D = zeros(n,n);
for i = 1:n
for j = 1:n

if i ~= j
D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2)); else
D(i,j) = 1e-4;
end
end
end
%% 初始化参数
m = 50; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
@
beta = 5; % 启发函数重要程度因子rho = ; % 信息素挥发因子
Q = 1; % 常系数
Eta = 1./D; % 启发函数
Tau = ones(n,n); % 信息素矩阵
Table = zeros(m,n); % 路径记录表
iter = 1; % 迭代次数初值
iter_max = 200; % 最大迭代次数
Route_best = zeros(iter_max,n); % 各代最佳路径
Length_best = zeros(iter_max,1); % 各代最佳路径的长度Length_ave = zeros(iter_max,1); % 各代路径的平均长度
.
%% 迭代寻找最佳路径
while iter <= iter_max
% 随机产生各个蚂蚁的起点城市
start = zeros(m,1);
for i = 1:m
temp = randperm(n); %返回n个[0, n]间的随机元素向量 start(i) = temp(1);
end
Table(:,1) = start;
% 构建解空间
{
citys_index = 1:n; %访问1~n这n个城市
% 逐个蚂蚁路径选择
for i = 1:m
% 逐个城市路径选择
for j = 2:n %各个蚂蚁都需要访问n-1个城市
tabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)
allow_index = ~ismember(citys_index,tabu); %判断citys_index中元素有没有在tabu中出现,出现用1表示,否则用0表示。

allow = citys_index(allow_index); % 待访问的城市集合
P = allow;
% 计算城市间转移概率
for k = 1:length(allow)
`
P(k) = Tau(tabu(end),allow(k))^alpha * Eta(tabu(end),allow(k))^beta;
end
P = P/sum(P);
% 轮盘赌法选择下一个访问城市
Pc = cumsum(P); %返回矩阵不同维数的累加
target_index = find(Pc >= rand); %选择下一个访问城市,往往转移概率大的城市被选中的概率也更大。

target = allow(target_index(1));
Table(i,j) = target; %已选定的下一个待访问城市
end
end
% 计算各个蚂蚁的路径距离
~
Length = zeros(m,1);
for i = 1:m
Route = Table(i,:);
for j = 1:(n - 1)
Length(i) = Length(i) + D(Route(j),Route(j + 1));
end
Length(i) = Length(i) + D(Route(n),Route(1)); %构成环
end
% 计算最短路径距离及平均距离
if iter == 1
[min_Length,min_index] = min(Length);

Length_best(iter) = min_Length;
Length_ave(iter) = mean(Length);
Route_best(iter,:) = Table(min_index,:); %Table,访问城市列表,也就是路径记录表
else
[min_Length,min_index] = min(Length);
Length_best(iter) = min(Length_best(iter - 1),min_Length); Length_ave(iter) = mean(Length);
if Length_best(iter) == min_Length
Route_best(iter,:) = Table(min_index,:);
else
Route_best(iter,:) = Route_best((iter-1),:);
*
end
end
% 更新信息素
Delta_Tau = zeros(n,n);
% 逐个蚂蚁计算
for i = 1:m
% 逐个城市计算
for j = 1:(n - 1)
Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
end
Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);

end
Tau = (1-rho) * Tau + Delta_Tau; %所有蚂蚁在各连接路径上的信息素浓度,不同迭代层间有关联
% 迭代次数加1,清空路径记录表
iter = iter + 1;
Table = zeros(m,n);
end
%% 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
disp(['最短距离:' num2str(Shortest_Length)]);

disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
%% 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],...
[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
text(citys(i,1),citys(i,2),[' ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')']) figure(2)
plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r:')
legend('最短距离','平均距离')
xlabel('迭代次数')
ylabel('距离')
title('各代最短距离与平均距离对比')
实验结果:。

相关文档
最新文档