直接蒸汽加热板式精馏塔设计
板式精馏塔设计

板式精馏塔设计一.生产工艺流程设计化工装置设计中,生产工艺流程设计的目的是,确定生产方式之后,以流程图的形式表示出由原料到产品的整个生产过程中物料被加工的顺序,及各段物料的流向。
并表示出生产中采用的化工操作单元及设备。
1.化工工艺流程草图便于进行物料衡算和热量衡算。
定性地标出物料由原料转化为产品的变化、流向及所采用的化工过程及设备。
2.带控制点的流程图此图表示出全部工艺设备、物料管线、阀件、设备的辅助管线以及工艺和自控仪表、图例、符号等。
二.精馏塔的工艺设计1.流程的选择精馏装置是由精馏塔、再沸器、冷凝器等设备组成。
精馏塔消耗的热量很多,绝大部分用于反复蒸发回流液,其余被塔顶冷凝器中的冷却水及残液冷却剂带走。
塔的热效率低节能是确定流程时应考虑的一个重要问题。
从经济方面考虑,尽量利用整个系统的热能,降低费用;另一方面要考虑操作的稳定性,保证质量。
例如:塔顶蒸汽冷凝放出大量热,但能位低,不能作塔釜热源;釜残液温度虽高,若直接预热料液,传热系数小(液—液换热)且采用温控措施。
总之在确定流程时需要考虑经济和操作控制等因素。
2.塔压的选择确定操作压力时,应根据精馏物料的工艺特性,兼技术上的可行性和经济上的合理性进行考虑。
一般除热敏性物料外,凡常压精馏能达到要求的都应采用常压,对热敏性或混合液沸点过高宜采用减压,对常压下气态物料应采用加压精馏。
3.进料状态料液的热状态与所需的塔板数目、加料板的位置及塔径的大小有密切的关系。
五种进料状况中以泡点进料最常见。
这种进料的优点是塔的操作易控制,不受季节气温变化的影响,而且精馏段、提馏段可采用相同的塔径,在设计和制造上较为方便,但需增设预热器。
4.加热方式蒸馏釜的加热方式大都采用间接蒸汽加热,设置再沸器。
5.回流比的选择回流比R 不仅影响理论塔板数,还影响加热蒸汽量和冷却水的消耗量,影响塔径、再沸器和冷凝器的尺寸及塔板的结构尺寸等。
选择适宜的回流比,主要从经济观点出发,力求使设备费和操作费之和最低。
板式精馏塔设计PPT课件

要求: hOW6mm
bc
(4) 塔板及其布置 ① 受液区和降液区 一般两区面积相等。
bs
r
lW
x
② 入口安定区和出口安定区
bsbs50 10m0m
bd
③ 边缘区:bc 50mm
29
④ 有效传质区:
bc
单流型弓形降液管塔板:
A a2(xr2x2r2si 1 nr x)
bs
r
x
lW
双流型弓形降液管塔板:
8
二元连续板式精馏塔的工艺计算
物料衡算 实际塔板数的确定 塔高和塔径的计算 塔板结构参数的确定 塔板流动性能校核
9
一、物料衡算
全塔物料衡算 间接加热时:
F=D+W FxF= DxD+WxW 可以解出F,W。
10
二 实际塔板数的确定
1.确定理论板数 可以采用图解法或逐板计算法.
平衡数据 回流比 精馏段操作线 加料线 提馏段操作线
14物性参数的查找计算塔径由精馏塔内各段物料的摩尔流率或说体积流率决定的其影响因素有f进料流率r回流比及q涉及单位换算15轻组分1x轻组分1x重组分2进料板的平均分子量进料板对应的组成x进料板对应的组成由逐板计算得到n值各人不同ynm轻组分1y轻组分1x重组分16轻组分1y轻组分1x重组分4精馏段提馏段的平均分子量精馏段平均分子量mlm1液相平均密度查物性数据
主要设备的工艺设计计算
板式塔的结构
辅助设备的选型
主要设备的工艺条件图
设计说明书的编写
3
设计方案的确定
(一)装置流 程的确定
要求在设计说明 书上画出流程 简图。
4
塔顶冷凝装置根据生产情况以决定采用 分凝器或全凝器。一般,塔顶分凝器对 上升蒸汽虽有一定增浓作用,但在石油 等工业中获取液相产品时往往采用全凝 器,以便于准确地控制回流比。若后继 装置使用气态物料,则宜用分凝器。
板式精馏塔设计说明书

课程设计说明书武汉工程大学化工与制药学院课程设计说明书课题名称乙醇—水板式精馏塔设计专业班级09级侯氏01班学生学号0906120123学生姓名杨中国学生成绩指导教师唐正姣课题工作时间2012.6.18-2012.6.29武汉工程大学化工与制药学院武汉工程大学化工原理课程设计任务书专业化学工程与工艺班级09级侯氏01班学生姓名杨中国发题时间:2012 年 6 月18 日一、课题名称乙醇-水分离过程板式精馏塔设计二、课题条件(文献资料、仪器设备、指导力量)⏹参考文献1.大连理工大学化工原理教研室. 化工原理课程设计. 大连:大连理工大学出版社,19942.柴诚敬,刘国维,李阿娜. 化工原理课程设计. 天津:天津科学技术出版社,19953.贾绍义,柴诚敬. 化工原理课程设计. 天津:天津大学出版社,20024.王国胜. 化工原理课程设计. 大连:大连理工大学出版社,20055.匡国柱,史启才.化工单元过程及设备课程设计. 北京:化学工业出版社,20026.上海医药设计院. 化工工艺设计手册(上、下). 化学工业出版社,19867.阮奇,叶长,黄诗煌. 化工原理优化设计与解题指南. 北京:化学工业出版社,2001.98.化工设备技术全书编辑委员会. 化工设备全书—塔设备设计. 上海:上海科学技术出版社,19889.邹兰,阎传智. 化工工艺工程设计. 成都:成都科技大学出版社,199810.李功祥,陈兰英,崔英德. 常用化工单元设备设计. 广州:华南理工大学出版社,200311.童景山, 李敬. 流体热物理性质的计算. 北京:清华大学出版社,198212.马沛生. 化工数据. 北京:中国石化出版社,200313.靳士兰, 邢凤兰. 化工制图. 北京:国防工业出版社,200614.朱有庭,曲文海,于浦义.化工设备设计手册(上、下册).北京:化学工业出版社,200415.刘雪暖, 汤景凝.化工原理课程设计.北京:石油大学出版社,2001⏹仪器设备化工与制药学院机房提供电脑给学生查资料和进行计算机辅助设计⏹指导力量指导教师已从事多年的化工原理教学,指导了多届学生的课程设计,对设计内容较熟悉。
精馏塔(板式)设计

PA α= ∗ PB
(三)塔板数的确定 1、作出x-y相图 、作出 相图 2、最小回流比及操作回流比 、 3、理论板数及加料位置 、 ①求精馏塔的汽、液相负荷 求精馏塔的汽、
∗
R = 1.5 Rmin
L′ = L + qF = RD + qF
V ′ = V + (q − 1) F = ( R + 1) D + (q − 1) F
化工原理课程设计
(6)冷凝器的选择 ) 塔顶产品(全凝器)和塔釜产品(冷却器) 塔顶产品(全凝器)和塔釜产品(冷却器) (7)加料方式的选择 ) 高位槽或泵 (8)工艺流程 ) 3、正戊烷和正己烷的性质、用途等 、正戊烷和正己烷的性质、
化工原理课程设计
二.工艺计算
主要内容是( 主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数和实 际板数 (4)塔的气液负荷计算 (5)热量衡算 塔设备的生产能力一般以千克/小时或吨/年表示, 塔设备的生产能力一般以千克/小时或吨/年表示,但在理论板 计算时均须转换成kmol/h,在塔板设计时 在塔板设计时, 计算时均须转换成kmol/h,在塔板设计时,气液流量又须用体积 流量m /s表示 因此要注意不同的场合应使用不同的流量单位。 表示。 流量 m3/s 表示 。 因此要注意不同的场合应使用不同的流量单位 。 (一)全塔物料衡算 1、原料液及塔顶、塔底产品的摩尔分数 、原料液及塔顶、
化工原理课程设计
②求精馏段、提馏段的操作线方程 求精馏段、
R xD y= x+ R +1 R +1
③作图求出理论板数 ④逐板计算求理论板数
WxW L + qF y′ = x′ − L + qF − W L + qF − W
丙酮-水溶液直接蒸汽加热筛板精馏塔设计

第一部分设计概述一、设计题目:筛板式连续精馏塔及其主要附属设备设计二、工艺条件:生产能力:30000吨/年(料液)年工作日:300天原料组成:25%丙酮,75%水(质量分率,下同)产品组成:馏出液 99%丙酮,釜液2%丙酮操作压力:塔顶压强为常压进料温度:泡点进料状况:泡点加热方式:直接蒸汽加热回流比:自选三、设计内容1、确定精馏装置流程,绘出流程示意图。
2、工艺参数的确定基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。
3、主要设备的工艺尺寸计算板间距,塔径,塔高,溢流装置,塔盘布置等。
4、流体力学计算流体力学验算,操作负荷性能图及操作弹性。
5 、主要附属设备设计计算及选型塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。
料液泵设计计算:流程计算及选型。
四、工艺流程图丙酮—水溶液经预热至泡点后,用泵送入精馏塔。
塔顶上升蒸气采用全冷凝后,部分回流,其余作为塔顶产品经冷却器冷却后送至贮槽。
塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。
精馏装置有精馏塔、原料预热器、冷凝器、釜液冷却器和产品冷却器等设备。
热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。
丙酮—水混合液原料经预热器加热到泡点温度后送入精馏塔进料板,在进料板上与自塔上部下降的的回流液体汇合后,逐板溢流,最后流入塔底。
在每层板上,回流液体与上升蒸汽互相接触,进行热和质的传递过程。
流程示意图如下图图1:精馏装置流程示意图第二部分塔的工艺计算一、查阅文献,整理有关物性数据(1)水和丙酮的性质表1.水和丙酮的粘度温度50 60 70 80 90 100水粘度mpa0.592 0.469 0.40 0.33 0.318 0.248丙酮粘度mpa0.26 0.231 0.209 0.199 0.179 0.160表2.水和丙酮表面张力温度50 60 70 80 90 100水表面张力67.7 66.0 64.3 62.7 60.1 58.4丙酮表面张力19.5 18.8 17.7 16.3 15.2 14.3表3.水和丙酮密度温度50 60 70 80 90 100相对密度0.760 0.750 0.735 0.721 0.710 0.699水998.1 983.2 977.8 971.8 965.3 958.4 丙酮758.56 737.4 718.68 700.67 685.36 669.92 表4.水和丙酮的物理性质分子量沸点临界温度K 临界压强kpa 水18.02 100 647.45 22050丙酮58.08 56.2 508.1 4701.50表5. 丙酮—水系统t—x—y数据沸点t/℃丙酮摩尔数x y10000 920.01 0.279 84.20.0250.47 75.60.050.63 66.90.10.754 62.40.20.813 61.10.30.832 60.30.40.842 59.80.50.851 59.20.60.86358.80.70.87558.20.80.89757.40.90.93556.90.950.96256.7 0.975 0.97956.5 1 1由以上数据可作出t-y(x)图如下由以上数据作出相平衡y-x线图(2)进料液及塔顶、塔底产品的摩尔分数酮的摩尔质量 A M =58.08 Kg/kmol 水的摩尔质量 B M =18.02 Kg/kmol平均摩尔质量0937.002.18/75.008.58/25.008.58/25.0=+=F x 968.002.18/01.008.58/99.008.58/99.0=+=D x 00629.002.18/98.008.58/02.008.58/02.0=+=W xM F =0.0937⨯58.08+(1-0.0937)⨯18.02=21.774 kg/kmol M D = 0.968⨯58.08+ (1-0.968) ⨯18.02=56.798 kg/kmol M W =0.00629⨯58.08+(1-0.00629)⨯18.02=18.272 kg/kmol30000000/(30024)191.3621.774F ⨯== kg/kmol最小回流比由题设可得泡点进料q=1则F x = e x ,又附图可得e x =0.0937, e y =0.749。
海川化工论坛板式精馏塔的设计

第一章 板式精馏塔的设计1.1概述1.2板式精馏塔的设计原则与步骤1.3理论塔板数的确定1.4 塔板效率和实际塔板数1.5 板式精馏塔的结构设计1.6 板式精馏塔高度及其辅助设备1.7 板式精馏塔的计算机设计第二章 塔设备的机械计算2.1塔体及裙座的强度计算2.2塔盘板及其支撑梁的强度、挠度计算2.3塔盘技术条件2.4塔盘支撑件的尺寸公差附录第一章:板式精馏塔的设计1.1概述蒸馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。
蒸馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。
为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。
蒸馏过程按操作方式可分为间歇蒸馏和连续蒸馏。
间歇蒸馏是一种不稳态操作,主要应用于批量生产或某些有特殊要求的场合;连续蒸馏为稳态的连续过程,是化工生产常用的方法。
蒸馏过程按蒸馏方式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。
简单蒸馏是一种单级蒸馏操作,常以间歇方式进行。
平衡蒸馏又称闪蒸,也是一种单级蒸馏操作,常以连续方式进行。
简单蒸馏和平衡蒸馏一般用于较易分离的体系或分离要求不高的体系。
对于较难分离的体系可采用精馏,用普通精馏不能分离体系则可采用特殊精馏。
特殊精馏是在物系中加入第三组分,改变被分离组分的活度系数,增大组分间的相对挥发度,达到有效分离的目的。
特殊精馏有萃取精馏、恒沸精馏和盐溶精馏等。
精馏过程按操作压强可分为常压精馏、加压精馏和减压精馏。
一般说来,当总压强增大时,平衡时气相浓度与液相浓度接近,对分离不利,但对在常压下为气态的混合物,可采用加压精馏;沸点高又是热敏性的混合液,可采用减压精馏。
虽然工业生产中以多组分精馏为常见,但为简化起见,本章主要介绍两组分连续精馏过程的设计计算。
1.2板式精馏塔的设计原则与步骤1.2.1设计原则总的原则是尽可能多地采用先进的技术,使生产达到技术先进、经济合理的要求,符合优质、高产、安全、低能耗的原则,具体考虑以下几点。
直接蒸汽加热板式精馏塔设计
双组分溶液直接蒸汽加热板式精馏塔设计设计任务:规定F 、xF 、xD 、xW ,设计出能完成分离任务的板式精馏塔 1. 回流比● 最小回流比设夹紧点在精馏段,其坐标为(xe,ye)则min D ee ex y R y x -=-(1)设夹紧点在提馏段,其坐标为(xe,ye)min min 0(1)(1)e e Wy R D qF LV R D q F x x -+==+--- (2) 所需基础数据:气液相平衡数据 丙酮-水xi = [0 0.01 0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相丙酮平衡浓度yi = [0 0.253 0.425 0.624 0.755 0.793 0.815 0.830 0.839 0.849 0.859 0.874 0.898 0.935 0.963 1.0]; % 汽相丙酮平衡浓度ti=[ 100 92.7 86.5 75.8 66.5 63.4 62.1 61.0 60.4 60.0 59.7 59.0 58.2 57.5 57.0 56.13 ];%平衡温度 甲醇-水xi = [0 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相甲醇平衡浓度yi = [0 0.134 0.234 0.304 0.365 0.418 0.517 0.579 0.665 0.729 0.779 0.825 0.870 0.915 0.958 0.979 1.00]; % 汽相甲醇平衡浓度ti=[ 100 96.4 93.5 91.2 89.3 87.7 84.4 81.7 78.0 75.3 73.1 71.2 69.3 67.6 66.0 65.0 64.5 ];%平衡温度来源:王志魁.化工原理(第三版),北京:化学工业出版社,2004 ● 确定操作回流比min(1.1~2.0)R R =用Matlab 或Excel 工具求出N 与R 间的关系以确定适宜的回流比。
课程设计-板式塔
及辅助设备的选型,编写设计说明书。
2、绘制工艺流程图一张。 3、绘制精馏塔的装配图(一号图纸)。 4、说明书编写。
二、设计说明书的内容
– 1、目录;
– 2、设计题目及原始数据(任务书);
– 3、简述酒精精馏过程的生产方法及特点; – 4、论述精馏总体结构(塔型、主要结构)及流程的安排、 材料选择; – 5、精馏过程有关计算(物料衡算、热量衡算、理论塔板
数、回流比、塔高、塔径塔板设计、进出管径等);
– 6、设计结果概要(主要设备尺寸、衡算结果等);
– 7、主体设备设计计算及说明;
– 8、主要附属设备的选择(换热器等);
– 9、参考文献 ;
– 10、自我总结及有关问题的讨论。 – 说明书书写格式:每页的右边留30mm,用来标 注参考文献及简单备注。
设备的年运行时间平均为300天。
• 设计条件:
1、加热方式: 直接蒸汽加热,蒸汽压力为 1.0~2.0kg/cm2。 间接加热。 2、操作压力: 常压。 3、进料状况: 饱和液体。 30℃冷液进料。 4、冷却水进口温度:30℃,出口温度自定。 5、塔板形式:浮阀塔板。
• 应完成的工作量:
1、乙醇精馏塔的工艺设计,塔板的结构设计
是现代化生产应优先考虑的原则,不得采用缺乏可靠性的、不成
熟的技术和设备,不得采用难以控制或难以保证安全生产的技和 设备。
4、可行性:流程布置和设备结构不应超出一般土建要求和
机
本设计的基本内容和要求
• 设计内容包括:
• 选定精馏方案及流程;
• 进行精馏塔的工艺计算;
• 结构和附属设备的选型设计; • 绘制精馏塔的装配图; • 将设计结果编写成设计说明书。
课程设计不同于平时的作业,在设计中需要学生自己 做出决策,即自己确定方案,选择流程,查取资料, 进行过程和设备计算,并要对自己的选择做出论证和 核算,经过反复的分析比较,择优选定最理想的方案
《化工原理课程设计》板式精馏塔设计报告
《化工原理课程设计》报告4万吨/年甲醇~水板式精馏塔设计目录一、概述 (4)1.1 设计依据·································错误!未定义书签。
1.2 技术来源·································错误!未定义书签。
1.3 设计任务及要求 (5)二:计算过程 (7)1. 塔型选择 (7)2. 操作条件的确定 (8)2.1 操作压力 (8)2.2 进料状态 (8)2.3 加热方式 (8)2.4 热能利用 (8)3. 有关的工艺计算 (9)3.1 最小回流比及操作回流比的确定·········错误!未定义书签。
3.2 塔顶产品产量、釜残液量及加热蒸汽量的计算错误!未定义书签。
3.3 全凝器冷凝介质的消耗量 (17)3.4 热能利用·····························错误!未定义书签。
乙醇水-板式精馏塔-课程设计
1.引言1.1.精馏原理及其在化工生产上的应用实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。
对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B物质,而残液是沸点高的A物质,精馏是多次简单蒸馏的组合。
精馏塔底部是加热区,温度最高;塔顶温度最低。
精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底。
1.2.精馏塔对塔设备的要求精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。
常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下:①生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。
②效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。
③流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。
④有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。
⑤结构简单,造价低,安装检修方便。
⑥能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。
1.3常用板式塔类型及本设计的选型常用板式塔类型有很多,如:筛板塔、泡罩塔、舌型塔、浮阀塔等。
由于浮阀塔有如下优点:①生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大20%~40%,与筛板塔接近。
②操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。
③塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹带量小,塔板效率高。
④气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差比泡罩塔小。
⑤塔的造价较低,浮阀塔的造价是同等生产能力的泡罩塔的 50%~80%,但是比筛板塔高 20%~30。
而且近几十年来,人们对浮阀塔的研究越来越深入,生产经验越来越丰富,积累的设计数据比较完整,因此设计浮阀塔比较合适。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双组分溶液直接蒸汽加热板式精馏塔设计设计任务:规定F 、xF 、xD 、xW ,设计出能完成分离任务的板式精馏塔 1. 回流比● 最小回流比设夹紧点在精馏段,其坐标为(xe,ye)则min D ee ex y R y x -=-(1)设夹紧点在提馏段,其坐标为(xe,ye)min min 0(1)(1)e e Wy R D qF LV R D q F x x -+==+--- (2) 所需基础数据:气液相平衡数据 丙酮-水xi = [0 0.01 0.02 0.05 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相丙酮平衡浓度yi = [0 0.253 0.425 0.624 0.755 0.793 0.815 0.830 0.839 0.849 0.859 0.874 0.898 0.935 0.963 1.0]; % 汽相丙酮平衡浓度ti=[ 100 92.7 86.5 75.8 66.5 63.4 62.1 61.0 60.4 60.0 59.7 59.0 58.2 57.5 57.0 56.13 ];%平衡温度 甲醇-水xi = [0 0.02 0.04 0.06 0.08 0.10 0.15 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.0]; % 液相甲醇平衡浓度yi = [0 0.134 0.234 0.304 0.365 0.418 0.517 0.579 0.665 0.729 0.779 0.825 0.870 0.915 0.958 0.979 1.00]; % 汽相甲醇平衡浓度ti=[ 100 96.4 93.5 91.2 89.3 87.7 84.4 81.7 78.0 75.3 73.1 71.2 69.3 67.6 66.0 65.0 64.5 ];%平衡温度 ● 确定操作回流比m i n(1.1~2.0)R R =2 全塔物料衡算与操作方程(1)全塔物料衡算F S D W +=+ (3)F D W Fx Dx Wx =+ (4) 其中 (1)(1)S V R D q F ==+-- (5)W L RD qF ==+(6) 联立式(3)、式(4)得: F WD Wx qx D F x Rx -=+(7)(2) 操作方程精馏段 111D n n x Ry x R R +=+++ 提馏段 1n n W W Wy x x S S+=- 3 计算精馏段、提馏段理论板数① 理想溶液 图解法或求出相对挥发度用逐板计算法求取。
② 非理想溶液 相平衡数据为离散数据,用图解法或数值积分法求取4. 全塔组成分布、温度分布及精馏段、提馏段平均温度与组成精馏段平均温度 1()/2F t t t =+ 提馏段平均温度 ()/2F N t t t =+其中 1t ——塔顶第一板温度,F t ——加料板温度,B t ——塔釜温度5物性参数的计算① 塔顶条件下的物性参数(气相密度、液相密度、表面张力及粘度) ② 进料板组成与温度条件的物性参数 ③ 塔釜条件下的物性参数 ④ 精馏段平均物性参数 ⑤ 提馏段平均物性参数附:气相密度用理想气体状态方程计算 pMRTρ= 液相密度1ABLABw w ρρρ=+A w 、B w 为组分A 与B 的质量分数,A ρ、B ρ分别为组分A 与B 的液相密度,水的密度用插值法求,甲醇或丙酮的密度查有机液体相对密度共线图(陈敏恒,化工原理(上册):北京:化学工业出版社,2006)表面张力(含水溶液)1/41/41/4m SW W SO O σϕσϕσ=+/()W W W W W O O x V x V x V ϕ=+ /()O O O W WO Ox V x V x V ϕ=+ lg(/)qWO B ϕϕ=2/32/30.441(/)()O O W W V Q q T V qσσ=-lg(/)qSW SO B Q ϕϕ+=1SW SO ϕϕ+=醇类 q=碳原子数;酮类 q=碳原子数-1V W 、V O 分别为纯水与纯有机物的表面张力。
纯有机物的表面张力查有机液体的表面张力共线图。
粘度6塔效率的计算塔效率:0.2450.49()T L E αμ-=——O'Connel 公式(适用于非碳氢物系如甲醇-水物系,丙酮-水物系)丙酮-水 ① 精馏段0.2450.49()T L E αμ-=式中:α——精馏段平均温度下的相对挥发度;μL ——精馏段平均温度下的液相粘度, mPa.s以乙醇-水体系为例:精馏段平均温度 82.79℃,0.2294A x =,0.5422A y =,查有机液体粘度共线图82.79℃下醇的粘度为0.433mPa.s ,查教材附录水的粘度为0.3439mPa.s 。
/0.5422/0.22943.98/0.4578/0.7706A AB B y x y x α===0.4330.22940.3439(10.2294)0.3643L i i x μμ==⨯+⨯-=∑mPa.s② 提馏段0.2450.49()T L E αμ-=式中:α——提馏段平均温度下的相对挥发度;μL ——提馏段平均温度下的液相粘度, mPa.s7 计算实际塔板数全塔效率:0.2450.49()T L E αμ-=——O'Connel 公式(适用于非碳氢物系)式中:α——塔顶与塔底平均温度下的相对挥发度; μL ——塔顶与塔底平均温度下的液相粘度, mPa.s ① 精馏段0.2450.49()T L E αμ-=式中:α——精馏段平均温度下的相对挥发度;μL ——精馏段平均温度下的液相粘度, mPa.s p (N )RTN E =精 注意:要圆整塔板数 ② 提馏段0.245 0.49()T L E αμ-=式中:α——提馏段平均温度下的相对挥发度;μL ——提馏段平均温度下的液相粘度, mPa.s p 1(N )S TN E -=提 注意:要圆整塔板数 全塔所需塔板数:()()p p p N N N =+精提 全塔效率: (1)/T T p E N N =-提醒:全塔效率的工业测定值通常在0.3~0.7之间8 冷凝器的热负荷冷凝器的热负荷()C DV DL Q V I I =-待求量:进料温度t F 、塔顶上升蒸汽温度t DV (与x D 对应的露点温度)、回流温度t DL (与x D 对应的泡点温度)。
物性数据:① 各组分在平均温度下的液相热容、气相热容或汽化热。
② 各组分的热容方程常数如 23p c A BT CT DT =+++③ 由沃森公式计算汽化热 210.38211()1r V V r T H H T -∆=∆-9 估算塔径(1) 板间距的初选板间距N T 的选定很重要。
选取时应考虑塔高、塔径、物系性质、分离效率、操作弹性及塔的安装检修等因素。
对完成一定生产任务,若采用较大的板间距,能允许较高的空塔气速,对塔板效率、操作弹性及安装检修有利;但板间距增大后,会增加塔身总高度,金属消耗量,塔基、支座等的负荷,从而导致全塔造价增加。
反之,采用较小的板间距,只能允许较小的空塔气速,塔径就要增大,但塔高可降低;但是板间距过小,容易产生液泛现象,降低板效率。
所以在选取板间距时,要根据各种不同情况予以考虑。
如对易发泡的物系,板间距应取大一些,以保证塔的分离效果。
板间距与塔径之间的关系,应根据实际情况,结合经济权衡,反复调整,已做出最佳选择。
设计时通常根据塔径的大小,由表4-1列出的塔板间距的经验数值选取。
表1 塔板间距与塔径的关系塔 径/D ,m 0.3~0.5 0.5~0.8 0.8~1.6 1.6~2.4 2.4~ 4.0 板间距/H T ,mm200~300250~350300~450350~600400~600化工生产中常用板间距为:200,250,300,350,400,450,500,600,700,800mm 。
在决定板间距时还应考虑安装、检修的需要。
例如在塔体人孔处,应留有足够的工作空间,其值不应小于600mm 。
(2) 估算塔径4/s D V u π=max (0.6~0.8) u u = 0.5m a x ()L G Gu C ρρρ-= 0.220=()20LC C σ 0.520L =f (,-h ) ( )GL T G LWC H W ρψψρ= 式中:C ——操作物系的负荷因子; σL ——操作物系的液体表面张力,mN/m ;H T ——板间距;h L ——板上液层高度。
注意:(1) 板上液层高度和塔板间距由设计者选定。
对常压塔一般取为0.05~0.08m ,对减压塔一般取为0.025~0.03m 。
(2) 一定要按压力容器标准圆整塔径。
目前,塔的直径已标准化。
所求得的塔径应圆整到标准值。
塔径在1m 以下者,标准化先按100mm 增值变化;塔径在1m 以上者,按200mm 增值变化,即1000mm 、1200mm 、1400mm 、1600mm ……等。
(3)以上计算的塔径只是初估值,要根据流体力学原则进行验算。
(3) 因精馏段与提馏段的气液负荷及物性数据不同,故设计中两段的塔径应分别计算,若二者相差不大,应取较大者作为塔径,若二者相差较大,应采用变塔径。
注意:(1)圆整后的塔径值可以比计算值小。
如D=1.05m ,圆整后的D 可取1 m ,1.2m(2) 精馏段与提馏段的塔径尽可能选取相同值,若需采用异径塔,也应使提馏段塔径大于精馏段。
塔径的核算塔径标准化以后,应重新验算雾沫夹带量,必要时在此先进行塔径的调整,然后再决定塔板结构的参数,并进行其它各项计算。
当液量很大时,亦宜先按式4-7核查一下液体在降液管中的停留时间θ。
如不符合要求,且难以加大板间距来调整时,也可在此先作塔径的调整。
所需物性数据物性数据:气体混合物的密度、液体混合物的密度、液体混合物的表面张力 计算式:气体混合物 G p MRTρ= 液体混合物:1iLiw ρρ=∑wi ——组分i 的质量分数含水溶液的表面张力: 1/41/41m S W WS O Oσϕσϕσ=+ 式中:/ / SW SW W S SO SO O S x V V x V V ϕϕ== 计算精馏段塔径时物性数据的处理:a. 以上方程所用物性数据近似按塔顶第一板处理. 如 11G pM RT ρ=b. 以上方程中所用物性数据均取塔顶第一板与加料板物性数据的平均值 计算提馏段塔径时物性数据的处理:a. 以上方程所用物性数据近似按加料板处理.b. 以上方程中所用物性数据均取加料板与塔釜物性数据的平均值10 板式塔的塔板工艺尺寸计算注意:精馏段与提馏段应分别设计。