共价键与分子间力
第十章 共价键和分子间作用力

第十章共价键和分子间作用力本章教学要求掌握现代价键理论、杂化轨道理论熟悉共价键的本质、特征和类型,分子间作用力了解价层电子对互斥理论、分子轨道理论(chemical bond)。
化学键分为离子键(ionic bond)、共价键(covalent bond)和金属键(metallic bond)。
本章依据量子力学阐述共价键的现代理论,同时要介绍物质分子与分子之间比较弱的相互作用力,即分子间作用力(intermolecular force),它包括范德华力(van der Waals force)和氢键(hydrogen bond)。
第一节现代价键理论1916年美国化学家路易斯(G.N. Lewis)*提出经典的共价键电子理论。
该理论认为两个或多个原子可以相互“共用”一对或多对电子,以便达到稀有气体原子最外层2或8电子层结构(路易斯结构),而生成稳定的分子。
例如:H·+ ·H →H∶H 或H-H分子中通过共用电子对连接的化学键称为共价键,也可用短横线表示。
该理论初步揭示了共价键与离子键的区别,能解释共价键的饱和性。
但不能解释一些分子的中心原子最外层电子数虽然少于或多于8仍能稳定存在的事实,如:也无法说明为什么共用互相排斥的两个带负电荷的电子能使原子成为稳定分子的本质原因。
直到量子力学建立以后,共价键的理论才开始发展。
一、氢分子的形成和共价键的本质* G.N. Lewis加州大学伯克利分校教授,Lewis提出共价键的电子理论对发展化学价理论奠定了基础;他还创造性地提出了酸碱电子理论。
他的研究生中先后有5人获得诺贝尔奖。
图氢分子是最简单的典型共价键分子。
1927年德国化学家海特勒(W. Heitler )和伦敦(F. London )把氢分子看成是两个核和两个电子组成的系统,用量子力学近似求解其薛定谔方程。
结果得到H 2分子形成的势能曲线,见图10-1。
当两个H 原子彼此远离时没有相互作用,它们的势能为零。
大学基础化学课件-第十章 共价键与分子间力

H2
H─H
O2
O─O
±
极性共价键(Nonpolar covalent bond ):成键原子的
电负性不相同,核间电子云密集区域偏向电负性较大 的一端,正负电荷重心不重合。
HCl H─Cl
+
-
键极性判断(Bond polarity judgment )
一般电负性差值General electronegativity △X =0
成的同型共价键的键长越短,键越牢固。
键角 ——分子中同一原子形成两个化学键间的夹角。
键的极性 ——当成键原子的电负性相同时(成键的两个原子为相同元
素原子),为非极性共价键;否则,为极性共价键。
非极性共价键(Nonpolar covalent bond ):成 键原子的电负性相同,核间电子云密集区域在 两核的中间位置,正负电荷重心重合。
氢键性质:
﹡ 非化学键,属于一种特殊的分子间力﹡ ﹡ 具有方向性和饱和性﹡ ﹡ X、Y原子的半径愈小、电负性愈大,形成的氢键愈强﹡
习题
一、选择题
1、CO分子中存在的化学键是( )
A、Π键、ơ键
B、Π键、配位健
C、ơ键、Π键、配位健 D、ơ键、配位健
2、N2分子中存在的化学键是( )
A、一个Π键、一个ơ键 B、一个ơ键
q.d
分子电偶极矩越大,分子的极性就越大;分子电偶极矩越 小,分子的极性就越小;分子电偶极矩为零的分子是非极性分 子。
2、分子的极化
+ -
+-
+
-
-+
-
+
+-
因为电场的作用,使分子变形产生偶极或增大偶极矩的现 象,就称为分子的极化。
共价键与分子间作用力

共价键与分子间作用力共价键和分子间作用力是化学中两个重要的概念,它们对物质的性质和行为起着决定性的作用。
本文将重点介绍共价键和分子间作用力的概念、类型、特点以及它们在化学反应和物质性质中的应用。
共价键是两个非金属原子间由电子对共享而形成的一种化学键。
在共价键中,原子不会失去或得到电子,而是共享电子,以满足各自的外层电子壳。
共价键的形成能力取决于原子的电负性差异。
电负性是一个原子吸引其共享电子的能力,与原子核的吸引力有关。
共价键分为偶极共价键和非极共价键两种类型。
偶极共价键是指共价键中的电子对更多地靠近一个原子,使其带有相对正电荷,另一个原子则带有相对负电荷。
非极共价键是指共价键两端的原子相对电荷均相等,电子对靠近两个原子中间。
具体来说,如果两个原子电负性相等,那么形成的是非极共价键;如果两个原子电负性差异较大,那么形成的是偶极共价键。
除了共价键,分子间作用力也是分子间相互作用的重要力量。
分子间作用力指的是靠近的两个分子之间的相互作用力。
它是由于分子间的静电相互作用、分子之间的取向相互作用和分子之间的诱导相互作用所导致的。
静电相互作用是一种非共价相互作用力,其中相互作用的分子带有正电荷或负电荷。
根据库仑定律,两个带电荷的物体之间的引力或斥力与它们之间的距离和电荷量成正比。
因此,静电相互作用力对于离子之间的相互作用是非常重要的。
取向相互作用是由于两个极性分子之间的分子极性导致的相互吸引。
极性分子的极性取决于分子中的原子电负性差异。
在这种情况下,正极和负极之间的相互作用力具有较大的分子之间作用力。
诱导相互作用是由于无极性分子中的电子云的瞬间分布的改变而引起的。
当一个原子或分子靠近另一个无极性原子或分子时,它的电子云会更集中地分布在远离相互作用区域的一侧。
这将导致另一个原子或分子的电子云在与之相对的另一侧更加分散。
因此,在周围电子云的引导下,两个无极性分子之间会发生诱导相互作用,由此产生相互作用力。
除了静电相互作用、取向相互作用和诱导相互作用外,范德华力也是一种分子间作用力。
共价键与分子间作用力

2p
键以“头碰头”式成键
重叠程度大
键较牢固
沿键轴呈圆柱形对称
自由旋转
单独存在
键以“肩并肩”式成键
重叠程度小
键易断开
在通过键轴的平面上下对称
不能旋转
只能与键共存
键和键 的比较
配位键
共用电子对由某个原子单方提供,另一个原子提供空轨道。
键能(bond energy)
在298K 和标准压力(100kPa)时,将lmol气态分子AB拆开,成为气态的A原子和B原子所需要的能量。用符号E表示,单位kJ·mol-1。
+
+
+
杂化轨道的类型
a ) 按参加杂化的轨道分类 s - p 型 sp 杂化、sp2 杂化和 sp3 杂化 ; s - p - d 型 sp3 d 杂化、 sp3 d2 杂化等 。
4条 sp3 杂化轨道能量不相等。
不等性杂化, 如 O 的 sp3 杂化
共价键的饱和性 (受自旋相反限制)
一个原子上的一个电子只能与另一个原子上自旋方向相反的一个电子配对; 一个原子中所含未成对电子数就是它可能形成共价键的数目。
共价键的方向性(受最大重叠原理限制 )
共价键的方向性示意图
共价键的特征
s-s
s-p
p-p
1.σ键:原子轨道以“头碰头”的形式重叠形成的共价键。
• • • •
但 Lewis 没有说明这种键的实质,所以适应性不强 。 在解释 BCl 3 , PCl 5 等其中的原子未全部达到稀有气体结构的分子时,遇到困难。
PART ONE
引言:氢分子的共价键
计算表明,若两个 1s 电子以相同自旋的方式靠近,则 r 越小,V 越大。此时,不形成化学键。
人民卫生出版社第版《基础化学》习题

第十章共价键与分子间力首页难题解析学生自测学生自测答案章后习题解答题难题解析[TOP]例10-1试用杂化轨道理论说明乙烯分子的形成及其构型。
分析根据杂化轨道理论,形成乙烯分子时,C原子的价层电子要杂化。
共价键形成时,σ键在成键两原子间能单独存在,且只存在一个; 键在成键两原子间不能单独存在,但可存在多个。
乙烯分子中C原子的4个价电子分别与其它原子形成三个σ键,C、C原子间的双键中有一个是π键。
三个σ键决定分子构型,因此C原子有三个原子轨道参与杂化,形成三个等性杂化轨道。
解乙烯分子C2H4中有2个C原子和4个H原子,每个基态C原子的价层电子组态为2s2 2p2,在形成乙烯分子的过程中,1个2s电子被激发到2p空轨道上,然后1个2s轨道和2个2p轨道杂化形成3个等同的sp2杂化轨道,彼此间夹角为120o。
每个C原子的2个sp2杂化轨道各与1个H原子的1s轨道重叠形成2个C—H σ键;2个C原子间各以1个sp2杂化轨道互相重叠,形成1个σ键。
由于2个C原子的这6个sp2杂化轨道处于同一平面,未参与杂化的2p z轨道则垂直于该平面,“肩并肩” 重叠形成1个π键,构成C=C 双键。
乙烯分子中6个原子在一个平面上,分子呈平面构型。
例10-2 利用价层电子对互斥理论预测-I的空间构型。
3分析先确定中心原子的价电子对数,中心原子提供7个电子,配位提供1个电子,加上负离子的电荷数,得价层电子数的总和再除以2。
然后根据价层电子对构型和孤对电子决定-3I 的空间构型。
解 -3I 中有3个I 原子,我们可将其中1个I 作为中心原子,其余2个作为配位体。
中心原子I 有7个价电子,2个配位I 原子各提供1个电子,-3I 离子的负电荷数为1,所以中心原子的价电子对数为 (7+2+1)/2=5 。
价层电子对构型为三角双锥,因配位原子数为2,说明价层电子对中有2对成键电子对和3对孤对电子,以3对孤对电子处在三角双锥的三角形平面上排斥能最小,所以-3I 为直线型。
第十一章 共价键和分子间作用力习题解析

第十一章共价键和分子间作用力习题解析1.现代价键理论的要点是什么?答:(1)两个原子接近时,只有自旋方向相反的单电子可以相互配对(两原子轨道重叠),使电子云密集于两核之间,系统能量降低,形成稳定的共价键。
(2)自旋方向相反的单电子配对形成共价键后,就不能再和其他原子中的单电子配对。
所以,每个原子所能形成共价键的数目,取决于该原子中的单电子数目。
这就是共价键的饱和性。
(3)成键时,两原子轨道重叠越多,两核间电子云越密集,形成的共价键越牢固,这称为原子轨道最大重叠原理。
原子轨道中,除s轨道呈球形对称外,p、d等轨道都有一定的空间取向,它们在成键时,只有沿着一定的方向靠近才能达到最大程度的重叠,形成稳定的共价键,这就是共价键的方向性。
2. 列表表示σ、π 键的区别。
答:3. 根据共用电子对是否偏移,共价键可以分为哪两类?答:根据共用电子对是否偏移共价键可分为极性共价键和非极性键共价键。
极性共价键是由于成键原子的电负性不同,共用的电子对偏向电负性较大的原子,使键的一端带部分负电荷δ-,而另一端带部分正电荷δ+,键的正、负电荷中心不重合形成的共价键。
非极性共价键是因为成键原子的电负性相同,成键电子对等量共享,键的正、负电荷中心重合的共价键。
4.共价键的极性及极性大小用什么来判断?共价分子的极性及极性大小用什么来量度?答:共价键的极性大小根据成键原子的电负性来判断,因为共用的电子对偏向电负性较大的原子,使键的一端带部分负电荷δ-,而另一端带部分正电荷δ+,故成键原子的电负性差别越大,共价键的极性越强。
双原子分子的极性与键的极性一致。
多原子分子的极性不仅与键的极性有关,也与分子构型有关,虽然是极性键,只要键型相同,分子构型对称,其分子中各个键的极性就能相互抵消,正、负电荷重心重合。
分子的极性可用电偶极矩(electric dipole moment)μ来衡量。
它是分子中正、负电荷中心的距离d 与正或负电荷中心上的电量q 的乘积,即μ= q·d ,单位为10-30 C·m 。
共价键及分子间作用力

243
N---N 110
946
Br- Br 228
193
C- H 109
414
I- I 267
151
O- H 96
464
4、键角(bond angle)
键角:分子中同一原子形成的两个化学键间的夹角。
: : :
C l 124 o 21 '
111 o18 ' C = O Cl
N
H
H F 107o18'
l/pm E/(kJ·mol-1)
l/pm E/(kJ·mol-1)
H- F 92
570
H- H 74
436
H- Cl 127
432
C- C 154
346
H- Br 141
366
C--C 134
602
H- I 161
298
C---C 120
835
F- F 141
159
N- N 145
159
Cl- Cl 199
核间距 R0为74 pm。
共价键的本质——原子轨道重叠,核间电子概率密度大吸引原 子核而成键。
二、价键理论基本要点与共价键的特点
1、价键理论基本要点:
(1)两原子靠近时,自旋方向相反的未成 对的价电子可以配对,形成共价键
(2)自综旋方上向所相反述的,单电价子健配对理形论成共认价为键后共,价就不键能是再和 通其过他自原子旋中相的单反电的子配电对子。 配对和原子轨道的 最原大子重中单叠电而子数形决成定了的共,价键使的体数目系—达共价到键能的饱量和最性。
大 大
较低,较稳定
π键 ““肩碰肩””
与轨道对称轴相互平行方向 两块冬瓜状,节面对称
分子间作用力的四种形成方式

分子间作用力的四种形成方式分子间作用力是分子之间相互作用的力量,它是物质存在和物质性质产生的基础。
分子间作用力的形成方式有四种,分别是范德华力、氢键、离子键和共价键。
一、范德华力范德华力是分子间最常见的一种作用力,它是由于分子内部电子的运动导致的。
分子中的电子在空间中的运动会引起电荷分布的不均匀,从而形成一种瞬时的偶极矩。
这种偶极矩会与附近的分子偶极矩相互作用,产生吸引力,即范德华力。
范德华力的大小与分子的极性有关,极性越大,范德华力越强。
二、氢键氢键是指分子中氢原子与氧、氮、氟等高电负性原子之间的相互作用。
氢键的形成需要具备三个条件:①氢原子与较电负的原子之间的键能较强,如氢原子与氮原子之间的键能;②氢原子与较电负的原子之间的距离适当,一般在1.5-2.5埃之间;③氢键的形成需要在分子中存在较为稳定的空间构型。
氢键的强度介于共价键和离子键之间,它对物质的性质起到重要的影响。
三、离子键离子键是指由正离子和负离子之间的静电作用力形成的化学键。
在离子键中,正离子和负离子之间相互吸引,形成离子晶体的结构。
离子键的强度较大,使离子晶体具有高熔点、高硬度和良好的导电性等性质。
离子键的形成需要具备两个条件:①正离子和负离子之间的电荷差异较大;②正离子和负离子之间的距离较近。
四、共价键共价键是指由两个非金属原子共享电子而形成的化学键。
在共价键中,原子之间通过电子的共享而相互吸引。
共价键的强度较大,使得共价化合物具有较高的熔点和沸点。
共价键的形成需要满足两个条件:①原子之间的电负性差异较小;②原子之间的距离适当。
共价键的形成可以是单一共价键、双键或者三键,共价键的类型决定了化合物的性质。
分子间作用力的四种形成方式分别是范德华力、氢键、离子键和共价键。
这些作用力对物质的结构和性质具有重要的影响,深入了解分子间作用力的形成方式有助于我们更好地理解物质的性质和相互作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础化学(第9版)
第一节 现代价键理论
HCl 分子形成时,图(a) 为最大重叠
基础化学(第9版)
第一节 现代价键理论
三、共价键的类型
按成键重叠方式
σ键
π键 正常共价键
按电子对来源 配位共价键
基础化学(第9版)
第一节 现代价键理论
1.
σ键和π键
重叠部分沿键轴呈圆柱形对称分布,形成σ共价键。如s-s、s-px 和px-px 轨
在原子间形成共价键的过程中,产生杂化的中心原子并非先受激发产生电
子跃迁,然后再进行轨道杂化,而是激发、杂化及轨道重叠同时进行,分
步描述仅为便于理解。
基础化学(第9版)
第三节 杂化轨道理论
二、杂化轨道类型及实例分析
sp型和spd型杂化
1. sp杂化
基础化学(第9版)
第三节 杂化轨道理论
例:AB2 molecules: BeCl2 Be: 2s2
离域π键
离域键(delocalized bond)属多中心键。常称大π键()。 形成离域π键的原子以杂化轨道形成σ键, 构成分子的基本骨架,它们都在同一平面 上,每个原子可提供1个垂直于平面的p轨 道且相互平行,保证了p轨道最大程度的重 叠。如O3
第四节
分子轨道理论简介
基础化学(第9版)
第四节 分子轨道理论简介
基础化学(第9版)
第二节 价层电子对互斥理论
确定中心原子价层电子对的理想空间构型
基础化学(第9版)
第二节 价层电子对互斥理论
确定分子或离子的空间构型
第三节
杂化轨道理论
基础化学(第9版)
第三节 杂化轨道理论
杂化轨道理论
实验测得CH4分子的空间构型为正四面体,4个C-H键的键角是109°28'。 按照价键理论,基态C原子的价层电子构型为2s22px12py12pz0,仅有2个未成对电
子为V形结构;CO2分子中的键角为180o,分子为直线形结构。 ② 一般而言,根据分子中的键角和键长可确定分子的空间构型。
基础化学(第9版)
第一节 现代价键理论
4.
键的极性(polarity of covalent bond)——由成键原子的电负性不
同引起
① 当成键原子的电负性相同,原子核形成的正电荷重心和核间电子云的负电
2.
正常共价键和配位共价键
① 如果共价键是由成键两原子各提供1个电子配对成键的,称为正常共价键。 ② 如果共价键的形成是由成键两原子中的一个原子单独提供电子对进入另一 个原子的空轨道共用而成键,这种共价键称为配位共价键(coordinate
covalent bond),简称 配位键(coordination bond)。
一、分子轨道理论的要点
理论要点
1. 原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个
杂化轨道之间力图在空间取最大夹角分布,使相互间的排斥能最小,故形成的
键较稳定。不同类型的杂化轨道之间的夹角不同,成键后所形成的分子就具有 不同的空间构型。
基础化学(第9版)
第三节 杂化轨道理论
需要说明的是:
原子轨道的杂化只发生在分子的形成过程中,是原子的价层轨道在原子核
及键合原子的共同作用下发生的;
基础化学(第9版)
第一节 现代价键理论
1.
键能(bond energy)——从能量因素来衡量共价键强度的物理量
在 100kPa和298.15K下,将1摩尔理想气态分子AB解离为理想气态的A、B原子所
① 双原子分子的键能(E)就等于分子的解离能(D)。
需要的能量,称为AB的解离能,单位为 kJ· mol-1。 例如,对于H2分子 H2 (g) → 2H(g)
基础化学(第9版)
第三节 杂化轨道理论
sp型的三种杂化
基础化学(第9版)
第三节 杂化轨道理论
spd型杂化
基础化学(第9版)
第三节 杂化轨道理论
等性杂化和不等性杂化
NH3 H2O
基础化学(第9版)
第三节 杂化轨道理论
1. 等性杂化
2. 不等性杂化: sp3杂化为例
基础化学(第9版)
第三节 杂化轨道理论
价层电子对互斥理论
基础化学(第9版)
第二节 价层电子对互斥理论
一、中心原子和配位原子
BeCl2 BF3 CH4 NF3 H2O
二、用价层电子对互斥理论(VSEPR)判断主族元素ABn型分子或
离子的空间构型
确定中心原子价层电子对数
1. 中心原子的价层电子数和配体所提供的共用电子数的总和除以2; 2. 作为配体,氧族元素的原子不提供电子; 3. 对于复杂离子,在计算价层电子对数时,还应加上负离子的电荷数或减 去正离子的电荷数; 4. 双键、叁键等多重键作为1对电子看待。
第十一章
共价键与分子间力
Covalent Bond and Intermolecular Forces
作者 : 杨金香、贺艳斌 单位 : 长治医学院
目录
第一节 现代价键理论 第二节 价层电子对互斥理论 第三节 杂化轨道理论 第四节 分子轨道理论简介
第五节 分子间力
重点难点 掌握
σ键和π键的特征;杂化轨道理论基本要点,sp型杂化特征,
基础化学(第9版)
第三节 杂化轨道理论
2. sp2杂化
基础化学(第9版)
第三节 杂化轨道理论
例:AB3 molecules: BF3 B: 2s22p1
基础化学(第9版)
第三节 杂化轨道理论
3.
sp3杂化
基础化学(第9版)
第三节 杂化轨道理论
例:AB4 molecules: CH4 C: 2s22p2
子,只能形成2个共价键,即“CH2”分子,且2个C-H键的键角应为90°。
如何解决这些矛盾?
Pauling L等人在价键理论基础上提出了杂化轨道理论(hybrid orbital theory)。
杂化轨道理论实质上仍属于现代价键理论,但在成键能力、分子的空间构型等 方面丰富和发展了价键理论。
① 键长愈短,键愈牢固; ② 相同两原子形成的键长:单键键长>双键键长>三键键长。 例: C—C键长为154 pm; C=C键长为134 pm;C≡C键长为120 pm
基础化学(第9版)
第一节 现代价键理论
3.
键角(bond angle)——分子中同一原子形成的两个化学键间的夹角
① 它是反映分子空间构型的一个重要参数。如H2O分子中的键角为104o45′,分
基础化学(第9版)
第一节 现代价键理论
两氢原子靠近,原子轨道重叠,核间电子云密度增大,系统能量降低,核间距达
74 pm(理论值87pm)时形成稳定共价键。
两个氢原子的电子自旋相反,轨道才能重叠成键,称为氢分子的基态(ground
state)。电子自旋方向相同时,轨道重叠部分的波函数ψ值相减,互相抵消,核间
2.20
Ag
1.93
Cd
1.69
In
1.73
Sn
1.96
Sb
2.05
Te
2.10
I
2.66
Xe
Cs
0.79
Ba
0.89
La
1.10
Hf
1.30
Ta
1.50
W
2.36
Re
1.90
Os
2.20
Ir
2.20
Pt
2.28
Au
2.54
Hg
2.00
Tl
2.04
Pb
2.33
Bi
2.02
Po
2.00
At
2.20
第二节
等性、不等性杂化概念及应用。
熟悉
用价层电子对互斥理论预测分子空间构型; 分子轨道理论要
点,第一、二周期同核双原子分子的分子轨道能级图,并能 用其解释同核双原子分子的磁性与稳定性;分子间力类型、
特点、产生原因;氢键形成条件、特征、应用。
了解 键参数,离域π键的产生条件,自由基的基本概念。
第一节
现代价键理论
③ 配位键用“→” 表示,箭头从提供电子对的原子指向接受电子对的原子。
基础化学(第9版)
第一节 现代价键理论
例:
H+ + :NH3
[H
←
NH3 ]+
C
O
基础化学(第9版)
第一节 现代价键理论
四、键参数
表征化学键性质的物理量称为键参数(bond parameter) 共价键的键参数主要有键能、键长、键角及键的极性。
E(O-H)= 463 kJ· mol-1 同一种共价键在不同的多原子分子中的键能虽有差别,但差别不大。我们可 用不同分子中同一种键能的平均值即平均键能作为该键的键能。一般键能愈 大,键愈牢固。
基础化学(第9版)
第一节 现代价键理论
2.
键长(bond length) ——分子中两成键原子的核间平衡距离。
基础化学(第9版)
第一节 现代价键理论
化学键(chemical bond):是分子或晶体中相邻两原子或离子间的强烈
作用力。键能约为几十到几百千焦每摩尔。
离子键 chemical bond 共价键
正常共价键 配位共价键
金属键
基础化学(第9版)
第一节 现代价键理论
一、氢分子的形成
1926年 Heitler 和 London 用量子力学研究氢分子的形成,解释了共价键的本质
第一节 现代价键理论
键型与成键原子电负性差值的关系
物质 电负性差值
NaCl 2.23
HF 1.80
HCl 0.98