【2019最新】中考数学专题复习小练习专题27概率初步
专题27 概率初步

专题27 概率初步1.2018·淄博下列语句描述的事件中,是随机事件的为( ) A .水能载舟,亦能覆舟 B .只手遮天,偷天换日 C .瓜熟蒂落,水到渠成 D .心想事成,万事如意2.2019·天水如图Z -27-1,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为( )图Z -27-1A.14B.12C.π8D.π43.2018·长沙下列说法正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a |≥0”是不可能事件4.2018·丽水如图Z -27-2,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,转盘停止后指针落在黄色区域的概率是( )图Z -27-2A.16B.14C.13D.7125.2018·聊城小亮、小莹、大刚三名同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A.12B.13C.23D.166.2018·成都在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出1个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是________.7.2019·达州如图Z -27-3所示的电路中,当随机闭合开关S 1,S 2,S 3中的两个时,能够让灯泡发光的概率为________.图Z -27-38.2019·连云港现有A ,B ,C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外其余都相同.现分别从A ,B ,C 三个盒子中任意摸出1个球.(1)从A 盒中摸出红球的概率为________;(2)用画树状图或列表的方法,求摸出的3个球中至少有1个红球的概率.详解详析1.D 2.C 3.C 4.B 5.B 6.6 7.238.解:(1)13(2)画树状图如下:由树状图可知共有12种等可能的结果,摸出的3个球中至少有1个红球(记为事件A)的结果有10种,∴P(A)=1012=56.。
中考数学 第27讲 概率复习1

241,243,341,342,共 8 个,∴甲胜的概率为284=13,而
考点聚焦
归类探究
回归教材
第27课时┃归类探究
解析
(1)画树状图得:
所有得到的三位数有 24 个,分别为:123,124,132,134, 142,143,213,214,231,234,241,243,312,314, 321,324,341,342,412,413,421,423,431,432. (2)这个游戏不公平.理由: ∵组 成的三位数中 是 “伞数 ” 的有: 132, 142,143 ,231,
考点聚焦
归类探究
回归教材
第27课时┃归类探究
第二个
结果
第一
A
个结果
B1
B2
C1
C2
A
(A,B1) (A,B2) (A,C1) (A,C2)
B1
(B1,A)
(B1,B2) (B1,C1) (B1,C2)
B2
(B2,A) (B2,B1)
(B2,C1) (B2,C2)
C1
(C1,A) (C1,B1) (C1,B2)
回归教材
第27课时┃归类探究
探究三、概率的应用
命题角度: 用概率分析游戏方案.
例3 若一个三位数的十位数字比个位数字和百位数字都大, 则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3 个数,组成无重复数字的三位数.
(1)请画出树状图并写出所有可能得到的三位数; (2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数 是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试 说明理由.
(C1,C2)
C2
(C2,A) (C2,B1) (C2,B2) (C2,C1)
2019年中考总复习数与代数模块之《概率》复习与强化训练(含答案)

2019年中考总复习数与代数模块之《概率》复习与强化训练一.概率的概念知识点 1 概率的意义1.必然事件发生的概率是( )A.0 B.0.5 C.1 D.不能确定2.下列数值不可以作为一个事件发生的概率的是( )A.0 B.13C.0.7 D.433.下列说法中,正确的是( ) A.不可能事件发生的概率为0B.随机事件发生的概率为13C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.2017·阿坝州对“某市明天下雨的概率是75%”这句话,理解正确的是( )A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大知识点 2 求简单随机事件的概率5.2018·宜昌在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为( )A.310B.110C.19D.186.2017·宜昌九(1)班在参加学校4×100 m接力赛时,安排了甲、乙、丙、丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( )A.1 B.12C.13D.147.2017·义乌在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A.17B.37C.47D.578.2017·岳阳从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )A.15B.25C.35D.459.2018·怀化在一个不透明的盒子中有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为奇数的概率是________.10.2017·永州把分别写有数字1,2,3,4,5的5张同样的小卡片放进不透明的盒子里,搅拌均匀后随机取出一张小卡片,则取出的卡片上的数字大于3的概率是________.11.2018·东营有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面向上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是________12.暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图4-2-1所示,转盘被均匀地分为20份),并规定:顾客购物每满 200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物用了300元.(1)求他此时获得购物券的概率是多少;(2)他获得哪种购物券的概率最大?请说明理由.图4-2-1提升能力13.如图4-2-2,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,能与图中阴影部分构成轴对称图形的概率是( )图4-2-2A.15B.25C.35D.4514.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( )A.13B.23C.49D.5915.2017·鄂尔多斯将四张形状、大小完全一致的卡片放在不透明的箱子中,每张卡片正反面上分别标的点的坐标如下表所示:若从中随机抽取一张卡片,其正反面上两点正好关于y 轴对称的概率是( )A .14B .12C .34D .1 16.2017·阜新设计一个摸球游戏,先在一个不透明的盒子中放入2个白球,如果希望从中任意摸出1个球是白球的概率为13,那么应该向盒子中再放入________个其他颜色的球.(游戏用球除颜色外其他均相同)17.一个口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,从口袋中取出一个球,取出黄球的概率为25. (1)取出绿球的概率是多少?(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?18.一个不透明的布袋里装有5个球,其中2个红球、3个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现再将n 个白球放入布袋中,搅匀后,若摸出1个球是白球的概率为57,求n 的值.19.如图4-2-3所示,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6.(1)自由转动转盘,当它停止转动时,指针指向奇数区域的概率是多少?(2)请你用这个转盘设计一个游戏,使自由转动转盘时,当转盘停止后,指针指向的区域的概率为23 .图4-2-3答案详解1.C [解析]必然事件就是一定发生的事件,∴必然事件发生的概率是1.2.D3.A [解析]不可能事件发生的概率为0,所以A选项正确;随机事件发生的概率在0与1之间,所以B选项错误;概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误,故选A.4.D5.B [解析]根据概率的定义,可知P(选中“绿”)=110.6.D7.B [解析]∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,摸出黑球的概率是34+3=37.8.C [解析]在2,0,π,3.14,6这5个数中,只有0,3.14和6为有理数,∴抽到有理数的概率是35 .9.35[解析]根据等可能条件下概率的计算公式,共有5种等可能结果,其中摸出奇数号球的结果有3种,所以P(摸出的小球标号为奇数)=3÷5=35 .10.25[解析]∵在1,2,3,4,5中,大于3的数只有4,5,∴取出的卡片上的数字大于3的概率是25 .11.45[解析]在已知的五个图形中是中心对称图形的是平行四边形、矩形、正方形和菱形,所以从中随机抽取一张,卡片上的图形是中心对称图形的概率是45 .12.解:(1)∵转盘被均匀地分为20份,涂颜色的有10份,∴他此时获得购物券的概率是1020=12.(2)他获得50元购物券的概率最大.理由:∵P(获得200元购物券)=120,P(获得100元购物券)=320,P(获得50元购物券)=620=310,∴他获得50元购物券的概率最大.13.C [解析]∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使其能与图中阴影部分构成轴对称图形的有②④⑤3种情况,∴能与图中阴影部分构成轴对称图形的概率是35.故选C.14.D [解析]∵他在该路口遇到红灯的概率为13,遇到黄灯的概率为19,∴他遇到绿灯的概率是1-13-19=59. 15.A [解析]∵四张形状,大小完全一致的卡片中,只有第三张卡片上标的点关于y 轴对称,∴从中随机抽取一张卡片,其正反面上两点正好关于y 轴对称的概率是14.故选A. 16.4 [解析]设应该向盒子中再放入x 个其他颜色的球,根据题意,得2x +2=13,解得x =4. 经检验,x =4是原分式方程的解且符合题意.故答案为4.17.解:(1)P (取出绿球)=1-P (取出黄球)=1-25=35. (2)设袋中有绿球x 个,根据题意,得xx +12=35(或12x +12=25). 解得x =18,经检验x =18是所列方程的解且符合题意.所以袋中的绿球有18个.18.解:(1)∵布袋里装有5个球,其中有3个白球,∴P (摸出1个球是白球)=35. (2)布袋里装有5个球,其中有3个白球,再将n 个白球放入布袋中,有3+n 5+n =57, 解得n =2.经检验n =2是原分式方程的解且符合题意,故n=2.19.解:(1)P(指针指向奇数区域)=36=12.(2)答案不唯一,如方法一:如图所示,自由转动转盘,当它停止转动时,指针指向阴影部分区域的概率为23 .方法二:自由转动转盘,当它停止转动时,指针指向数字不大于4的区域的概率是23 .二。
中考数学复习考点知识与题型专题讲解27--- 概率(解析版)

中考数学复习考点知识与题型专题讲解专题27概率【知识要点】知识点一概率的有关概念概率的概念:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.事件类型:①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.②不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.③不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.概率的计算:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为知识点二概率计算利用列举法求概率方法一:直接列举法求概率当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,通常采用直接列举法。
方法二:列表法求概率当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
方法三:树状图法求概率当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
利用频率估计概率实际上,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.用频率估计概率,虽然不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得可求概率的随机事件的范围扩大.【考查题型】考查题型一判断事件发生可能性的大小典例1.(2021·内蒙古呼伦贝尔市·中考真题)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的D.太阳从西方升起【答案】C【提示】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可【详解】解:A.任意一个五边形的外角和等于540,属于不可能事件,不合题意;B.投掷一枚均匀的硬币100次,正面朝上的次数为50次是随机事件,不合题意;C. 13个人参加一个集会,他们中至少有两个人的出生月份是相同的,属于必然事件,符合题意;D.太阳从西方升起,属于不可能事件,不合题意;故选:C.变式1-1.(2021·内蒙古通辽市·中考真题)下列事件中是不可能事件.....的是()A.守株待兔B.瓮中捉鳖C.水中捞月D.百步穿杨【答案】C【提示】不可能事件是一定不会发生的事件,依据定义即可判断.【详解】解:A、守株待兔,不一定就能达到,是随机事件,故选项不符合;B、瓮中捉鳖是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,选项不符合;D、百步穿杨,未必达到,是随机事件,故选项不符合;故选C.变式1-2.(2021·湖北武汉市·中考真题)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于6【提示】随机事件是指在某个条件下有可能发生有可能不会发生的事件,根据此定义即可求解.【详解】解:从两个口袋中各摸一个球,其标号之和最大为6,最小为2,选项A:“两个小球的标号之和等于1”为不可能事件,故选项A错误;选项B:“两个小球的标号之和等于6”为随机事件,故选项B正确;选项C:“两个小球的标号之和大于1”为必然事件,故选项C错误;选项D:“两个小球的标号之和大于6”为不可能事件,故选项D错误.故选:B.变式1-3.(2021·江苏泰州市·中考真题)如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关【答案】B【提示】C D或闭合三个或四个,则小灯泡一定发光,从而可得答案.观察电路发现,闭合,A B或闭合,【详解】解:由小灯泡要发光,则电路一定是一个闭合的回路,只闭合1个开关,小灯泡不发光,所以是一个不可能事件,所以A不符合题意;闭合4个开关,小灯泡发光是必然事件,所以D不符合题意;只闭合2个开关,小灯泡有可能发光,也有可能不发光,所以B符合题意;只闭合3个开关,小灯泡一定发光,是必然事件,所以C不符合题意.故选B.考查题型二简单概率计算典例2.(2021·辽宁葫芦岛市·中考真题)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A.16B.13C.12D.23【答案】D【提示】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【详解】解:摸到红球的概率为:42423=+.故选D.变式2-1.(2021·辽宁丹东市·中考真题)四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是()A.14B.12C.34D.1【答案】C【提示】由四张质地、大小、背面完全相同的卡片上,正面分别画有等腰三角形、圆、平行四边形、正六边形四个图案.中心对称图形的是圆、平行四边形,正六边形,直接利用概率公式求解即可求得答案.【详解】解:∵四张质地、大小、背面完全相同的卡片上,正面分别画有等腰三角形、圆、平行四边形、正六边形四个图案.中心对称图形的是圆、平行四边形,正六边形,∴从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为:34.故选:C.变式2-2.(2021·广西中考真题)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.12【答案】C【提示】由一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,观察图可得:它有6种路径,且获得食物的有2种路径,然后利用概率公式求解即可求得答案.【详解】∵一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,∴它有6种路径,∵获得食物的有2种路径,∴获得食物的概率是:21=63,故选:C.变式2-3.(2021·内蒙古呼和浩特市·中考真题)已知电流在一定时间段内正常通过电子元件“”的概率是0.5;则在一定时间段内,由该元件组成的图示电路A、B之间,电流能够正常通过的概率是()A.0.75B.0.625C.0.5D.0.25【答案】A【提示】根据题意,某一个电子元件不正常工作的概率为0.5,可得两个元件同时不正常工作的概率为0.25,进而由概率的意义可得一定时间段内AB之间电流能够正常通过的概率.【详解】解:根据题意,电流在一定时间段内正常通过电子元件的概率是0.5,即某一个电子元件不正常工作的概率为0.5,则两个元件同时不正常工作的概率为0.25;故在一定时间段内AB之间电流能够正常通过的概率为10.25=0.75,故选A.变式2-4.(2021·宁夏中考真题)现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.34【提示】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;其中能构成三角形的有2、6、7;4、6、7这两种情况,所以能构成三角形的概率是21 42 ,故选:B.变式2-5.(2021·辽宁阜新市·中考真题)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为( )A.12B.10C.8D.6【答案】D【提示】根据题意,可以计算出袋子中红球的个数,本题得以解决.【详解】解:由题意可得,袋子中红球的个数约为:20×30100=6,故选D.变式2-5.(2021·黑龙江齐齐哈尔市·中考真题)在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为()A.27B.23C.22D.18【提示】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故选C.变式2-6.(2021·浙江衢州市·中考真题)如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.13B.14C.16D.18【答案】A【提示】直接利用“Ⅱ”所示区域所占圆周角除以360,进而得出答案.【详解】解:由扇形统计图可得,指针落在数字“Ⅱ”所示区域内的概率是:1201= 3603.故选:A.变式2-7.(2021·山东中考真题)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A.25B.12C.35D.无法确定【答案】B【提示】根据正六方形性质可得,阴影面积=空白部分面积,根据面积比求概率..【详解】如图,根据正六方形的性质可得,△AOC≅△ABC(SSS),同理△EOC≅△EDC, △AFE≅△AOE, 所以,阴影面积=空白部分面积所以,飞镖落在白色区域的概率为1 2故选B变式2-8.(2021·广西桂林市·中考真题)如图,一个圆形转盘被平均分成6个全等的扇形,任意旋转这个转盘1次,则当转盘停止转动时,指针指向阴影部分的概率是()A.12B.13C.14D.16【答案】D【提示】用阴影部分扇形个数除以扇形的总个数即可得.【详解】解:当转盘停止转动时,指针指向阴影部分的概率是16,故选:D.考查题型三用列举法求概率典例3.(2021·北京中考真题)不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.14B.13C.12D.23【答案】C【提示】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:所以共4种情况:其中满足题意的有两种,所以两次记录的数字之和为3的概率是21. 42故选C.变式3-1.(2021·四川绵阳市·中考真题)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.23B.12C.13D.16【答案】A【提示】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【详解】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为62 93 .故选:A.变式3-2.(2021·黑龙江牡丹江市·朝鲜族学校中考真题)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是()A.13B.49C.35D.23【答案】B【提示】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得.【详解】解:列表如下:由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为49.故选:B.变式3-3.(2021·山东临沂市·中考真题)从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.112B.18C.16D.12【答案】C【提示】列表得出所有等可能的情况数,找出所选两人恰好是马鸣和杨豪的情况数,即可求出所求的概率.【详解】解:列表得:所有等可能的情况有12种,其中恰好抽到马鸣和杨豪的情况有2种,恰好抽到马鸣和杨豪的概率是21 126,故选C.考查题型四判断游戏公平性典例4.(2021·山东威海市·中考真题)小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子,以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜:若所得数值等于3,4,5,则小梅胜(1)请利用表格分别求出小伟、小梅获胜的概率(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用上表修改游戏规则,以确保游戏的公平性【答案】(1)P(小伟胜)=23,P(小梅胜)=13;(2)游戏不公平;修改为:两次掷出的点数之差的绝对值为1,2,则小伟胜;否则小梅胜.【提示】(1)利用列表法表示所有可能出现的结果情况,并求出小伟胜、小梅胜的概率;(2)依据获胜的概率判断游戏的公平性,修改规则时,利用差的绝对值的形式,使两人获胜的概率相等即可.【详解】解:(1)用列表法表示所有可能出现的结果如下:表中总共有36种可能的结果,每一种结果出现的可能性相同,“差的绝对值”为0,1,2共有24种,“差的绝对值”为3,4,5的共有12种,∴P(小伟胜)=2436=23,P(小梅胜)=1236=13,答:小伟胜的概率是23,小梅胜的概率是13;(2)∵23≠13,∴游戏不公平;根据表格中“差的绝对值”的不同情况,要使游戏公平,即两人获胜的概率相等,于是修改为:两次掷出的点数之差的绝对值为1,2,则小伟胜;否则小梅胜,这样小伟、小梅获胜的概率均为12.变式4-1.(2021·四川中考真题)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格:D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.【答案】(1)400人,180,35%m n ==;(2)1120人;(3)不公平,树状图见解析【提示】(1)由优秀的人数除以所占比例得出本次参与调查的学生人数;进而求出m 和n 的值;(2)由总人数乘以良好和优秀所占比例即可;(3)先画树状图展示所有12种等可能的结果,找出和为奇数的结果有8种,再计算出小明参加和小亮参加的概率,比较两概率的大小可判断这个游戏规则是否公平.【详解】(1)本次参与调查的学生人数为:20÷5%=400(人),m =400×45%=180,∵400﹣20﹣60﹣180=140,∴n =140÷400×100%=35%;(2)5600×2060400+=1120(人), 即估计全校比较了解垃圾分类知识的学生人数为1120人;(3)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种,∴P (小明参加)=812=23, P (小亮参加)=1﹣23=13,∵23≠13,∴这个游戏规则不公平.变式4-2.(2021·山东青岛市·中考真题)小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形、同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.【答案】这个游戏对双方公平,理由见解析【提示】画出树状图,求出配成紫色的概率即可求解.【详解】解:这个游戏对双方公平,理由如下:如图,∵由树状图可知,所有可能发生的组合有6种,能配成紫色的组合有3种,∴P(紫色)=31 =62,∴这个游戏对双方公平.考查题型五用频率估计概率典例5.(2021·湖南湘潭市·中考真题)为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25B.0.3C.25D.30【答案】B【提示】先计算出八年级(3)班的全体人数,然后用选择“5G时代”的人数除以八年级(3)班的全体人数即可.【详解】由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人)选择“5G时代”的人数为:30人∴选择“5G时代”的频率是:30=0.3 100故选:B.变式5-1.(2021·辽宁盘锦市·中考真题)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87【答案】C【提示】先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不低于170cm的频率5501300.681000+==,所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.故选:C.变式5-2.(2021·湖南邵阳市·中考真题)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m【提示】本题分两部分求解,首先假设不规则图案面积为x ,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.【详解】假设不规则图案面积为x ,由已知得:长方形面积为20, 根据几何概率公式小球落在不规则图案的概率为:20x , 当事件A 实验次数足够多,即样本足够大时,其频率可作为事件A 发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35, 综上有:0.3520x =,解得7x =. 故选:B .变式5-3.(2021·辽宁营口市·中考真题)某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )A .0.90B .0.82C .0.85D .0.84【提示】根据大量的实验结果稳定在0.82左右即可得出结论.【详解】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.。
2019年华师大版中考总复习知识点梳理:第27讲概率

第27讲概率2019-2020学年数学中考模拟试卷一、选择题1.如图,在5×5的方格纸中将图①中的图形N 平移到如图②所示的位置,那么下列平移正确的是A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格2.在函数y =x 的取值范围是( )A.x 2≠-B.x 0>C.x 2>-D.x 2≥-3.12019的倒数是( ) A.12019 B.﹣12019C.2019D.﹣2019 4.2018年10月24日港珠澳大桥正式通车.港珠澳大桥是在“一国两制”框架下,粤港澳三地首次合作共建的超大型基础设施项目,总投资约480亿元,大桥全长55000米,主体工程集合了桥、岛、隧三部分.隧道两端的东西两个海中人工岛,犹如“伶仃双贝”熠熠生辉,寓意三地同心的青州航道桥,形似中华白海豚的江海直达航道桥,以及扬帆起航的九洲航道桥,也是伶仃洋上别致的风景.将数据480亿用科学记数法表示为( )A .848010⨯B .94810⨯C .104.810⨯D .110.4810⨯5.下列运算正确的是( ) A.a 2×a 3=a 6B.a 2+a 2=2a 4C.a 8÷a 4=a 4D.(a 2)3=a 56.如图所示,在直角坐标系中,A 点坐标为(-3,-2),⊙A 的半径为1,P 为x 轴上一动点,PQ 切⊙A 于点Q ,则当PQ 最小时,P 点的坐标为( )A .(-3,0)B .(-2,0)C .(-4,0)或(-2,0)D .(-4,0)7.计算(2sin60°+1)+(﹣0.125)2006×82006的结果是( )A B C +2D .08.下列运算正确的是( ) A .336a a a += B .222()a b a b +=+C .22122mm -=D .2222)2961a a a ÷=-+9.如图,将一副三角板如图放置,BAC ADE 90∠∠==,E 45∠=,B 60∠=,若AE //BC ,则AFD (∠= )A .75B .85C .90D .6510.为了改善人民生活环境,建设美丽家园,某省第一季度投放垃圾箱及环境保护牌共250000个.将250000用科学记数法表示为( ) A .2.5×104B .2.5×105C .25×104D .0.25×10711.函数x 的取值范围是( ) A .x≥-3B .x≠-3C .x>-3D .x≤-312.为执行“均衡教育”政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A .2500(12)12000x +=B .22500(1)12000x +=C .25002500(1)2500(12)12000x x ++++=D .225002500(1)2500(1)12000x x ++++= 二、填空题13.有六张分别印有三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为____.14.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S 甲2=0.90平方环,S 乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__.15.如图,在Rt △OAB 中,OA=4,AB=5,点C 在OA 上,AC=1,⊙P 的圆心P 在线段BC 上,且⊙P 与边AB ,AO 都相切.若反比例函数 ky x=(k≠0)的图象经过圆心P ,则k=________.16.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中如图所示,则关于x 的不等式12k x b k x +>的解为________________.17.如图,点A 的坐标(﹣1,2),点A 关于y 轴的对称点的坐标为__________.18.某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A 型保温杯的优势是_____.三、解答题19.今年,某社区响应泰州市政府“爱心一日捐”的号召,积极组织社区居民参加献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.请结合图中相关数据回答下列问题: 捐款分组统计表(1)本次调查的样本容量是多少?(2)求出C组的频数并补全捐款户数条形统计图.(3)若该社区有1000户住户,请估计捐款不少于200元的户数是多少?20.(1)计算:|1(12)﹣1﹣2tan60°(2)先化简,再求值:22121()242x x xxx x-++÷-++,其中x﹣1.21.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN项部M的仰角为37°,然后在测量点B 处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出A,B两点间的距离为15m,并且N,B,A三点在一条直线上,连接CD并延长交MN于点E.请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)22.下面是两个转盘,每个转盘分成几个相等的扇形,甲、乙两个人做游戏,游戏者同时转动两个转盘一次,如果转盘A转出了红色,转盘B转出了蓝色,则甲赢否则乙赢.(1)甲和乙获胜的概率分别是多少?(2)这个游戏对双方公平吗?说说你的理由.(3)如果你认为不公平,应怎样修改才能使游戏对双方公平?23.为了丰富学生的校园文化生活,学校开设了书法、体育、美术音乐共四门选修课程.为了合理的分配教室,教务处问卷调查了部分学生,并将了解的情况绘制成如下不完整的统计图:(1)参与问卷调查的共有________人,其中选修美术的有________人,选修体育的学生人数对应扇形统计图中圆心角的度数为________.(2)补全条形统计图;(3)若每人必须选修一门课程,且只能选一门,已知小红没有选体育,小刚没有选修书法和美术,则他们选修同一门课程的概率是多少,列树状图或列表法求解.24.一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.25.如图,已知在矩形ABCD中,E是BC边上的一个动点,点F,G,H分别是AD,AE,DE的中点.(1)求证:四边形AGHF是平行四边形;(2)若BC=10cm,当四边形EHFG是正方形时,求矩形ABCD的面积.【参考答案】***一、选择题二、填空题13.1 214.甲15.5 416.1x<-;17.(1,2)18.便携性三、解答题19.(1)50;(2)C组的频数是:50×40%=20;图见解析;(3)760.【解析】【分析】(1)根据样本的容量=A、B两组捐款户数÷A、B两组捐款户数所占的百分比即可求出(2)C组的频数=样本的容量×C组所占的百分比,进而可以补全捐款户数条形统计图;(3)捐款不少于200元的有C、D、E、两组,捐款不少于200元的户数=1000×D、E两组捐款户数所占的百分比;【详解】解:(1)调查样本的容量是:(10+2)÷(1﹣40%﹣28%﹣8%)=50;(2)C组的频数是:50×40%=20;补全捐款户数条形统计图如图所示:(3)估计捐款不少于200元的户数是:1000×(28%+8%+40%)=760户.【点睛】此题综合考查了频数(率)分布表,扇形统计图,用样本估计总体,频数(率)分布直方图和扇形统计图,需要熟悉以上考点才能解答出此题20.(1+1;(2.【解析】【分析】(1)根据绝对值、负整数指数幂、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】(1)|1|+(12)﹣1﹣2tan60°1+21+2﹣;(2)22121() 242 x x xxx x-++÷-++=21(2)(21) 222x x x xx x-+-+÷++()()=2212 22221 x xx x x x-+++--()()=211211 xx x-+-()()()=12(1)xx-+,当x﹣1=12.【点睛】本题考查分式的化简求值、绝对值、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.21.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC中,由ME=EC•tan ∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.22.(1)1625,925;(2)不公平,理由见解析;(3)两次都转蓝色,甲赢;两次都转红色,乙赢.【解析】【分析】(1)根据题意,用列表法将所有可能出现的结果,再根据概率公式计算可得;(2)由(1)的结果,判断两人获胜的概率是否相等,得到结论不公平.(3)只要使甲、乙获胜的概率相等即可.【详解】解:(1)列表如下:由表知,共有25种等可能结果,其中转盘A转出了红色,转盘B转出了蓝色有16种结果,∴甲获胜的概率为16 25,则乙获胜的概率为925;(2)不公平,因为1625≠925;(3)两次都转蓝色,甲赢;两次都转红色,乙赢.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.23.(1)60,12,108°;(2)详见解析;(3)1 6【解析】【分析】(1)用参与了解的音乐的学生数除以所占的百分比即可求得调查的总人数;用总人数减去书法的人数减去体育和音乐的人数就可得到美术的人数;用选修体育的人数除以总人数再乘以360°即可求出对应扇形的圆心角;.(2)根据选修课程的人数补全条形统计图即可;.(3)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【详解】(1) 由条形统计图可知音乐有24人,由扇形统计图可知音乐占40%,2440%=60∴÷(人);选修美术的人数:606182412---=(人);选修体育的圆心角:1860360=108÷⨯(2) 条形统计图如图,(3) 树状图如下:由树状图可知,共有6种等可能情况,其中小红和小刚选修同一门课程的情况有1种,所以概率为1 6【点睛】本题考查的是用列表法或画树状图法求概率的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.24.40%【解析】【分析】先设第次降价的百分率是x,则第一次降价后的价格为500(1-x)元,第二次降价后的价格为500(1-2x),根据两次降价后的价格是240元建立方程,求出其解即可.【详解】第一次降价的百分率为x,则第二次降价的百分率为2x,根据题意得:500(1﹣x)(1﹣2x)=240,解得x1=0.2=20%,x2=1.3=130%.则第一次降价的百分率为20%,第二次降价的百分率为40%.【点睛】本题考查了一元二次方程解实际问题,读懂题意,找出题目中的等量关系,列出方程,求出符合题的解即可.25.(1)详见解析;(2)50.【解析】【分析】(1)根据三角形中位线定理和平行四边形的判定解答即可;(2)利用正方形的性质和矩形的面积公式解答即可.【详解】证明:(1)∵点F ,G ,H 分别是AD ,AE ,DE 的中点, ∴FH ∥AE ,GH ∥AD ,∴四边形AGHF 是平行四边形;(2)当四边形EGFH 是正方形时,连接EF ,可得:EF ⊥GH 且EF =GH ,∵在△BEC 中,点,H 分别是BE ,CE 的中点, ∴GH =12BC =12AD =5cm ,且GH ∥BC , ∴EF ⊥BC , ∵AD ∥BC ,AB ⊥BC , ∴AB =EF =GH =5cm ,∴矩形ABCD 的面积=211010502AB AD cm ⨯=⨯⨯=. 【点睛】此题考查正方形的性质,关键是根据三角形中位线定理和平行四边形的判定和正方形的性质解答.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB 是☉O 的直径,点C 在☉O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,过点O 作OD ⊥AC 交☉O 于点D ,连接CD.若∠A=30°,PC=6,则CD 的长为 ( )A B C .3D .2.下列运算正确的是( ) A .3a 2﹣a 2=3 B .a 8÷a 4=a 2C .(a+3)2=a 2+9D .(﹣3a 3)2=9a 63.关于x 的方程2334ax a x +=-的解为1x =,则a =( )A.1B.3C.-1D.-34.下列计算正确的是( ) A.a³+a²=a 5,B.a³a²=a 5,C.(-2a²)³=-6a 6,D.a 3÷a -2=a.5.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥B .1m £C .1m >D .1m <6.如图所示,是两木杆在同一时刻的影子,请问它们是太阳光线还是灯光下的投影?请问这一时刻是上午还是下午?( ) 北东 西南 A .太阳光线,上午 B .太阳光线,下午 C .灯光,上午D .灯光,下午7.下列运算正确的是( ) A .3x 2•4x 2=12x 2 B .x 3+x 5=x 8 C .x 4÷x=x 3D .(x 5)2=x 7 8.在“纪念抗日战争胜利暨世界反法西斯战争胜利70周年”歌咏比赛中,10位评委给小红的评分情况如表所示:则下列说法正确的是()A.中位数是7.5分B.中位数是8分C.众数是8分D.平均数是8分9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A(-3,y1)、点B(12,y2)、点C(72,y3)在该函数图象上,则y1<y2<y3;(5)若方程a(x+1)(x-5)=c的两根为x1和x2,且x1<x2,则x1<-1<5<x2,其中正确的结论有( )A.1个B.2个C.3个D.4个10.如图,经过直线l外一点A作l的垂线,能画出()A.4条B.3条C.2条D.1条11.如图,△ABC是⊙O的内接三角形,∠A=30°,BC=2,则⊙O的直径长为()A.2 B.C.4 D.812.已知点A(5,﹣2)与点B(x,y)在同一条平行于x轴的直线上,且B到y轴的距离等于4,那么点B是坐标是()A.(4,﹣2)或(﹣4,﹣2)B.(4,2)或(﹣4,2)C.(4,﹣2)或(﹣5,﹣2)D.(4,﹣2)或(﹣1,﹣2)二、填空题13.已知菱形在平面直角坐标系的位置如图所示,,,,点是对角线上的一个动点,,当周长最小时,点的坐标为_____.14.二次函数223y x =的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2017个菱形的周长=______.15.已知一次函数y=ax+b (a 、b 为常数),x 与y 的部分对应值如下表:那么方程ax+b=0的解是________,不等式ax+b>0的解集是_______.16.如图,地面上铺满了正方形的地砖(40cm×40cm),现在向这一地面上抛掷半径为5cm 的圆碟,圆碟与地砖间的间隙相交的概率是_____.17.已知 x =﹣1 是一元二次方程 ax 2﹣bx+6=0 的一个根,则 a+b 的值为_____ 18.抛物线22(5)3y x =-+-的顶点坐标是__________. 三、解答题19.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.20.如图,在△ABC中,AB=8,BC=4,CA=6,CD∥AB,BD是∠ABC的平分线,BD交AC于点E,求AE 的长.21.为了节省材料,某水产养殖户利用水库的一角∠MON(∠MON=135°)的两边为边,用总长为120m的围网在水库中围成了如图所示的①②③三块区域,其中区域①为直角三角形,区域②③为矩形,而且四边形OBDG为直角梯形.(1)若①②③这块区域的面积相等,则OB的长为 m;(2)设OB=xm,四边形OBDG的面积为ym2,①求y与x之的函数关系式,并注明自变量x的取值范围;②x为何值时,y有最大值?最大值是多少?22.(1(﹣1)2﹣20190(2)化简:(a+2)2﹣a(a﹣3)23.如图,抛物线y=ax2+bx+c与x轴交于点A(x1,0)、B(x2,0),与y轴交于点C(0,﹣x2),且x1<0<x2,13OAOC,△ABC的面积为6.(1)求抛物线的解析式;(2)在x轴下方的抛物线上是否存在一点M,使四边形ABMC的面积最大?若存在,请求出点M的坐标和四边形ABMC的面积最大值;若不存在,请说明理由;(3)E为抛物线的对称轴上一点,抛物线上是否存在一点D,使以B、C、D、E为顶点的四边形为平行四边形?若存在,请直接写出点D的坐标;若不存在,请说明理由.24.已知抛物线y=ax2+bx+2经过点A(﹣1,﹣1)和点B(3,﹣1).(1)求这条抛物线所对应的二次函数的表达式.(2)写出抛物线的开口方向、对称轴、顶点坐标和二次函数的最值.25.丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:根据以上信息,回答下列问题:(1)补全数学成绩频数分布直方图;(2)写出表中m、n的值;(3)请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).【参考答案】***一、选择题二、填空题13.(3,2)14.806815.x=1 x<116.7 1617.﹣6.18.(-5,-3)三、解答题19.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可。
通用版2019年中考数学总复习专题突破预测与详解第八单元统计与概率专题27规律探索问题试题11

通用版2019年中考数学总复习专题突破预测与详解第八单元统计与概率专题27规律探索问题试题11
27 律探究
8 解
析第 34
1. (2018 中考 ) 如所示 , 以下各三角形中的三个数之均拥有同样的
律 , 依据此律 , 最后一个三角形中y 与 n 之的关系是(B)
A. y=2n+1
B. y=2n+n
C.y=2n+1+n
D.y=2n+n+1 ? 学号
2. (2017 广模 ,15,4分)有一数, , , , ⋯, 数中的第8 个数
, 第n 个数( 用含n 的代数式表示) .
3.(2018中考) 如 ,以O(0,0),A(2,0)点作正三角形OAP1,以点P1
和段 P1A 的中点 B 点作正三角形 P1BP2,再以点 P2和段 P2B 的中点 C 点
作正三角形 P2CP3,⋯,这样下去,第六个正三角形中,不在第五
个正三角形上的点P6的坐是.
4. (2017 湖南永州二模 ,16,4分)是我国南宋末年的一位优秀的数学家.
在他著的《解九章算法》一中 , 画了一表示二式睁开后的系数组成
的三角形 , 称做“开方做法根源” , 在称“ 三角”, 它是
的一大重要研究成就 . 我把三角的每一行分相加, 以下 :
通用版2019年中考数学总复习专题突破预测与详解第八单元统计与概率专题27规律探索问题试题11 杨辉三角第 n 行中 n 个数之和等于2n-1 .? 导学号 92034121?。
2019年中考数学总复习之【概率】专项精练卷附答案解析
2019年中考数学总复习之【概率】专项精练卷一、选择题1.函数y=的图象经过点(1,﹣2),则k的值为()A.B.﹣C.﹣2D.22.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()A.B.C.D.3.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6.下列事件中是必然事件的是()A.两枚骰子朝上一面的点数和为6B.两枚骰子朝上一面的点数和不小于2C.两枚骰子朝上一面的点数均为偶数D.两枚骰子朝上一面的点数均为奇数4.有一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,掷一次骰子,向上的一面的点数为2的概率是()A.0B.C.D.15.向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是()A.B.C.D.6.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数B.投掷一枚均匀的一元硬币,有国徽的一面一定朝上C.三条任意长的线段都可以组成一个三角形D.从1,2,3这三个数字中任取一个数,取得奇数的可能性大7.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为,那么袋中共有球的个数为()A.12个B.9个C.7个D.6个二、填空题8.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.9.“明天会下雨“是(填“确定”或“不确定”)事件.10.在a2□2ab□b2的空格中,任意填上“+”或“﹣”,得到的所有多项式中是完全平方式的概率为.11.如图所示,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是.12.明天下雨的概率为0.99,是事件.三、解答题13.甲同学口袋中有三张卡片,分别写着数字1、1、2,乙同学口袋中也有三张卡片,分别写着数字1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜,否则乙胜.求甲胜的概率.14.六一儿童节,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的.(1)于是爸爸咨询导游后,让小宝上午先从A:太空世界;B:神秘河谷;C:失落帝国中随机选择两个项目,下午再从D:恐龙半岛,E:西部传奇;F:儿童王国;G:海螺湾.随机选择三个项目游玩,请用列举法或树形图说明当天小宝符合上述条件的所有可能的选择方式(用字母表示).(2)在(1)问的选择方式中,求小宝恰好上午选中A:太空世界,同时下午选中G:海螺湾这两个项目的概率.15.如图,桌面上放置了红,黄,蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.(1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.17.小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.18.甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表)甲超市:球两红一红一白两白礼金券(元)5105乙超市:球两红一红一白两白礼金券(元)10510(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.概率参考答案与试题解析一、选择题1.函数y=的图象经过点(1,﹣2),则k的值为()A.B.﹣C.﹣2D.2【考点】待定系数法求反比例函数解析式.【专题】计算题;待定系数法.【分析】将点(1,﹣2)代入函数解析式(k≠0)即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0),函数y=的图象经过点(1,﹣2),∴﹣2=,得k=﹣2.故选:C.【点评】本题主要考查了用待定系数法求反比例函数的比例系数,即图象上点的横纵坐标即为一定值.2.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让吉祥物的总张数除以图片的总张数即为抽出的卡片正面图案恰好是吉祥物(福娃)的概率.【解答】解:五张卡片中有两张是吉祥物,故抽出吉祥物的概率是.故选B.【点评】用到的知识点为:概率=所求情况数与总情况数之比.3.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6.下列事件中是必然事件的是()A.两枚骰子朝上一面的点数和为6B.两枚骰子朝上一面的点数和不小于2C.两枚骰子朝上一面的点数均为偶数D.两枚骰子朝上一面的点数均为奇数【考点】随机事件.【分析】一定会发生的事件为必然事件.【解答】解:A、两枚骰子朝上一面的点数和为6为不确定事件,如1+2=3,2+4=6,故不符合题意;B、每枚骰子每个面上的点数分别为1,2,3,4,5,6,最小为1,两枚骰子朝上一面的点数和最小为1+1=2,故B正确,是必然事件,符合题意;C、D两枚骰子朝上一面的点数均为偶数、均为奇数为不确定事件,如1,2,故不符合题意.故选B.【点评】解决本题要正确理解必然事件、不可能事件、随机事件的概念,用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.有一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,掷一次骰子,向上的一面的点数为2的概率是()A.0B.C.D.1【考点】概率公式.【分析】点数为2的有1种情况,除以总个数6即为向上的一面的点数为2的概率.【解答】解:质地均匀且六个面的正方体骰子,抛掷后六个面朝上的概率都一样是,向上的一面的点数为2的概率也是一样.故选C.【点评】题目考查了概率的基本计算:几种情况出现的可能性都均等,有几种情况出现,每种情况出现的概率就是几分之一.5.向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是()A.B.C.D.【考点】几何概率.【分析】看阴影部分的面积占总面积的多少即为所求的概率.【解答】解:∵盘底被等分成12份,其中阴影部分占4份,∴落在阴影区域的概率=.故选C.【点评】用到的知识点为:概率=相应的面积与总面积之比.6.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数B.投掷一枚均匀的一元硬币,有国徽的一面一定朝上C.三条任意长的线段都可以组成一个三角形D.从1,2,3这三个数字中任取一个数,取得奇数的可能性大【考点】可能性的大小.【分析】根据相应事件的可能性找到一定正确的选项即可.【解答】解:A、买一张电影票,座位号也可能是奇数,故错误;B、有国徽的一面既有可能朝上,也有可能朝下,故错误;C、边长为1,2,4的三线段无法组成一个三角形,故错误;D、1、2、3中奇数有1,3两个,偶数只有2一个,所以取得奇数的可能性大,正确.故选D.【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.7.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为,那么袋中共有球的个数为()A.12个B.9个C.7个D.6个【考点】概率公式.【专题】压轴题.【分析】利用红球的概率公式列出方程求解即可.【解答】解:设袋中共有的球数为x,根据概率的公式列出方程:,解得:x=12.故选A.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.二、填空题8.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.(2008•南平)“明天会下雨“是不确定(填“确定”或“不确定”)事件.【考点】随机事件.【分析】确定事件包括必然事件和不可能事件:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件,即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:“明天会下雨”可能发生,也可能不发生,是不确定事件.【点评】理解概念是解决这类基础题的主要方法.10.在a2□2ab□b2的空格中,任意填上“+”或“﹣”,得到的所有多项式中是完全平方式的概率为0.5.【考点】概率公式;完全平方式.【专题】压轴题.【分析】本题要在空格中填入“+”或“﹣”的情况有4种,而要满足完全平方式的情况只有a2+2ab+b2和a2﹣2ab+b2两种,用2除以4即可解出概率.【解答】解:依题意得:任意填上“+”或“﹣”,共有4种情况,而满足条件的有a2+2ab+b2和a2﹣2ab+b2两种情况,因此概率为2÷4=0.5.故本题答案为:0.5.【点评】用到的知识点为:概率=所求情况数与总情况数之比;满足完全平方式的情况只有a2+2ab+b2和a2﹣2ab+b2两种.11.如图所示,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是.【考点】列表法与树状图法.【专题】跨学科.【分析】只有闭合两条线路里的两个才能形成通路.列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(a,e)(b,e)(c,e)(d,e)﹣(a,d)(b,d)(c,d)﹣(e,d)(a,c)(b,c)﹣(d,c)(e,c)(a,b)﹣(c,b)(d,b)(e,b)﹣(b,a)(c,a)(d,a)(e,a)∴一共有20种情况,使电路形成通路的有12种情况,∴使电路形成通路的概率是=.【点评】本题结合初中物理的“电路”考查了有关概率的知识.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.12.明天下雨的概率为0.99,是不确定或随机事件.【考点】概率的意义.【专题】压轴题.【分析】“明天下雨的概率为0.99”是可能发生也可能不发生的事件,属于不确定事件即随机事件.【解答】解:“明天下雨的概率为0.99”是不确定或随机事件.【点评】关键是确定事件的类型.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.三、解答题13.甲同学口袋中有三张卡片,分别写着数字1、1、2,乙同学口袋中也有三张卡片,分别写着数字1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜,否则乙胜.求甲胜的概率.【考点】列表法与树状图法.【分析】列举出所有情况,看两人摸出的卡片上的数字之和为偶数的情况占总情况的多少即可.【解答】解:所有可能的结果列表如下:由表可知,和为偶数的结果有4种,∴P(甲胜)=答:甲胜的概率是.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=,注意本题是不放回实验.14.六一儿童节,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的.(1)于是爸爸咨询导游后,让小宝上午先从A:太空世界;B:神秘河谷;C:失落帝国中随机选择两个项目,下午再从D:恐龙半岛,E:西部传奇;F:儿童王国;G:海螺湾.随机选择三个项目游玩,请用列举法或树形图说明当天小宝符合上述条件的所有可能的选择方式(用字母表示).(2)在(1)问的选择方式中,求小宝恰好上午选中A:太空世界,同时下午选中G:海螺湾这两个项目的概率.【考点】列表法与树状图法.【分析】(1)依据题意先用列举法或画树状图法分析所有等可能的出现结果;(2)根据概率公式求出该事件的概率.【解答】解:(1)用列举法:(AB,DEF),(AB,DEG),(AB,DFG),(AB,EFG),(AC,DEF),(AC,DEG),(AC,DFG)(AC,EFG),(BC,DEF),(BC,DEG),(BC,DFG),(BC,EFG)共12种可能的选择方式.(6分)用树形图法:(2)小宝恰好上午选中A.太空世界,同时下午选中G.海螺湾这两个项目的概率为P=.【点评】本题考查的是用列举法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,桌面上放置了红,黄,蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.(1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.【考点】列表法与树状图法;概率公式.【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.【解答】解:(1)根据题意可得:桌面上放置了红,黄,蓝三个不同颜色的杯子,故随机翻一个杯子,翻到黄色杯子的概率为(3分)(2)将杯口朝上用“上”表示,杯口朝下用“下”表示,画树状图如下:由上面树状图可知:所有等可能出现的结果共有9种,其中恰好有一个杯口朝上的有6种,(7分)∴P(恰好有一个杯口朝上)=.(8分)【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)所有可能的情况如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)由(1)知,所有可能的积有12种情况,其中出现奇数的情形只有2种,且每一种情形出现的可能性都是相同的,=.所以,P(积为奇数)【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【专题】阅读型.【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中小慧获胜与我获胜的概率概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)树状图为:共有12种等可能的结果.(4分)(2)游戏公平.(6分)∵两张牌的数字都是偶数有6种结果:(6,10),(6,12),(10,6),(10,12),(12,6),(12,10).∴小明获胜的概率P==.(8分)小慧获胜的概率也为.∴游戏公平.(10分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.18.甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表)甲超市:球两红一红一白两白礼金券(元)5105乙超市:球两红一红一白两白礼金券(元)10510(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.【考点】列表法与树状图法.【专题】阅读型;图表型.【分析】(1)让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较即可.【解答】解:(1)树状图为:∴一共有6种情况;(2)方法1:∵去甲超市购物摸一次奖获10元礼金券的概率是P(甲)=,去乙超市购物摸一次奖获10元礼金券的概率是P(乙)=,∴我选择去甲超市购物;方法2:∵两红的概率P=,两白的概率P=,一红一白的概率P==,∴在甲商场获礼金券的平均收益是:×5+×10+×5=;在乙商场获礼金券的平均收益是:×10+×5+×10=.∴我选择到甲商场购物.说明:树状图表示为如下形式且按此求解第(2)问的,也正确.【点评】树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。
中考数学考点一遍过 考点27 概率(含解析)-人教版初中九年级全册数学试题
考点27概率一、事件的分类1.必然事件:在一定条件下一定会发生的事件,它的概率是1.2.不可能事件:在一定条件下一定不会发生的事件,它的概率是0.3.随机事件:在一定条件下可能发生,也可能不发生的事件,它的概率是0~1之间.二、概率的计算1.公式法P(A)=mn,其中n为所有事件的总数,m为事件A发生的总次数.2.列举法(1)列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,应不重不漏地列出所有可能的结果,通常采用列表法求事件发生的概率.(2)画树状图法:当一次试验要涉及2个或更多的因素时,通常采用画树状图来求事件发生的概率.三、利用频率估计概率1.定义一般地,在大量重复试验中,如果事件发生的频率稳定在某个常数P附近,因此,用一个事件发生的频率mn来估计这一事件发生的概率.2.适用条件当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,我们一般要通过统计频率来估计概率.3.方法进行大量重复试验,当事件发生的频率越来越靠近一个常数时,该常数就可认为是这个事件发生的概率.四、概率的应用概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象做出评判,如解释摸奖、评判游戏活动的公平性、数学竞赛获奖的可能性等等,还可以对某些事件做出决策.考向一事件的分类1.一般地,不确定事件发生的可能性是有大小的,它的大小要由它在整个问题中所占比例的大小来确定,它占整体的比例大,它的可能性就大,它占整体的比例小,它的可能性就小,不确定事件发生的概率在0到1之间,不包括0和1.2.必然事件发生的机率是100%,即概率为1,不可能事件发生的机率为0,即概率为0.典例1 下列事件中,是必然事件的是A.掷一枚质地均匀的硬币,一定正面向上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.将花生油滴在水中,油会浮在水面上【答案】【解析】A.掷一枚质地均匀的硬币,正面向上是随机事件.B.车辆随机到达一个路口,遇到红灯是随机事件;C.如果a2=b2,那么a=b,也可能是a=–b,此事件是随机事件;D.将花生油滴在水中,油会浮在水面上是必然事件;故选D.1.下列事件中,属于不可能事件的是A.掷一枚骰子,朝上一面的点数为5B.任意画一个三角形,它的内角和是178°C.任意写一个数,这个数大于–1D.在纸上画两条直线,这两条直线互相平行2.口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是A.随机摸出1个球,是白球B.随机摸出1个球,是红球C.随机摸出1个球,是红球或黄球D.随机摸出2个球,都是黄球考向二概率的计算在用列举法解题时,一定要注意各种情况出现的可能性务必相同,不要出现重复、遗漏等现象.典例2【某某省某某市凤翔县2019–2020学年九年级上学期期末数学试题】一个布袋内只装有2个黑球和1个白球,这些球除颜色外其余都相同,随机摸出一个球后再随机摸出一个球,则两次摸出的球都是黑球的概率是A.49B.13C.16D.19【答案】B【解析】画树状图如下共有6种等可能的结果,其中两次摸出的球都是黑球的结果有2种,∴两次摸出的球都是黑球的概率是2÷6=13,故选B.【名师点睛】此题考查的是求概率问题,掌握画树状图的方法和概率公式求概率是解决此题的关键.典例3【某某省某某市武城县2019–2020学年九年级上学期期末数学试题】甲从标有1,2,3,4的4X卡片中任抽1X,然后放回.乙再从中任抽1X,两人抽到的标号的和是2的倍数的(包括2)概率是A.12B.14C.16D.18【答案】A【解析】根据题意,列出所有情况,如下:标号的和是2的倍数的(包括2)的情况共有8种,∴其概率为162,故选A.【名师点睛】此题主要考查对概率的求解,熟练掌握,即可解题.3.【某某省某某市2019–2020学年九年级上学期期末数学试题】如图,转盘的红色扇形圆心角为120°.让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是A.12B.13C.49D.594.【某某省某某市泰兴市实验初级中学教育集团(联盟)2019–2020学年九年级上学期期末数学试题】实验初中有A、B两个阅览室,甲、乙、丙三名学生各自随机选择其中的一个阅览室阅读.下列事件中,是必然事件的为A.甲、乙同学都在A阅览室;B.甲、乙、丙同学中至少两人在A阅览室;C.甲、乙同学在同一阅览室D.甲、乙、丙同学中至少两人在同一阅览室5.【某某省某某市无为县2018–2019学年九年级上学期期末数学试题】如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是A.12B.13C.14D.16考向三利用频率估计概率在大量重复试验中,随着统计数据的增大,频率稳定在某个常数左右,将该常数作为概率的估计值,两者的区别在于:频率是通过多次试验得到的数据,而概率是理论上事件发生的可能性,二者并不完全相同.典例4 在一个不透明的布袋中装有黄、白两种颜色的球共40个,除颜色外其他都相同,小王通过多次摸球试验后发现,摸到黄球的频率稳定在0.35左右,则布袋中黄球可能有A.12个B.14个C.18个D.28个6.做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为考向四概率的应用游戏是否公平在于可能性是否相等,即可能性相等,游戏公平;可能性不相等,则游戏不公平.典例5小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.【解析】(1)列表如下:一共出现16种等可能结果,其中出现在同一层楼梯的有4种结果,则P(甲、乙在同一层楼梯)=41 164.(2)由(1)列知:甲、乙住在同层或相邻楼层的有10种结果,故P(小亮胜)=P(同层或相邻楼层)=105168=,P(小芳胜)=1-5388=,∵58>38,∴游戏不公平,修改规则:若甲、乙同住一层或相邻楼层,则小亮得3分;否则,小芳得5分.典例5【某某省某某市绥德县2019–2020学年九年级上学期期末数学试题】在数学活动课上,X明运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为粒.A.125B.1250C.250D.2500【答案】B【解析】设瓶子中有豆子x粒豆子,根据题意得:1008100x=,解得:1250x=,经检验:1250x=是原分式方程的解,估计瓶子中豆子的数量约为1250粒.故选B.【名师点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.7.设a,b是两个任意独立的一位正整数,则点(a,b)在抛物线y=ax2–bx上方的概率是A.1181B.1381C.1781D.19811.【某某省某某市大余县2019–2020学年九年级上学期期末数学试题】下列说法正确的是A.不可能事件发生的概率为0;B.随机事件发生的概率为1 2C.概率很小的事件不可能发生;D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次2.【某某省某某市灌云县2019–2020学年九年级上学期期末数学试题】一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是A.12B.13C.23D.163.【某某省威海市乳山市2019–2020学年九年级上学期期末数学试题】从1,2,3,4四个数中任取一个数作为十位上的数字,再从2,3,4三个数中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是A.14B.13C.512D.234.【某某省某某市2019–2020学年九年级上学期期末数学试题】某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为A.150 B.100 C.50 D.2005.在一个不透明的口袋中,装有12个黄球和若干个红球,这些球除颜色外没有其他区别.小李通过多次摸球试验后发现,从中随机摸出一个红球的频率稳定在25%,则该口袋中红球的个数可能是__________.6.不透明的布袋里有白球2个,红球10个,它们除了颜色不同其余均相同,为了使从布袋里随机摸一个球是白球的概率为13,若白球个数保持不变,则要从布袋里拿去__________个红球.7.如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2-2mx+n2=0有实数根的概率为__________.8.一个不透明的布袋中有4个红球、5个白球、11个黄球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个黄球,并放入相同数量的红球,搅拌均匀后,要使从袋中摸出一个球是红球的概率不小于13,问至少需取走多少个黄球?9.某报社为了解某某市民对大X围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,回执了不完整的三种统计图表.请结合统计图表,回答下列问题:10.图1是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数-1,-2,-3,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为A(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止),图2是背面完全一样、牌面数字分别是2,3,4,5的四X扑克牌,把四X扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一X牌的牌面数字记为B.(1)用树状图或列表法求A+B=0的概率;(2)甲、乙两人玩游戏,规定:当A+B是正数时,甲胜;否则,乙胜.你认为这个游戏规则对甲、乙双方公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.1.(2019•某某)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是A.13B.23C.19D.292.(2019•某某)下列事件为必然事件的是A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一X电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上3.(2019•某某某某)下列事件中,是必然事件的是A.购买一X彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°4.(2019•某某)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是A.12B.34C.112D.5125.(2019•某某某某)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160 160≤x<170 170≤x<180 x≥180人数 5 38 42 15 根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是6.(2019·某某某某)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为A.14B.12C.8πD.4π7.(2019•某某某某)从1.2.3.4四个数中随机选取两个不同的数,分别记为a,c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为A.14B.13C.12D.238.(2019·某某某某)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为__________.9.(2019·某某某某)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为__________.10.(2019·某某某某)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是__________.11.(2019·某某陇南)一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数6140 4040 10000 36000 80640 出现“正面朝上”的次数3109 2048 4979 18031 39699频率请根据以上数据,估计硬币出现“正面朝上”的概率为__________(精确到0.1).12.(2019•某某)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是__________.(填“甲”或“乙”)13.(2019•某某)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是__________.14.(2019•某某)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3X无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一X卡片,放回后洗匀,再由八(2)班班长从中随机抽取一X卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.1.【答案】B【解析】A.掷一枚骰子,朝上一面的点数为5是随机事件;B.任意画一个三角形,它的内角和是178°是不可能事件;C.任意写一个数,这个数大于–1是随机事件;D.在纸上画两条直线,这两条直线互相平行是随机事件;故选B.2.【答案】B【解析】A、从袋中随机摸出1个球,是白球是不可能事件;B、从袋中随机摸出1个球,是红球是随机事件;C、从袋中随机摸出1个球,是红球或黄球是必然事件;D、从袋中随机摸出2个球,都是黄球是不可能事件,故选B.3.【答案】C【解析】由图得:红色扇形圆心角为120,白色扇形的圆心角为240°,∴红色扇形的面积:白色扇形的面积=12,画出树状图如图,共有9个等可能的结果,让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的结果有4个,∴让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率为49;故选C.【名师点睛】本题考查了树状图和概率计算公式,解决本题的关键是正确理解题意,熟练掌握树状图的画法步骤.4.【答案】D【解析】根据题意,三位同学的分布一共有如下几种:所以只有D【名师点睛】本题考查了必然事件的定义,解决本题的关键是根据题意将每种情况都要考虑到,据此判断哪种情况是必然事件.5.【答案】A【解析】画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为612=12.故选A.【名师点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率 所求情况数与总情况数之比.6.【答案】D【解析】因为瓶盖只有两面,”凸面向上”频率约为0.44,所以,”凹面向上”的概率约为1-0.44=0.56,故选D.7.【答案】D【解析】∵a、b是两个任意独立的一位正整数,∴a,b取1~9,∴代入x=a时,y=a3–ba,∵点(a,b)在抛物线y=ax2–bx的上方,∴b–y=b–a3+ba>0,当a=1时,b–1+b>0,∴b>12,有9个数,b=1,2,3,4,5,6,7,8,9,当a=2时,b–8+2b>0,∴b>83,有7个数,b=3,4,5,6,7,8,9,当a=3时,b–27+3b>0,∴b>274,有3个数,b=7,8,9,当a=4时,b–64+4b>0,∴b>645,有0个数,b在此以上无解,∴共有19个,而总的可能性为9×9=81,∴点(a,b)在抛物线y=ax2–bx的上方的概率是19 81;故选D.【名师点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.1.【答案】A【解析】A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选A.【名师点睛】本题考查不可能事件、随机事件的概念.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【答案】B【解析】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=,故选B.【名师点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.3.【答案】B【解析】画树状图得:∵共有12种等可能的结果,组成的两位数是3的倍数的有4种情况,∴组成的两位数是3的倍数的概率是:41123=.故选B【名师点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 4.【答案】A【解析】∵通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右, ∴捕捞到草鱼的概率约为0.5, 设有草鱼x 条,根据题意得:10050++xx =0.5,解得:x =150,故选A .【名师点睛】本题考查用样本估计总体,解题的关键是明确题意,由草鱼出现的频率可以计算出鱼的数量. 5.【答案】4【解析】设袋中有红球x 个,由题意得12xx +×100%=25%,解得x =4个,故答案为:4. 6.【答案】6【解析】设白球的概率为13时,布袋里红球有x 个.由题意,得2123x =+,解得x =4,所以10-x =6.故答案为:6. 7.【答案】34【解析】从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数,画树状图可知共有12种结果,∵满足关于x 的一元二次方程x 2-2mx +n 2=0有实数根,则Δ=(-2m )2-4n 2=4(m 2-n 2)≥0,符合的有9个,∴关于x 的一元二次方程x 2-2mx +n 2=0有实数根的概率为34.故答案为:34. 8.【解析】(1)∵袋中有4个红球、5个白球、11个黄球, ∴摸出一个球是红球的概率=44511++=15.(2)设取走x 个黄球,则放入x 个红球, 由题意得,44511x +++≥13,解得x ≥83, ∵x 为整数,∴x的最小正整数值是3.答:至少取走3个黄球.10.【解析】(1)由题意可得,A+B的所有可能性是:-1+2=1,-1+3=2,-1+4=3,-1+5=4,-2+2=0,-2+3=1,-2+4=2,-2+5=3,-3+2=-1,-3+3=0,-3+4=1,-3+5=2,∴A+B=0的概率是:21126=,即A+B=0的概率是16.(2)这个游戏规则对甲、乙双方不公平,理由:由题意可得,A+B的所有可能性是:-1+2=1,-1+3=2,-1+4=3,-1+5=4,-2+2=0,-2+3=1,-2+4=2,-2+5=3,-3+2=-1,-3+3=0,-3+4=1,-3+5=2,∴A+B的和为正数的概率是:93 124=,∴甲获胜的概率为34,乙获胜的概率为14,∵34≠14,∴这个游戏规则对甲乙双方不公平.1.【答案】A【解析】图书馆,博物馆,科技馆分别记为A、B、C,画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率=39=13.故选A.【名师点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.2.【答案】B【解析】∵A,C,D选项中的事件均为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选B.【名师点睛】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【答案】D【解析】A.购买一X彩票中奖,属于随机事件,不合题意;B.射击运动员射击一次,命中靶心,属于随机事件,不合题意;C.经过有交通信号灯的路口,遇到红灯,属于随机事件,不合题意;D.任意画一个三角形,其内角和是180°,属于必然事件,符合题意;故选D.【名师点睛】本题主要考查了必然事件,事先能肯定它一定会发生的事件称为必然事件.4.【答案】D【解析】∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∴当小明到达该路口时,遇到绿灯的概率P=2560=512,故选D.【名师点睛】本题考查了概率,熟练掌握概率公式是解题的关键. 5.【答案】D【解析】样本中身高不低于180cm 的频率==0.15,所以估计他的身高不低于180cm 的概率是0.15. 故选D .【名师点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 6.【答案】C【解析】设正方形ABCD 的边长为2a ,针尖落在黑色区域内的概率=22124a a ⨯π⨯=8π.故选C .7.【答案】C【解析】画树状图得:由树形图可知:一共有12种等可能的结果,其中使ac ≤4的有6种结果, ∴关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为12,故选C . 【名师点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 8.【答案】58【解析】从袋中任意摸出一个球,则摸出的球是红球的概率58=.故答案为58.【名师点睛】本题考查了概率公式:随机事件A 的概率P (A )=事件A可能出现的结果数除以所有可能出现的结果数.9.【答案】2 3【解析】树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为4263;故答案为:23.【名师点睛】本题考查了树状图法求概率以及概率公式;画出树状图是解题的关键.10.【答案】4 9【解析】画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为49;故答案为:49.【名师点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.11.【解析】因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为:0.5.【名师点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.12.【答案】甲【解析】甲的平均数x=16(9+8+9+6+10+6)=8,所以甲的方差=16[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=73,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为:甲.【名师点睛】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.【答案】1 6【解析】画树状图为:共有36种等可能的结果数,其中两枚骰子点数的和是小于5的结果数为6,∴两枚骰子点数之和小于5的概率是16,故答案为:16.【名师点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.14.【答案】(1)13.(2)树状图见解析,八(1)班和八(2)班抽中不同歌曲的概率为23.【解析】(1)因为有A,B,C共3种等可能结果,所以八(1)班抽中歌曲《我和我的祖国》的概率是13;故答案为:13.(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率为69=23.。
2019年中考数学总复习训练 概率(含解析).doc
2019年中考数学总复习训练概率(含解析)一、选择题1.函数y=的图象经过点(1,﹣2),则k的值为()A.B.﹣ C.﹣2 D.22.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()A.B.C.D.3.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6.下列事件中是必然事件的是()A.两枚骰子朝上一面的点数和为6B.两枚骰子朝上一面的点数和不小于2C.两枚骰子朝上一面的点数均为偶数D.两枚骰子朝上一面的点数均为奇数4.有一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,掷一次骰子,向上的一面的点数为2的概率是()A.0 B.C.D.15.向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是()A.B.C.D.6.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数B.投掷一枚均匀的一元硬币,有国徽的一面一定朝上C.三条任意长的线段都可以组成一个三角形D.从1,2,3这三个数字中任取一个数,取得奇数的可能性大7.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为,那么袋中共有球的个数为()A.12个B.9个C.7个D.6个二、填空题8.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.9.“明天会下雨“是(填“确定”或“不确定”)事件.10.在a2□2ab□b2的空格中,任意填上“+”或“﹣”,得到的所有多项式中是完全平方式的概率为.11.如图所示,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是.12.明天下雨的概率为0.99,是事件.三、解答题13.甲同学口袋中有三张卡片,分别写着数字1、1、2,乙同学口袋中也有三张卡片,分别写着数字1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜,否则乙胜.求甲胜的概率.14.六一儿童节,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的.(1)于是爸爸咨询导游后,让小宝上午先从A:太空世界;B:神秘河谷;C:失落帝国中随机选择两个项目,下午再从D:恐龙半岛,E:西部传奇;F:儿童王国;G:海螺湾.随机选择三个项目游玩,请用列举法或树形图说明当天小宝符合上述条件的所有可能的选择方式(用字母表示).(2)在(1)问的选择方式中,求小宝恰好上午选中A:太空世界,同时下午选中G:海螺湾这两个项目的概率.15.如图,桌面上放置了红,黄,蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.(1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.17.小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.18.甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表)甲超市:球两红一红一白两白礼金券(元) 5 10 5乙超市:球两红一红一白两白礼金券(元)10 5 10(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.概率参考答案与试题解析一、选择题1.函数y=的图象经过点(1,﹣2),则k的值为()A.B.﹣ C.﹣2 D.2【考点】待定系数法求反比例函数解析式.【专题】计算题;待定系数法.【分析】将点(1,﹣2)代入函数解析式(k≠0)即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0),函数y=的图象经过点(1,﹣2),∴﹣2=,得k=﹣2.故选:C.【点评】本题主要考查了用待定系数法求反比例函数的比例系数,即图象上点的横纵坐标即为一定值.2.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让吉祥物的总张数除以图片的总张数即为抽出的卡片正面图案恰好是吉祥物(福娃)的概率.【解答】解:五张卡片中有两张是吉祥物,故抽出吉祥物的概率是.故选B.【点评】用到的知识点为:概率=所求情况数与总情况数之比.3.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6.下列事件中是必然事件的是()A.两枚骰子朝上一面的点数和为6B.两枚骰子朝上一面的点数和不小于2C.两枚骰子朝上一面的点数均为偶数D.两枚骰子朝上一面的点数均为奇数【考点】随机事件.【分析】一定会发生的事件为必然事件.【解答】解:A、两枚骰子朝上一面的点数和为6为不确定事件,如1+2=3,2+4=6,故不符合题意;B、每枚骰子每个面上的点数分别为1,2,3,4,5,6,最小为1,两枚骰子朝上一面的点数和最小为1+1=2,故B正确,是必然事件,符合题意;C、D两枚骰子朝上一面的点数均为偶数、均为奇数为不确定事件,如1,2,故不符合题意.故选B.【点评】解决本题要正确理解必然事件、不可能事件、随机事件的概念,用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.有一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,掷一次骰子,向上的一面的点数为2的概率是()A.0 B.C.D.1【考点】概率公式.【分析】点数为2的有1种情况,除以总个数6即为向上的一面的点数为2的概率.【解答】解:质地均匀且六个面的正方体骰子,抛掷后六个面朝上的概率都一样是,向上的一面的点数为2的概率也是一样.故选C.【点评】题目考查了概率的基本计算:几种情况出现的可能性都均等,有几种情况出现,每种情况出现的概率就是几分之一.5.向如图所示的盘中随机抛掷一枚骰子,落在阴影区域的概率(盘底被等分成12份,不考虑骰子落在线上情形)是()A.B.C.D.【考点】几何概率.【分析】看阴影部分的面积占总面积的多少即为所求的概率.【解答】解:∵盘底被等分成12份,其中阴影部分占4份,∴落在阴影区域的概率=.故选C.【点评】用到的知识点为:概率=相应的面积与总面积之比.6.下列说法中,正确的是()A.买一张电影票,座位号一定是偶数B.投掷一枚均匀的一元硬币,有国徽的一面一定朝上C.三条任意长的线段都可以组成一个三角形D.从1,2,3这三个数字中任取一个数,取得奇数的可能性大【考点】可能性的大小.【分析】根据相应事件的可能性找到一定正确的选项即可.【解答】解:A、买一张电影票,座位号也可能是奇数,故错误;B、有国徽的一面既有可能朝上,也有可能朝下,故错误;C、边长为1,2,4的三线段无法组成一个三角形,故错误;D、1、2、3中奇数有1,3两个,偶数只有2一个,所以取得奇数的可能性大,正确.故选D.【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.7.在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为,那么袋中共有球的个数为()A.12个B.9个C.7个D.6个【考点】概率公式.【专题】压轴题.【分析】利用红球的概率公式列出方程求解即可.【解答】解:设袋中共有的球数为x,根据概率的公式列出方程:,解得:x=12.故选A.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.二、填空题8.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.(2008•南平)“明天会下雨“是不确定(填“确定”或“不确定”)事件.【考点】随机事件.【分析】确定事件包括必然事件和不可能事件:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件,即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解答】解:“明天会下雨”可能发生,也可能不发生,是不确定事件.【点评】理解概念是解决这类基础题的主要方法.10.在a2□2ab□b2的空格中,任意填上“+”或“﹣”,得到的所有多项式中是完全平方式的概率为0.5 .【考点】概率公式;完全平方式.【专题】压轴题.【分析】本题要在空格中填入“+”或“﹣”的情况有4种,而要满足完全平方式的情况只有a2+2ab+b2和a2﹣2ab+b2两种,用2除以4即可解出概率.【解答】解:依题意得:任意填上“+”或“﹣”,共有4种情况,而满足条件的有a2+2ab+b2和a2﹣2ab+b2两种情况,因此概率为2÷4=0.5.故本题答案为:0.5.【点评】用到的知识点为:概率=所求情况数与总情况数之比;满足完全平方式的情况只有a2+2ab+b2和a2﹣2ab+b2两种.11.如图所示,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路.则使电路形成通路的概率是.【考点】列表法与树状图法.【专题】跨学科.【分析】只有闭合两条线路里的两个才能形成通路.列举出所有情况,看所求的情况占总情况的多少即可.【解答】解:列表得:(a,e)(b,e)(c,e)(d,e)﹣(a,d)(b,d)(c,d)﹣(e,d)(a,c)(b,c)﹣(d,c)(e,c)(a,b)﹣(c,b)(d,b)(e,b)﹣(b,a)(c,a)(d,a)(e,a)∴一共有20种情况,使电路形成通路的有12种情况,∴使电路形成通路的概率是=.【点评】本题结合初中物理的“电路”考查了有关概率的知识.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.12.明天下雨的概率为0.99,是不确定或随机事件.【考点】概率的意义.【专题】压轴题.【分析】“明天下雨的概率为0.99”是可能发生也可能不发生的事件,属于不确定事件即随机事件.【解答】解:“明天下雨的概率为0.99”是不确定或随机事件.【点评】关键是确定事件的类型.必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.三、解答题13.甲同学口袋中有三张卡片,分别写着数字1、1、2,乙同学口袋中也有三张卡片,分别写着数字1、2、2,两人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数,则甲胜,否则乙胜.求甲胜的概率.【考点】列表法与树状图法.【分析】列举出所有情况,看两人摸出的卡片上的数字之和为偶数的情况占总情况的多少即可.【解答】解:所有可能的结果列表如下:由表可知,和为偶数的结果有4种,∴P(甲胜)=答:甲胜的概率是.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.14.六一儿童节,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的.(1)于是爸爸咨询导游后,让小宝上午先从A:太空世界;B:神秘河谷;C:失落帝国中随机选择两个项目,下午再从D:恐龙半岛,E:西部传奇;F:儿童王国;G:海螺湾.随机选择三个项目游玩,请用列举法或树形图说明当天小宝符合上述条件的所有可能的选择方式(用字母表示).(2)在(1)问的选择方式中,求小宝恰好上午选中A:太空世界,同时下午选中G:海螺湾这两个项目的概率.【考点】列表法与树状图法.【分析】(1)依据题意先用列举法或画树状图法分析所有等可能的出现结果;(2)根据概率公式求出该事件的概率.【解答】解:(1)用列举法:(AB,DEF),(AB,DEG),(AB,DFG),(AB,EFG),(AC,DEF),(AC,DEG),(AC,DFG)(AC,EFG),(BC,DEF),(BC,DEG),(BC,DFG),(BC,EFG)共12种可能的选择方式.(6分)用树形图法:(2)小宝恰好上午选中A.太空世界,同时下午选中G.海螺湾这两个项目的概率为P=.【点评】本题考查的是用列举法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.如图,桌面上放置了红,黄,蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.(1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.【考点】列表法与树状图法;概率公式.【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.【解答】解:(1)根据题意可得:桌面上放置了红,黄,蓝三个不同颜色的杯子,故随机翻一个杯子,翻到黄色杯子的概率为(3分)(2)将杯口朝上用“上”表示,杯口朝下用“下”表示,画树状图如下:由上面树状图可知:所有等可能出现的结果共有9种,其中恰好有一个杯口朝上的有6种,(7分)∴P(恰好有一个杯口朝上)=.(8分)【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.四张大小、质地均相同的卡片上分别标有:1,2,3,4.现将标有数字的一面朝下扣在桌子上,然后由小明从中随机抽取一张(不放回),再从剩下的3张中随机取第二张.(1)用画树状图的方法,列出小明前后两次取得的卡片上所标数字的所有可能情况;(2)求取到的两张卡片上的数字之积为奇数的概率.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:(1)所有可能的情况如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).(2)由(1)知,所有可能的积有12种情况,其中出现奇数的情形只有2种,且每一种情形出现的可能性都是相同的,所以,P(积为奇数)=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.小明和小慧玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.(1)请用树状图表示出两人抽牌可能出现的所有结果;(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【专题】阅读型.【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中小慧获胜与我获胜的概率概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)树状图为:共有12种等可能的结果.(4分)(2)游戏公平.(6分)∵两张牌的数字都是偶数有6种结果:(6,10),(6,12),(10,6),(10,12),(12,6),(12,10).∴小明获胜的概率P==.(8分)小慧获胜的概率也为.∴游戏公平.(10分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.18.甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表)甲超市:球两红一红一白两白礼金券(元) 5 10 5乙超市:球两红一红一白两白礼金券(元)10 5 10(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.【考点】列表法与树状图法.【专题】阅读型;图表型.【分析】(1)让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较即可.【解答】解:(1)树状图为:∴一共有6种情况;(2)方法1:∵去甲超市购物摸一次奖获10元礼金券的概率是P(甲)=,去乙超市购物摸一次奖获10元礼金券的概率是P(乙)=,∴我选择去甲超市购物;方法2:∵两红的概率P=,两白的概率P=,一红一白的概率P==,∴在甲商场获礼金券的平均收益是:×5+×10+×5=;在乙商场获礼金券的平均收益是:×10+×5+×10=.∴我选择到甲商场购物.说明:树状图表示为如下形式且按此求解第(2)问的,也正确.【点评】树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.。
2019年中考数学专题训练 概率(无答案)
1 2019年中考数学专题训练---概率 1.小明在学习反比例函数的图象时,他的老师要求同学们根据“探索一次函数y1=x+1的图象”的基本步骤,在纸上逐步探索函数y2=的图象,并且在黑板上写出4个点的坐标:A,B(1,2),C,D(﹣2,﹣1). (1)在A、B、C、D四个点中,任取一个点,这个点既在直线y1=x+1又在双曲线y2=上的概率是多少? (2)小明从A、B、C、D四个点中任取两个点进行描点,求两点都落在双曲线y2=上的概率.
2.“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图14a. (2)求图14b中表示家长“赞成”的圆心角的度数. (3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?
3.某中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A,B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力. (1)求甲、乙、丙三名学生在同一处检测视力的概率; (2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.
4.从2名男生和3名女生中随机抽取运动会志愿者.求下列事件的概率: (1)抽取1名,恰好是女生的概率为 ; (2)抽取2名,恰好是1名男生和1名女生. 2
5.一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记. (1)请列出上述实验中所记录球上标记的所有可能的结果; (2)求两次记录球上标记均为“1”的概率.
6.如图所示,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关. (1)请用列表或画树状图的方法,列出所有可能的情况; (2)求出使电路形成通路的概率.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 5
——教学资料参考参考范本——
【2019最新】中考数学专题复习小练习专题27概率初步
______年______月______日
____________________部门
2 / 5
1.20xx·淄博下列语句描述的事件中,是随机事件的为( )
A.水能载舟,亦能覆舟
B.只手遮天,偷天换日
C.瓜熟蒂落,水到渠成
D.心想事成,万事如意
2.20xx·泰州小亮是一名职业足球队员,根据以往比赛数据统计,
小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是
( )
A.小亮明天的进球率为10%
B.小亮明天每射球10次必进球1次
C.小亮明天有可能进球
D.小亮明天肯定进球
3.20xx·长沙下列说法正确的是( )
A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
B.天气预报说“明天的降水概率为40%”,表示明天有40%的时
间都在降雨
C.“篮球队员在罚球线上投篮一次,投中”为随机事件
D.“a是实数,|a|≥0”是不可能事件
4.20xx·丽水如图Z-27-1,一个游戏转盘中,红、黄、蓝三个
扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针
停止后落在黄色区域的概率是( )
3 / 5
图Z-27-1
A. B. C. D.
7
12
5.20xx·聊城小亮、小莹、大刚三位同学随机地站成一排合影留
念,小亮恰好站在中间的概率是( )
A. B. C. D.
1
6
6.20xx·成都在一个不透明的盒子中,装有除颜色外完全相同的
乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率
为,则该盒子中装有黄色乒乓球的个数是________.
7.20xx·滨州若从-1,1,2这三个数中任取两个分别作为点M
的横、纵坐标,则点M在第二象限的概率是________.
8.20xx·青岛小明和小亮计划暑期结伴参加志愿者活动,小明想
参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游
戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在
三张完全相同的卡片上分别标记4,5,6三个数字,一人先从三张卡
片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,
记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的
想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,
则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?
请说明理由.
4 / 5
5 / 5
详解详析
1.D 2.C 3.C 4.B 5.B 6.6
7. [解析] 根据题意点M的坐标有可能为:(-1,1),(-1,2),
(1,-1),(1,2),(2,1),(2,-1).因此,点M在第二象限的概
率为.
8.解:不公平.理由如下:
方法1:画树状图如下:
由树状图可知,共9种等可能的结果,其中和为偶数有5种结果,
和为奇数有4种结果,
∴P(小明获胜)=,P(小亮获胜)=,
∴游戏不公平.
方法2:列表如下:
4 5 6
4 8 9 10
5 9 10 11
6 10 11 12
由表格可知,共9种等可能的结果,其中和为偶数有5种结果,和为奇数有4
种结果,
∴P(小明获胜)=,P(小亮获胜)=,
∴游戏不公平.