移动环境下电波传播的几种效应
数字无传输课件 移动信道中的电波传播

3.3多径传输与快衰落(6)
式中,
A = x + jy = r ⋅ e
iθ
r
为接收信号幅度(包络)
θ为接收信号相位起伏(相位)
3.3多径传输与快衰落(7)
容易证明: (1)随机变量 x, y为统计独立的正态分布,且x,y,A均方值为
x 2 = y 2 = A2 = σ 2
(2) 信号包络
r 为瑞利分布,相位θ 为均匀分布
MS移动时地形、地物大幅度慢变化会引起接收信号电 平中值存在周期为秒级的慢衰落。 最典型的情况是下图所示地形、地物的阴影效应:
山/大建筑物 TX S大 MS BS S小 S大
当MS移动到山岳或高楼屏蔽电波所造成的阴影区时, 接收信号减小, 反之增大。
3.4 阴影效应与慢衰落(2)
慢衰落引起接收信号电平中值存在周期为秒级的慢衰落
Xn =
nλd1d 2 (d1 + d 2 )
一般来说,当阻挡体不阻挡第一菲涅尔区时绕射损失最 小,绕射的影响可以忽略不计。经验表明,在视距通信 链路设计时,只要55%的第一菲涅尔区无阻挡,其他菲 涅尔区的情况基本不影响绕射损耗
2.2.3障碍物的影响与绕射损耗(4)
图中, x 为菲涅尔余隙 通常用其相对值表示: x/x1 x1= [λd1d2/(d1+d2)]1/2 为第一菲涅尔半径
移动通信环境下场强变化剧烈 场强变化的平均值随距离增加而衰减 场强特性曲线的中值呈慢速变化--慢 衰落 场强特性曲线的瞬时值呈快速变化-- 快衰落
3.2 移动通信环境下的几个效应
空间传播损耗--Path loss 多径效应:由移动体周围的反射、散射 等引起的多径传播,表现为快衰落 多普勒效应:由移动体的运动速度和方 向引起,多径条件下,会引起多普勒频 谱展宽 阴影效应:由地形结构引起,表现为慢 衰落
电波传播理论复习资料(整理后)

第一章绪论1.掌握正常的和反常的两种类型传播模式的基本概念;正常的传播机制总是存在,如图1.1所示:反常的传播机制偶然存在,如图1.2所示:2.掌握超短波和微波的主要传播效应。
1、晴空条件下的视距传播——在晴朗天气的情况下,当传播路径两端点之间没有障碍阻挡或者障碍阻挡可以忽略时,超短波和微波按照视距传播。
【视距传播不仅仅是自由空间的传播(即空间扩散损耗);还要计及大气气体对无线电波的吸收损耗(水汽和氧气对电波的吸收损耗)。
晴空大气中,还存在许多其他复杂的重要的视距传播现象(晴空大气中的层结以及湍流不均匀体对无线电波的反射、折射、多径传播、散射、散焦和聚焦效应等等)。
)】2、绕射传播——当传播路径两端点之间的传播余隙小于第一费涅尔半径时,即波传播的空间受到地面地物某种程度的阻挡时,就会产生绕射损耗。
【对于非视距和超视距传播的情况,绕射损耗可以是很严重的。
绕射损耗的大小与频率、余隙、障碍的位置和形状等因素有关。
为了计算因地面地物障碍阻挡引起的对无线电波的绕射损耗,首先必须制作准确的电路地形剖面图,定义和计算相关的几何参数。
在出现负折射的情况下,绕射损耗尤其严重;在超折射条件下绕射损耗则变小。
所以,当气象条件不稳定时,容易出现绕射衰落。
】3、地形、地物的散射和反射4、雨、水凝体和沙尘对电波的散射和衰减5、多径传播和聚焦效应:【多径传播——大气层结的反射和折射以及地面地物的反射和散射使得在接收点所接收到的信号是多条射线合成的总效果。
这些多径射线具有各自不同的相位和幅度,所以多径射线的合成是向量的合成。
并且由于各条射线幅度和相位的随机变化,最终产生所谓的多径衰落现象,这是对无线电通信的质量水平具有非常重要的影响。
聚焦效应——当射线在对流层中传播时,由于大气折射指数的不均匀性会产生聚焦和散焦效应。
聚焦会使信号大大增强,相反散焦会使信号减弱。
聚焦、散焦何时出现和强度如何均与气象条件有关,而气象变化也是随机的。
移动通信复习知识要点

第一部分概述1.了解移动通信的发展情况古代移动通信-萌芽阶段-开拓阶段-商业阶段-蜂窝思想-第一代移动通信系统-数字化-第二代移动通信系统-宽带、多媒体-第三代移动通信系统-广带IP多媒体-第四代移动通信系统(1897年,马可尼完成莫尔斯电码无线通信实验,标志无线电通信的开始,开创了海上通信业)(1928年,美国底特律警察局率先使用装备贝茨发明的能适应移动车辆震动影响的无线电收发信机——超外差AM接收机的警用车辆无线电移动系统(单向),标志移动通信开始)(1935年,阿姆斯特朗发明了FM方式无线电,是移动通信中的第一个大分水岭)(早在40年代末,美国Bell实验室提出蜂窝构想;1974年正式提出了蜂窝移动通信的概念。
)2.了解通信系统的分类按工作方式分类---单工双工(TDD,FDD) 半双工按信号形式分类---模拟网和数字网按覆盖范围分类---城域网,局域网和个域网按服务特性分类---专用网,公用网按多址方式分类---FDMA,TDMA,CDMA,SDMA 按使用对象分类---民用系统、军用系统按业务类型分类---电话网、数据网、综合业务网、多媒体按使用环境分类---陆地通信、海上通信、空中通信依据通话状态和频率使用方法,可分为单向和双向单工和双工3.了解双工方式双工通信的特点是: 同普通有线电话很相似, 使用方便。
其缺点是: 在使用过程中, 不管是否发话, 发射机总是工作的, 故电能消耗很大, 这对以电池为能源的移动台是很不利的。
针对此问题的解决办法是: 要求移动台接收机始终保持在工作状态, 而令发射机仅在发话时才工作。
这样构成的系统称为准双工系统, 也可以和双工系统兼容。
这种准双工系统目前在移动通信系统中获得了广泛的应用。
基站移动台第二部分移动通信的传播特性1.了解电波的传播方式1) 直射波:电波传播过程中没有遇到任何的障碍物, 直接到达接收端的电波, 称为直射波。
直射波更多出现于理想的电波传播环境中。
移动通信复习重点-李建东版

1.什么叫移动通信及移动通信有哪些特点;移动通信的分类。
P1-P22.常用的移动通信有哪些系统及各自的组成P6-P193.移动通信采用了哪些先进的基本技术,各项技术的主要作用是什么P20-P22调制技术移动信道中电波传播特性研究多址方式抗干扰措施组网技术4.现代移动通信的电波传播方式及其特点。
P94直线波反射波地表面波在移动通信中,电波遇到各种障碍物时会发生反射与散射现象,它对直射波会引起干涉,即产生多径效应现象。
5.什么叫单工通信,什么叫单双工通信,什么叫双工通信。
P2-36.数字通信系统的主要特点是什么P4频率利用率高,有利于提高系统容量能提供多种业务服务抗噪声,抗干扰,抗多径衰落能力强能实现更有效灵活的网络管理与控制便于实现通信的安全保密可降低设备成本以及减小用户手机的体积与重量7.P97-例3-18.什么叫衰落储备,什么叫可通率P105为防止因衰落(包括快衰落与慢衰落)引起的通信中断,在信道设计中,必须使信号的电平有足够的余量,以使中断率R小于规定指标,这种电平余量成为衰落储备。
可通率T=1-R 9.什么叫多径衰落P106在通信系统中,由于通信地面站天线波束较宽,受地物、地貌和海况等诸多因素的影响,使接收机收到经折射、反射和直射等几条路径到达的电磁波,这种现象就是多径效应。
这些不同路径到达的电磁波射线相位不一致且具有时变性,导致接收信号呈衰落状态;这些电磁波射线到达的时延不同,又导致码间干扰。
若多射线强度较大,且时延差不能忽略,则会产生误码,这种误码靠增加发射功率是不能消除的,而由此多径效应产生的衰落叫多径衰落,它也是产生码间干扰的根源。
10.地形地貌的分类和定义P110-P111为了计算移动通信中信号电场强度中值(或传播损耗中值),可将地形分为两大类,中等起伏地形与不规则地形,并以中等起伏地形为传播基准。
所谓中等起伏地形,是指在传播路径的地形剖面上,地面起伏高度不超过20m,且起伏缓慢,峰点与谷点之间的水平距离大于起伏高度。
移动通信电子课件教案-第3章_移动信道的传播特性

第3章 移动信道的传播特性
3.1.4 障碍物的影响与绕射损耗
P
x T
d1 h1
x 为菲涅尔余隙
T d1
d2
R d2
h2
x
h1
P
R h2
(a)
(b)
图 3 - 3 障碍物与余隙
(a) 负余隙; (b) 正余隙
第3章 移动信道的传播特性
t = t0 t= t0+
t1 t1+ 1 1 t1+ 1 2 (a)
t2 t2+ 2 2t2+ 2 3 t2+ 2 1 (b)
t= t0+
t3
(c)
图 3 - 11 时变多径信道响应例如 (a) N=3; (b) N=4; (c) N=5
t3+ 3 4
第3章 移动信道的传播特性
第3章 移动信道的传播特性
3.2.4 多径时散与相关带宽 ——续
时延扩展Δ:最大传输时延和最小传输时延的差值,即最后 一个可分辨的时延信号与第一个时延信号到达时间的差值, 实际上就是脉冲展宽的时间。
表示时延扩展的程度。
归一化时延信号的包络E(t):将移动通信中接收机接收 到的多径的时延信号强度进行归一化。
第3章 移动信道的传播特性
第3章 移动信道的传播特性
3.1 无线电波传播特性 3.2 移动信道的特征 3.3 陆地移动信道的传输损耗 3.4 移动信道的传播模型 思考题与习题
第3章 移动信道的传播特性
引言
三种研究无线移动通信信道的根本方法: 理论分析:用电磁场理论和统计理论分析电波在移动
环境中的传播特性,并用数学模型来描述移动信道。 现场电波实测:在不同的传播环境中,做电波实测实
多普勒效应与多径衰落对移动通信的影响

应对多径衰落的策略
分集技术
通过在多个路径上发送相同的信息,使得接收端能够从多个路径分 量中恢复出原始信号,提高信号的可靠性和稳定性。
均衡技术
通过在接收端对多个路径分量进行加权合成,使得合成信号具有较 小的失真和噪声,提高信号的质量。
信道编码技术
通过在发送端对数据进行冗余编码,使得在传输过程中部分数据受损 时,仍能通过解码恢复出原始数据,提高通信的可靠性。
STEP 02
STEP 01
动态频偏校正
信道估计与均衡
通过实时监测和计算多普勒频 移,在接收端进行动态频偏校 正,以减小多普勒效应的影响 。
STEP 03
分集接收
采用分集技术,通过多个接收 天线和合并算法,降低多普勒 效应对通信系统的影响。
利用信道估计和均衡技术,对 多普勒效应引起的信号失真进 行补偿,提高通信性能。
说明多径衰落对移动通信信 号传输的影响,包括信号幅 度波动、延迟扩展等。
重要性
分析多普勒效应和多径衰落对移 动通信系统性能的影响,如通信 质量、覆盖范围、数据传输速率
等。
强调解决多普勒效应和多径衰落 问题在移动通信技术发展中的重 要性,以提高通信系统的可靠性
和稳定性。
指出多普勒效应和多径衰落对移 动通信领域研究的挑战和机遇,
多普勒效应与多径衰 落对移动通信的影响
• 引言 • 多普勒效应 • 多径衰落 • 多普勒效应与多径衰落的关系 • 解决方案与未来展望
目录
Part
01
引言
主题简介
介绍多普勒效应和多径衰落 的基本概念,以及它们在移 动通信中的重要性和作用。
阐述多普勒效应对移动通信 信号传输的影响,包括信号 频率偏移、相位变化等。
第13章__电波传播

电道的传输损耗:
发射天线输入功率与接收天线输出功率(满足 匹配条件)之比,即
Pin 4 r 2 1 L ( ) 2 PL A Gr G L L L0 LF Gr GL dB
在路径传输损耗 Lb 为客观存在的前提下,降 低传输损耗L的重要措施就是提高收、发天线的增 益系数。
因此,频率越低,绕射能力越强。
衰减损耗、衰落 媒质效应 反射、折射、散射 极化偏转 干扰和噪声 时域、频域畸变 这些媒质效应对信息传输的质量和可靠性常常产 生严重影响,因此各种媒质中各频段电磁波的传播效 应是电波传播研究的主要对象。
电波
电波传播的基本特性
电波传播的基本特性即移动信道的基本特性 ——衰落特性
D=1的无方向性接收天线的有效接收面积为
Ae 4
2
所以该接收天线的接收功率为
2 PL Sav Ae ( ) Pr 4 r
于是自由空间传播损耗为
Pr 4 r L0 10lg 20lg dB PL
或 L0 32.45 20lg f ( MHz ) 20lg r( km)
划分菲涅尔半波带的球面是任意选取的,因此 当球面半径R变化时,尽管各菲涅尔区的尺寸也在 变化,但是它们的几何定义不变。而它们的几何定 义恰恰就是以A、P两点为焦点的椭圆定义。
如果考虑到以传播路径为轴线的旋转对称性, 不同位置的同一菲涅尔半波带的外围轮廓线应是一
个以收、发两点为焦点的旋转椭球。
A
2F1
A与工作频率、传播距离、媒质电参数、地貌 地物、传播方式等因素有关。
基本传输损耗:Lb L0 LF 自由空间传播损耗
dB
衰减损耗
如果发射天线的输入功率为Pin,增益系数为 Gr,接收天线的增益系数为GL,则相应的功率密 度和最佳接收功率分别为
多径效应

多径效应百科名片多径效应(multipatheffect):电波传播信道中的多径传输现象所引起的干涉延时效应。
在实际的无线电波传播信道中(包括所有波段),常有许多时延不同的传输路径。
各条传播路径会随时间变化,参与干涉的各分量场之间的相互关系也就随时间而变化,由此引起合成波场的随机变化,从而形成总的接收场的衰落。
因此,多径效应是衰落的重要成因。
多径效应对于数字通信、雷达最佳检测等都有着十分严重的影响。
目录简介电离层短波的多径效应多径效应描述影响抵抗措施应用多径效应引起的衰落编辑本段简介多径效应多径效应移动体(如汽车)往来于建筑群与障碍物之间,其接收信号的强度,将由各直射波和反射波叠加合成。
多径效应会引起信号衰落。
各条路径的电长度会随时间而变化,故到达接收点的各分量场之间的相位关系也是随时间而变化的。
这些分量场的随机干涉,形成总的接收场的衰落。
各分量之间的相位关系对不同的频率是不同的。
因此,它们的干涉效果也因频率而异,这种特性称为频率选择性。
在宽带信号传输中,频率选择性可能表现明显,形成交调。
与此相应,由于不同路径有不同时延,同一时刻发出的信号因分别沿着不同路径而在接收点前后散开,而窄脉冲信号则前后重叠。
编辑本段电离层短波的多径效应多径效应传播的多径效应经常发生而且很严重。
它有两种形式的多径现象:一种是分离的多径,由不同跳数的射线、高角和低角射线等形成,其多径传播时延差较大;另一种是微分的多径,多由电离层不均匀体所引起,其多径传播时延差很小。
对流层电波传播信道中的多径效应问题也很突出。
多径产生于湍流团和对流层层结。
在视距电波传播中,地面反射也是多径的一种可能来源。
编辑本段多径效应描述多径时延特性可用时延谱或多径散布谱(即不同时延的信号分量平均功率构成的谱)来描述。
与时延谱等价的是频率相关函数。
实际上,人们只简单利用时延谱的某个特征量来表征。
例如,用最大时延与最小时延的差,表征时延谱的尖锐度和信道容许传输带宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#1 移动环境下电波传播的几种效应
空间传播路径损耗(Path Loss)(远近效应)
阴影效应:由于地面结构引起的衰落,表现为慢衰落
多径效应:由移动体周围的局部散射体引起的多径传播,表现为快衰落
多普勒效应:由于移动体的移动速的和方向引起多径条件下多普勒频谱扩展
阴影效应:由大型建筑物和其它物体的阻挡,在电波传播的接收区域中产生传播半盲区。
它类似于太阳光受阻挡后可产生的阴影,光波的波长较短,因此阴影可见,电磁波波长较长,阴影不可见,但是接收终端(如手机)与专用仪表可以测试出来
远近效应:由于接收用户的随机移动性,移动用户与基站之间的距离也是在随机变化,若各移动用户发射信号功率一样,那么到达基站时信号的强弱将不同,离基站近者信号强,离基站远者信号弱。
通信系统中的非线性将进一步加重信号强弱的不平衡性,甚至出现了以强压弱的现象,并使弱者,即离基站较远的用户产生掉话(通信中断)现象,通常称这一现象为远近效应
多径效应:由于接收者所处地理环境的复杂性、使得接收到的信号不仅有直射波的主径信号,还有从不同建筑物反射过来以及绕射过来的多条不同路径信号。
而且它们到达时的信号强度,到达时间以及到达时的载波相位都是不一样的。
所接收到的信号是上述各路径信号的矢量和,也就是说各径之间可能产生自干扰,称这类自干扰为多径干扰或多径效应。
这类多径干扰是非常复杂的,有时根本收不到主径直射波,收到的是一些连续反射波等等
多普勒效应:它是由于接收用户处于高速移动中比如车载通信时传播频率的扩散而引起的,其扩散程度与用户运动速度成正比。
这一现象只产生在高速(≥70km/h)车载通信时,而对于通常慢速移动的步行和准静态的室内通信,则不予考。